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While non-nitride III-V semiconductors typically have a zinc-blende structure, they may also form wurtzite
crystals under pressure or when grown as nanowhiskers. This makes electronic structure calculation difficult
since the band structures of wurtzite III-V semiconductors are poorly characterized. We have calculated the
electronic band structure for nine III-V semiconductors in the wurtzite phase using transferable empirical
pseudopotentials including spin-orbit coupling. We find that all the materials have direct gaps. Our results
differ significantly from earlier ab initio calculations, and where experimental results are available �InP, InAs,
and GaAs� our calculated band gaps are in good agreement. We tabulate energies, effective masses, and linear
and cubic Dresselhaus zero-field spin-splitting coefficients for the zone-center states. The large zero-field
spin-splitting coefficients we find may facilitate the development of spin-based devices.
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I. INTRODUCTION

Semiconductor nanowhiskers �NWs� have attracted a tre-
mendous amount of interest in recent years.1–8 Much of it is
due to their potential application in areas such as photovol-
taic cells,9–11 nanoelectromechanical resonator arrays,12 mi-
crowave and terahertz detection,13,14 single photon
detection,15–17 field-effect18,19 and single-electron
transistors,20 and various other electronic and optoelectronic
devices.21–25 NWs are also interesting because one-
dimensional systems can be made using material combina-
tions for which large lattice mismatches prohibit quantum
well structures, allowing greater freedom in material combi-
nations for device engineering.

In contrast to bulk non-nitride III-V materials which are
usually zinc-blende �ZB�, NWs predominantly crystallize in
the wurtzite �WZ� phase.26–28 Several different theoretical
explanations for this behavior have been proposed. Recent
calculations suggest that the WZ phase is energetically favor-
able for small NW radii,29,30 although this does not account
for all NW radii for which the WZ phase is experimentally
observed. Calculations based on an empirical nucleation
model indicate that WZ formation is favored for certain
ranges of the interface energies.31 Ab initio calculations indi-
cate that the WZ phase is favored due to the accumulation of
electrons at the interstitial site containing the Au catalyst,32

while other calculations show that the polytype is determined
by growth kinetics.33 It should be noted that these different
mechanisms are not necessarily mutually exclusive.

A theoretical understanding of the electronic and optical
properties of semiconductor nanostructures is based on a
knowledge of the electronic properties of bulk materials.
However, little is known about the electronic band structure
of III-V semiconductors in the WZ phase since most do not
naturally occur as bulk crystals. Moreover, the NWs often
contain sections of ZB material forming heterostructures out
of the differing band structures of the two polytypes.2,34–36

Band structures of WZ III-V semiconductors have been cal-
culated using density-functional theory �DFT� in the local-
density approximation �LDA�.37,38 Since the LDA underesti-

mates band gaps the WZ band structure cannot be directly
determined, and instead calculations of WZ and ZB are typi-
cally compared to obtain the differences between the two
polytypes. The band structures of GaAs and InAs in the WZ
phase have also been calculated using the GW method39 giv-
ing somewhat different results than those from the LDA. In
addition to the inherent errors in ab initio band gaps, all of
the above calculations neglected the spin-orbit coupling,
which is known to significantly alter the valence-band
structure of semiconductors.

In this paper we present calculations of the bulk electronic
band structures of the nine non-nitride III-V semiconductors
in the WZ phase using empirical pseudopotentials including
spin-orbit coupling. These calculations are based on transfer-
able model pseudopotentials assuming ideal WZ structure.
The spherically symmetric ionic model potentials are first
obtained by fitting the calculated bulk ZB energies to experi-
mental energies at high symmetry points. The band structure
of the WZ polytype is then obtained by transferring the
model pseudopotentials to the WZ pseudopotential Hamil-
tonian using the appropriate crystal structure factors.

This method has been proven to be very successful in
obtaining the bulk band structures of semiconductor
polytypes.40–48 The anion and cation pseudopotentials are
specific to each material and are only transferred between
polytypes. Therefore, the model potentials should be trans-
ferable between ZB and WZ polytypes due to the similarities
in their crystal structures. In both structures all of the nearest
neighbors and nine out of the 12 second-nearest neighbors
are at identical crystallographic locations49 while the second-
nearest neighbors are equidistant.

