Stars, Galaxies & the Universe Announcements

- Reading Quiz #14- today in class
- ACE Forms please take seriously and give feedback
- HW #12 due on Friday (12-10) by 5 pm; available now!
- Final Exam review materials posted by end of week
- Final Exam will be cumulative; Thursday 16 Dec @7:30 am in VAN LR 1; 150 points – 50 questions @3 pts each! We will have a review session sometime during Finals Week.
- REVIEW: Tuesday (12-14) evening @ 7 pm in LR70 bring a question to get in. ©

Stars, Galaxies & the Universe Lecture Outline

Life in the Universe (Chapter 27)

(1) Additional techniques for finding exoplanets
 (2) Search for Intelligent Life

The Doppler Technique

Caveats of this method:

1. Planets of Jupiter mass and bigger are the most easily detectable

2. Planets closer to the star are easier to detect - gravity is stronger, "wobble" bigger

3. Planets less massive than Jupiter (like Earth, Mars) are very difficult to detect (undetectable)
 -mass, gravity weaker; "wobble" miniscule 4. If the plane of planet orbit is not aligned with our

sight-line, then "wobble" not detected - Doppler effect for toward/away from motion

- not side to side

55 Cancri – triple planet system! 3x Jupiter mass at 5.5 AU from star One of the most similar to our SS

Upsilon Andromeda b 4 day orbital period 0.7 Jupiter masses – tidally locked to star

Life around other stars?

- Planets detected so far by Doppler method don't seem to be "habitable" - i.e., too hot (too close to star) and Jovian-like
- Terrestrial-type planets may be there, but undetectable now
- What properties must a star have to harbor a "habitable" planet? → old enough to have life evolve on its planet (i.e. billions!) → star must have stable orbits (not be binary or multiple)

 - \rightarrow size of habitable zone temperature allowing liquid water/ice

II. Planet Transits & Eclipses (Indirect)

planet crossing in front of star may cause brightness change repeated observations b/c stars can vary their brightness - can get direct measure of SIZE

· depends on parameters of how planet would be orbiting

 backyard astronomers are monitoring for such fluctuations

III. Extrasolar Microlensing

Distant star appears to change in brightness as star system with planet in the foreground bends the light around as it passes by

2005 and 2007 – first microlensed star-planet systems event were detected: 5-7 Earth masses

Indirect Methods of Extrasolar Planet Detection:

- 1. Doppler Technique
- Looking for slight changes "wobbles" in star's position 2. *Planet Transit*
 - Looking for slight changes in brightness of star due to planet crossing in front of star
- 3. Microlensing

 \rightarrow Learn orbital properties, size, mass

Direct Method of Extrasolar Planet Detection:

- 1. Directly detecting the planet!
 - emission from the star drowns out signal from planet
 - some hope if you look in IR, where planets are strong

NASA is planning several new spacecraft missions to search for Earth-sized (!) planets:

-Space Interferometry Mission (SIM) -Terrestrial Planet Finder (TPF-I (interferometry) or TPF-C (coronagraph))

Kepler Mission : to try to find Earth-like extrasolar planets

telescope of 0.95 meter diameter430-890 nm (visible)

• will monitor 100,000 solar type stars and measure very small changes in brightness (planet transits)

- ~ 85 days until launch!
- 6 March 2009

SIM

How many stars in our Galaxy may have a life-bearing planet around them?

• Can make some assumptions:

1. suppose 1/10 stars have life-bearing planet (optimistic)

2. suppose life lasts for ~1 million years on a planet in a stellar system that lasts ~10 billion years

life would last 1/10,000th of the star's lifetime
means only 1 in 10,000 stars have a planet currently with life

3. translate that to the 100 billion stars in our Galaxy → 1 million stars with life-bearing planet

pessimistic approach: life is so rare and special, we are alone

The Search for Extraterrestrial Life Elsewhere...

"Listening" across the EM spectrum

What is the best frequency to tune into?

• some possibilities in the radio spectrum

→ radio frequency of 1.4 x 10⁹ GHz spectral line of atomic hydrogen – HI – spin flip! since 90% of interstellar material is hydrogen

→ radio frequency of 1.4 x 10^9 GHz * $\pi = 4.4$ GHz universal number * hydrogen spectral line

• want to use very narrow spectral windows to discover strong, "beamed" signals, beacons

SETI

Search for Extraterrestrial Intelligence Program

Program criteria for success/challenges:

- 1. large collecting area (big dish)
- 2. dedicated telescope constantly scanning sky
- 3. adequate funding both gov't & private $\$
- 4. removal of interference from tv, radio, cellphones, satellite communications
- 5. processing HUGE amounts of data

As of recently, SETI is using two telescopes:

1. Arecibo radio telescope (308 m) in Puerto Rico 2. Parkes radio telescope (64 m) in Australia \rightarrow Southern Sky

Current SETI search: Project Phoenix

- Examining ~1,000 nearby stars
- Uses over 1 billion channels (1 Hz wide)
- Currently at Arecibo Radio telescope (Puerto Rico)
- About 1/2 of target stars already examined.

SETI

Search for Extraterrestrial Intelligence Program

The Future: Allen Telescope Array

money donated by Paul Allen,
 one of the Microsoft founders

dedicated telescope for SETI

• ~350 6 meter telescopes like backyard satellite dishes

science Operations started October 2007

search and also radio surveys of sky and known objects

(M33 in optical and in HI radio emission)

Have *we* broadcasted anything into space on purpose for communication?

In 1974 we also sent a beamed radio signal to the globular cluster M13 (21,000 ly) from Arecibo in Puerto Rico

How easy would it be for us to *travel* to another planetary system to find life?

- interstellar travel has been drastically dramatized! - sci-fi movies, books, etc.
 - travel near the speed of light is impossible
- interstellar travel will likely never happen

 the distances are just too great
 spacecraft just can not travel fast enough
- even fastest VOYAGER spacecrafts are moving slowly - travel at 20 km/s (less than 1% the speed of light) - it will take 60,000 years to get to nearest star!

Voyager 1 & 2 – launched in 1977

- explore beyond Jupiter
- made first good images of Saturn, Uranus Neptune
 included a visual message & audio recording
- currently Voyagers beyond Pioneer at > 100 AU!

Even at the speed of light, there are still complications...

- energy required to get a spacecraft to speed of light is <u>enormous</u> - *fuel would be heavy, expensive*

- very inefficient mode of communication -Energy needed to accelerate a ship like the "Enterprise" in *Star Trek* to just 0.5c would use more than 2000x the annual energy

- at such speeds, interstellar particles (gas, dust, atoms) would become deadly for craft, passengers

Scene from Movie Contact

• <u>http://www.youtube.com/watch?v=vPOZsdp6_Dg</u>