This paper is organized as follows. In Sec. II we outline
the similarities and differences between ZB and WZ crystal
structures as well as the direct correspondence between high
symmetry k points in the two polytypes. In Sec. III we de-
scribe the transferable pseudopotential method. In Sec. IV
we present the calculated band structures, their respective
density of states �DOS�, and effective masses. Finally, we
summarize the results in Sec. V.
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II. WURTZITE VERSUS ZINCBLENDE

A. Crystal structure

The ZB crystal is formed by two interpenetrating face-
centered-cubic �fcc� Bravais lattices �each of a different
atomic species�, whereas the WZ structure is constructed
from two interpenetrating hexagonal-close-packed �hcp� lat-
tices. The differences between the two structures are best
understood by viewing along the �111� direction �Figs. 1�a�
and 1�b��, along which both look like stacked hexagonal lay-
ers. The atoms are identical within each layer, and the layers
alternate between the anion and the cation. For the ideal WZ
crystal the lattice constant is given by aWZ=aZB /�2 and the
lattice constant along the c axis �axis perpendicular to the
hexagon� is related to the in-plane lattice constant by c
=�8 /3 aWZ. Since the WZ crystal is tetrahedral, the nearest
neighbors are the same in the two polytypes. In addition, we
see from Fig. 1 that nine of the 12 nearest neighbors in WZ
are the same as in ZB. These structural similarities suggest
that the local electronic environment will be the same in the
two crystals, and therefore the crystal potentials will be
nearly identical in WZ and ZB.

In WZ the type-1 atoms are located at �0,0,0� and 2
3a1

+ 1
3a2+ 1

2a3, while the type-2 atoms are located at ua3 and
2
3a1+ 1

3a2+ � 1
2 +u�a3, where the primitive lattice vectors are

a1= �1,�3,0�aWZ /2, a2= �1,−�3,0�aWZ /2, and a3= �0,0 ,c�.
Throughout this paper we assume an ideal WZ crystal

with u=3 /8. The most studied WZ semiconductors are ni-
tride III-Vs, which have values of u ranging from 0.3783

�GaN� to 0.3902 �AlN�.50 Relatively little is known about the
structure of non-nitride WZ III-Vs. Measurements of bulk
samples of metastable WZ GaAs give u=0.3693,51 while
InAs nanowires have an ideal WZ structure with u
=0.37502.39 The paucity of data on non-nitride III-Vs and
the fact that the one structural measurement in an actual
nanowire indicates the ideal structure support the assumption
of an ideal WZ crystal until better data become available.

In lieu of experimental data, an alternative to using the
ideal WZ structure would be to calculate the WZ lattice con-
stants using DFT. However, for materials that have been
measured, the ideal structure is in fact more accurate than
that obtained from DFT. For example, the calculated lattice
constants of WZ GaN differ from experiment by −1.4% to
+1.0% for a, and −1.1% to +1.4% for c,52 and other calcu-
lations differ by 3%.38 In contrast, the ideal GaN structure
differs from experiment by +0.2% for a and −0.2% for c. As
a test of the overall accuracy of our method for determining
band structures, we calculated the band structure of GaN
using the ideal lattice constants obtaining Eg=3.477 eV
which is in good agreement with the experimental value Eg
=3.503 eV.53

B. Band structure

Due to the similarities of the two crystals, many of the
high symmetry points in the Brillouin zones of ZB and WZ
are related to each other and an understanding of their cor-
respondences is useful for understanding trends in the band
structures of the two polytypes. Figure 2 shows the relation-
ships among the zone-center states in WZ and the corre-
sponding L and � points in ZB, both with and without spin-
orbit coupling. One of the most important features is that in
the empty lattice approximation the L point in ZB is zone-
folded to the � point in WZ. As a result, in the absence of
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FIG. 1. �Color online� �a� Staggered configurations of atom-1 as
viewed along �111� for ZB. �b� Eclipsed configuration of atom-1 as
viewed along �111� for WZ. Note that nine out of the 12 second-
nearest neighbors are in the same position. The other three are ro-
tated by � /3. �c� Brillouin zone for ZB. �d� Brillouin zone for WZ.
� is at the center of the Brillouin zones.
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FIG. 2. �Color online� Schematic showing the correspondence
between energy levels at the L and � points in ZB and the � point
in WZ with and without spin-orbit coupling �Ref. 37�. The dashed
lines show the correspondence between the states. Additional de-
generate levels are shown in gray.
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spin-orbit coupling, the �1, L1, and L3 states in ZB corre-
spond to �1, �3, and �5, respectively, in WZ �Fig. 2�. Be-
cause of this folding over of the L valley, indirect gap ZB
materials with an L valley conduction-band minimum would
be expected to have a direct gap in the ZB phase unless the
energy of the state was significantly shifted by the crystal
potential.

The states at the top of the valence band in WZ also have
some important differences with their ZB counterparts. In the
absence of spin-orbit coupling, the hexagonal crystal field of
WZ splits the p-like �15 state of ZB into a fourfold degener-
ate �6 and a doubly degenerate �1. In terms of the p orbitals,
these states are pz→�1 are px , py→�6. With the inclusion of
spin-orbit coupling, �6v splits into the �9v heavy hole and the
�7v light hole. Therefore, all zone-center states in WZ belong
to either �7, �8, or �9. There are similar correspondences
between the high symmetry directions of the two crystals.
The symmetry line ���→L� in ZB corresponds to the
���→A� line in WZ.49

C. Spin splitting

For certain individual states in crystals lacking inversion
symmetry, spin-orbit coupling causes a splitting of spin-up
and spin-down states which leads to E↑�−k��E↑�k� �see Fig.
3�. The states at k=0 are still twofold degenerate resulting in
a nonvanishing �kE�k� at the origin for certain crystallo-
graphic directions. In the case of WZ, the states remain spin-
degenerate for k along the c axis because at any point along
the kz direction ��→A�, the crystallographic point group is
C6v.54 As all the irreducible representations �IR� compatible
with spin ��7,8,9� in this group are doubly degenerate,55 there
is no spin splitting along kz.

In WZ, the spin-splitting effects near the zone center can
be described with an effective one band Hamiltonian56–58

H�k� �
kx

2 + ky
2

2m�

+
kz

2

2m�

+ �
n=0

�

�n�	xky + 	ykx��2n+1�, �1�

where �n are constants. This effective Hamiltonian is invari-
ant with respect to C6v for all odd powers of k. The coeffi-
cients of the linear and cubic Dresselhaus spin-splitting
terms can be obtained by expanding Eq. �1� up to n=1. Near
the crossing, the difference in energies between the spin-split
bands in Fig. 3�a� has the form58

�Ei,↑�k� − Ei,↓�k�� = 2
1
i k + 
3

i k3, �2�

where 
1
i and 
3

i are the linear and cubic Dresselhaus spin-
splitting coefficients, respectively, for band i. These coeffi-
cients characterize the spin splitting and may be determined
from the computed band structure by fitting a function of the
above form. While the existence of a spin splitting in a par-
ticular direction is determined by symmetry considerations,54

the magnitude can vary considerably. Although both ZB and
WZ crystals lack inversion symmetry, spin-splitting effects
are much more prominent in WZ due to its lower crystal
symmetry,58–69 which can be of particular use in spintronic
devices.

III. METHOD

A. Pseudopotentials

Our band structures are computed using the empirical
pseudopotential method of Cohen and Chelikowsky48 with a
model potential applicable to both ZB and WZ structures.
Pseudopotentials exploit the fact that the electronic wave
function may be separated into the sum of a rapidly oscillat-
ing part near the atomic cores and a slowly varying piece.
The pseudopotential approach relies on the assumption that
the core electrons are frozen and that the valence electrons
move in a weak single-electron potential making the true
atomic wave function orthogonal to the core states. The
pseudowave equation is then

	 p2

2m
+ Vpp
��� = E��� , �3�

where ��� is the smoothly varying pseudowave function, and
Vpp is the pseudopotential which includes a repulsive core to
partially cancel the deep potential near the atomic core.70 By
taking Vpp to be a local pseudopotential which is a function
only of position, it may be expanded in terms of reciprocal
lattice vectors, G, as

Vpp�r� = �
G,�

V�
FF�G�S��G�eiG·r, �4�

S��G� =
1

N�
�
i=1

N�

e−iG·��,i, �5�

where � labels the atom type, V�
FF�G� is the form factor,

S��G� is the structure factor, N� is the number of atoms per
unit cell of type �, and ��,i is the position of atom number i
of type �.

For binary compounds it is convenient to separate the
pseudopotential into symmetric �S� and antisymmetric �A�
parts as

�G��Vpp�G� = VS�G� − G�SS�G� − G�

+ iVA�G� − G�SA�G� − G� . �6�

The symmetric and antisymmetric structure factors are given
by

SS�G� =
1

N
�

j

exp�− iG · � j� , �7�
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FIG. 3. �Color online� �a� Zero-field Dresselhaus spin splitting
in WZ along kx for a �7 conduction band. �b� The zero-field spin
splitting is not seen along the kz direction.
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SA�G� =
− i

N
�

j

Pj exp�− iG · � j� , �8�

where N is the number of atoms per unit cell and Pj =+1 for
one type of atom and −1 for the other type. The symmetric
and antisymmetric form factors, VA�G� and VS�G�, are ob-
tained from the sum and difference of the spherically sym-
metric anion and cation potentials.

There are several approaches to calculating VFF.48,71 In
the empirical pseudopotential approach used here, VS�G� and
VA�G� are adjusted to fit the calculated energy spectrum to
experimentally determined energies at band extrema. Model
potentials that yield an accurate band structure of a known
polytype should reliably predict the band structure for the
unknown polytype if the two crystal structures are similar. To
compute the WZ band structure using pseudopotentials ob-
tained from ZB requires VS�G� and VA�G� to be continuous
functions that can be evaluated at any value of G. A wide
variety of model potentials have been used44,71–74 and we use
potentials of the form

VS�G� =
x1G − x2

exp�x3G2 + x4� + 1
, �9�

VA�G� = �x1�G
2 + x2��exp�x3�G

2 + x4�� , �10�

where G= �G�, and the parameters xj and xj� are obtained for
each material by fitting to the ZB band structure.

B. Spin-orbit interactions

We include the spin-orbit coupling, given by

Hso =
�2

4m2c2 ��V�r�  p� · � , �11�

using the method of Weisz.75 Equation �11� cannot be used
directly since spin-orbit coupling involves the core states
which are omitted from the pseudowave equation as a result
of orthogonalization. Instead, by returning to the original
Schrödinger equation we may expand in terms of the core
states ��c� to obtain75,76

����Vso���  �
c,c�

�����c����c��Hso��c���c��� . �12�

In this way the matrix elements of Hso for core states may be
parametrized and then fit to experiment in the same way as
the pseudopotential form factors. By expanding ��� in Bloch

TABLE I. Fitting parameters for symmetric and antisymmetric form factors, where the form factors are in units of Ry. �1 and �2 are the
fitting parameters for the spin-orbit coupling. The values in the table have been rounded to save space.

Material x1 x2 x3 x4 x1� x2� x3� x4� �1 �2

AlP 0.083 −0.579 0.031 −2.586 −0.11 0.9 −0.061 −1.178 0.012 0

AlAs 0.062 −0.459 0.027 −2.629 −0.041 1.003 −0.056 −1.693 5.2810−3 510−5

AlSb 0.06 −0.412 0.032 −2.548 −0.09 0.17 −0.051 −2.098 7.2610−3 2.9610−4

GaP 0.085 −0.457 0.04 −2.566 −0.351 5.165 −0.205 0.339 0.385 −2.310−3

GaAs 0.058 −0.467 0.023 −2.583 −0.063 1.091 −0.074 −1.298 0.052 8.310−6

GaSb 0.042 −0.343 0.022 −2.584 −0.009 0.618 −0.043 −2.233 0.056 2.7810−5

InP 0.049 −0.385 0.027 −2.602 0 0.847 −0.059 −1.654 0.243 −1.0910−3

InAs 0.036 −0.298 0.033 −2.615 −0.011 1.359 −0.121 −1.124 0.082 2.60310−5

InSb 0.022 −0.174 0.023 −2.42 −0.012 1.158 −0.082 −1.363 0.085 5.710−5

TABLE II. Ratios of calculated/targeted band transition energies at various high symmetry points for nine III-V zinc-blende semicon-
ductors. All transition energies are referenced to the top of valence band, �E8v

� �. The spin-orbit energies are �so=E8v
� −E7v

� and �so� =E8c
�

−E7c
� . In addition, the effective for the conduction band �mc�, split-off bands �mso�, and heavy and light holes are compared to those from

Ref. 79. The heavy and light hole masses are expressed in terms of Luttinger parameters �1, �2 and �3 �see Eq. �25��. Note that the effective
masses were not set as targets for fitting the form factors.

Material E6c
� �so E6c

L E6c
X E7c

� E8c
� �so� E6v

� mc mso �1 �2 �3

AlP 1.00 1.00 1.00 1.00 1.03 0.72 1.06 0.92 0.99 0.95

AlAs 1.00 1.00 1.01 1.00 1.01 1.01 1.00 0.99 0.99 1.07 0.95 0.84 0.96

AlSb 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.97 1.04 1.30 0.67 0.66 0.70

GaP 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.97 1.00 1.02 0.96 1.66 1.20

GaAs 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.95 1.16 1.19 0.81 0.90 0.83

GaSb 1.00 1.00 1.01 1.00 1.00 1.00 1.00 0.94 1.47 1.56 0.63 0.61 0.62

InP 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.02 1.08 1.03 0.96 0.98 1.00

InAs 1.00 1.00 1.00 1.01 1.00 1.00 1.00 0.95 1.36 1.05 0.61 0.60 0.62

InSb 1.00 1.00 1.01 1.00 1.00 1.00 1.00 0.84 1.85 1.73 0.55 0.54 0.56
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functions, and expressing the core states in terms of its con-
stituent atomic radial wave functions and respective spheri-
cal harmonics, Eq. �12� can be recast as75

�K�,s��Vso�K,s� = �K�  K� · �s����s�

�
l

�lPl��cos �K�·K�S�K� − K� ,

�13�

where Pl� is the derivative of the Legendre polynomial, �’s
are the Pauli matrices, K=G+k, and � is the angle between
K and K�. The coefficient �l is given in terms of the core
wave functions by

�l = �l�nl�K���nl�K� , �14�

�nl�K� = C�
0

�

il�4��2l + 1�jnl�Kr�Rnl�r�r2dr , �15�

where C is a normalization constant such that �nl�K� /K ap-
proaches unity in the limit K goes to zero and n is the prin-
cipal quantum number for the core state being considered.
For III-V semiconductors, it is not required to expand Eq.
�13� beyond l=2 since they do not have core shells filled
beyond d orbitals. Expanding Eq. �13� up to l=2, the matrix
elements for the spin-orbit coupling in a binary compound
are

�K�,s��Vso�K,s� = − i�K̂�  K̂� · �s����s�

���p
S + �d

SK̂� · K̂�SS�G� − G�

+ ��p
A + �d

AK̂� · K̂�SA�G� − G�� , �16�

�l
S = ��l

�1� + �l
�2��/2, �17�

�l
A = ��l

�1� − �l
�2��/2, �18�

�l
�1� = �l�nl

�1��Ki��nl
�1��K j� , �19�

�l
�2� = �l�l�nl

�2��Ki��nl
�2��K j� , �20�

where the superscript �1�,�2� specifies which atom, the coef-
ficient �l is an empirically adjusted parameter, and �l is the
ratio of the anion to cation spin-orbit splitting energies for a
given core state.77 The overlap integral, �nl, is constructed
from the atomic core wave functions using Eq. �15�. The
radial part of the core wave function, Rnl, is an approximate
Hartree-Fock solution taken from Herman-Skillman tables.78

For Ga, In, As, and Sb, terms up to l=2 in Eq. �16� are
included while Al and P only go up to l=1 since they do not
have valence d shells. In our calculations only contributions
from the outermost p and d shells are considered for the
spin-orbit interactions. For the p states n=5 for In and Sb,
n=4 for Ga and As, and n=3 for Al and P. For the d states
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FIG. 4. �Color online� �a� Calculated band structure for AlP in
wurtzite phase. �b� Calculated DOS.
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FIG. 5. �Color online� �a� Calculated band structure for AlAs in
wurtzite phase. �b� Calculated DOS.
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FIG. 6. �Color online� �a� Calculated band structure for AlSb in
wurtzite phase. �b� Calculated DOS.
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n=4 for In and Sb, and n=3 for Ga and As. With the inclu-
sion of Eq. �16� the total pseudopotential Hamiltonian
becomes

H =
− �2K2

2m
+ Vpp + Vso. �21�

C. Fitting

The pseudopotential parameters xi, xi�, and �l in Eqs. �9�,
�10�, and �20� were determined by fitting the band structure
obtained from the Hamiltonian of Eq. �21� to experimental
energies of the band extrema of ZB materials. The Hamil-
tonian was evaluated in a plane-wave basis with a cutoff of
�G��32� /a, and for each value of k the Hamiltonian was
diagonalized to give energies to be fit to the experimental
target values. The fitting was accomplished by minimizing
the error function

F = �
i

Wi
�Ei�calculated� − Ei�target��2

Ei
2�target�

, �22�

where the sum over i ranges over the targeted energies Ei,
and Wi are weighting factors adjusted to speed convergence.
Seven energies were used as fitting parameters �all with re-
spect to E8v

� =0�: E6c
� , E7v

� , E6c
X , E6c

L , Ev6
� , Ec7

� , Ec8
� . The

targeted values of E6c
� , E6c

X , E6c
L , and E7v

� were taken from
Ref. 79 while the higher transition energies were taken from
Ref. 53. In addition, constraints were imposed to ensure the
correct band ordering of valence states by forcing the third
and fourth �spin-degenerate� valence-band states to have �7
symmetry. F was minimized with respect to xi, xi�, and �i
using Powell’s method, with the local pseudopotential form
factors from Ref. 80 used as an initial starting point. Slightly
different initial values were used as a check that the solution
did not converge to a spurious local minimum since Powell’s
method finds the local minimum. In those cases where the
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FIG. 7. �Color online� �a� Calculated band structure for GaP in
wurtzite phase. �b� Calculated DOS.
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FIG. 8. �Color online� �a� Calculated band structure for GaAs in
wurtzite phase. �b� Calculated DOS.
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FIG. 9. �Color online� �a� Calculated band structure for GaSb in
wurtzite phase. �b� Calculated DOS.
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FIG. 10. �Color online� �a� Calculated band structure for InP in
wurtzite phase. �b� Calculated DOS.
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value of F was large, indicating a poor fit, the weights Wj
were adjusted to climb out of the local minimum in which
the algorithm was trapped, and the minimization algorithm
was continued.

D. Transferable pseudopotentials

Once the form factors have been determined for the ZB
polytype, they may be transferred to the WZ structure by
centering the spherically symmetric atomic pseudopotentials
on the positions of the ions in the WZ form. The transfer-
ability depends on the similarities of the crystal structures,
and for sufficiently dissimilar polytypes one would expect
the method to fail. Fortunately, as discussed in Sec. II A ZB
and WZ are very similar, as the WZ crystal structure can be

thought of as a variation of ZB with the same local structure
but a slightly different long-range structure. It is important to
note that all the parameters were fit independently for each
material and the pseudopotentials were transferred between
polytypes with the same binary composition. Since the WZ
primitive cell has four atoms �rather than the two of ZB�, its
structure factor contains more terms. Substituting the atomic
positions in Sec. II A into Eqs. �7� and �8� the WZ structure
factors are

SS =
1

4
�1 + e−iG3uc��1 + e−iG2a/�3+G3c/2� , �23�

TABLE III. Irreducible representaions of zone-center states, energies, effective masses, and linear and cubic Dresselhaus coefficient for
the WZ phase of AlP, AlAs, and AlSb. All transition energies are referenced to the top of the valance band for each material.

AlP AlAs AlSb

IR
E

�eV� m� m�


1

�eV A�

3

�eV A3� IR
E

�eV� m� m�


1

�eV A�

3

�eV A3� IR
E

�eV� m� m�


1

�eV A�

3

�eV A3�

�7 −12.37 1.351 1.365 0.000−22.061 �7 −11.763 1.307 1.318 0.000−28.806 �7 −10.299 1.405 1.424 0.001−164.203

�8 −10.71 0.550 1.598 0.001 −0.019 �8 −10.131 0.502 1.512 0.113 −0.143 �8 −9.078 0.629 1.820 0.021 −0.186

�8 −6.195 0.298 4.002 0.038 0.115 �8 −6.088 0.280 3.246 0.004 0.256 �8 −5.090 0.319 2.357 0.296 1.485

�8 −1.249 1.655 0.299 0.074 23.745 �8 −1.341 1.608 0.257 0.164 8.293 �8 −1.377 1.611 0.284 0.577 16.066

�9 −1.200 1.662 0.296 0.000 24.557 �9 −1.131 1.658 0.235 0.000 9.896 �9 −0.955 1.667 0.202 0.000 10.236

�7 −0.435 0.145 1.260 0.047−11.829 �7 −0.518 0.150 0.837 0.140−59.309 �7 −0.802 0.237 0.971 0.095−234.420

�7 −0.044 0.931 0.253 0.052 25.634 �7 −0.139 0.478 0.259 0.236 −7.256 �7 −0.156 0.220 0.373 0.125 17.954

�9 0.000 0.972 0.248 0.000 25.032 �9 0.000 0.933 0.216 0.000 10.703 �9 0.000 0.959 0.211 0.000 11.064

�8 2.969 1.187 0.170 0.034 −1.069 �8 1.971 1.081 0.142 0.027 0.635 �8 1.891 1.160 0.157 0.209 −10.332

�7 3.775 0.182 0.157 0.003−17.969 �7 3.153 0.180 0.141 0.004 76.350 �7 2.418 0.163 0.143 0.005 14.487

�7 4.822 0.924 2.729 0.017 26.128 �7 3.993 0.883 4.253 0.104 6.743 �7 3.384 1.155 1.549 0.054 16.784

�9 4.831 0.923 2.652 0.000 28.017 �9 4.133 0.857 5.281 0.000 31.568 �9 3.577 1.149 3.279 0.000 23.544

�7 5.193 2.263 0.409 0.018−36.548 �7 4.360 2.806 0.484 0.219−67.663 �7 3.872 3.705 0.551 0.210 −67.883
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FIG. 11. �Color online� �a� Calculated band structure for InAs in
wurtzite phase. �b� Calculated DOS.
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FIG. 12. �Color online� �a� Calculated band structure for InSb in
wurtzite phase. �b� Calculated DOS.
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SA =
1

4
�1 − e−iG3uc��1 + e−iG2a/�3+G3c/2� , �24�

where Gj �j=1,2 ,3� are the components of the reciprocal
lattice vector G.

IV. RESULTS

A. Calculated III-V zinc-blende band structures

The pseudopotential parameters determined by fitting to
the zinc-blende band structures are given in Table I including
the spin-orbit parameters. The accuracy of the results may be
gauged by Table II, which gives the ratio of each band en-
ergy to the experimental value to which it was fit.79 We see
that the results agree with experiment to within 1% for all
but E6v

� . Even for E6v
� , the deviation from the experimental

value is greater than 10% only for InSb. We have also made
a similar comparison of the effective masses and Luttinger
parameters.79 These values differ from the energy ratios in
that the masses were not fit to experimental data. The masses
were determined by doing a quadratic fit to the band extre-
mum, with the Luttinger parameters determined from

	 m�

mhh�lh�

�001�

= �1 � 2�2,

	 m�

mhh�lh�

�111�

= �1 � 2�3. �25�

It should be noted that several of the masses listed in Ref. 79
are either obtained theoretically or have large experimental
uncertainties. For example, only theoretically calculated ef-
fective masses are available for AlP and for the valence band
of AlSb. Experimental results are not available for these
compounds. In the case of GaP the conduction-band effective

mass is extrapolated from its ternary alloy. For InAs, there is
great experimental uncertainty about the heavy and light hole
masses.79 Even though we have omitted nonlocal corrections
not associated with spin-orbit coupling, our effective masses
are in very good agreement for compounds containing lighter
elements.

B. Predicted III-V wurtzite band structures

The calculated band structure and the corresponding DOS
for each of the nine III-V semiconductors in WZ phase are
shown in Figs. 4–12. The electronic band structures are cal-
culated in the irreducible wedge of the Brillouin zone �Fig.
1�d��. It should be noted that the band structure of WZ is
more complicated than that of ZB due to it lower crystal
symmetry and has roughly twice as many bands over a given
energy range. The irreducible representations of the zone-
center states were determined by transforming the pseudo-
wave functions under the symmetry operations of the respec-
tive crystallographic point group.

Tables III–V list the calculated zone-center energies of the
band extrema, effective masses for k parallel and perpen-
dicular to the c axis, and the linear and cubic Dresselhaus
spin-splitting coefficients 
1 and 
3. We calculated the
Dresselhaus coefficients by fitting a function of the above
form in Eq. �2� to the calculated band structures. These pa-
rameters may be used in constructing k ·p WZ Hamiltonians
for nanostructure calculations.42,81–87 We have also complied
a summary �Table VI� listing the energy differences most
important for nanostructures.

Foremost are the band gap and the irreducible representa-
tion of the conduction-band minimum. In our calculations it
is seen that all of the materials containing Al or Ga have �8
conduction-band minima in the WZ phase, whereas all of the
materials containing In have �7 conduction-band minima.
We also give the spin-orbit energy, �so, the crystal-field split-

TABLE IV. Irreducible representation of zone-center states, energies, effective masses, and linear and cubic Dresselhaus coefficient for
the WZ phase of GaP, GaAs, and GaSb. All energies are referenced to the top of the valance band for each material.

GaP GaAs GaSb

IR
E

�eV� m� m�


1

�eVA�

3

�eVA3� IR
E

�eV� m� m�


1

�eVA�

3

�eVA3� IR
E

�eV� m� m�


1

�eVA�

3

�eVA3�

�7 −12.942 1.391 1.400 0.000 −10.751 �7 −12.033 1.339 1.350 0.000 −28.285 �7 −10.757 1.270 1.288 0.000 −58.903

�8 −11.369 0.615 1.768 0.076 −0.070 �8 −10.452 0.533 1.520 0.003 −0.089 �8 −9.269 0.452 1.453 0.028 −0.301

�8 −6.313 0.312 2.362 0.064 0.003 �8 −6.289 0.291 12.730 0.188 0.467 �8 −5.992 0.261 3.827 0.344 1.577

�8 −1.327 1.577 0.242 0.105 18.694 �8 −1.291 1.698 0.242 0.440 31.168 �8 −1.537 1.535 0.193 1.137 25.843

�9 −1.233 1.624 0.238 0.000 21.321 �9 −1.049 1.745 0.224 0.000 42.790 �9 −1.030 1.604 0.131 0.000 77.808

�7 −0.373 0.118 1.145 0.068 26.433 �7 −0.475 0.118 0.434 0.048 141.143 �7 −0.874 0.149 0.436 0.147−141.671

�7 −0.050 0.821 0.210 0.072 35.712 �7 −0.120 0.200 0.197 0.067 67.513 �7 −0.142 0.086 0.192 0.175 23.793

�9 0.000 0.941 0.205 0.000 29.339 �9 0.000 1.026 0.134 0.000 36.419 �9 0.000 0.833 0.087 0.000 73.448

�8 2.251 1.162 0.143 0.075 −3.725 �8 1.503 1.050 0.125 0.212 −12.750 �8 0.509 0.983 0.096 0.716 −72.842

�7 2.877 0.153 0.125 0.006 53.344 �7 1.588 0.090 0.082 0.037 −55.218 �7 0.851 0.064 0.060 0.034 −33.327

�7 4.395 1.135 1.665 0.076 15.714 �7 4.271 0.861 1.977 0.355 62.864 �7 2.824 0.857 1.225 0.184 71.733

�9 4.429 1.233 1.872 0.000 9.533 �9 4.417 0.793 0.722 0.000 123.206 �9 2.970 0.785 0.695 0.000 57.196

�7 4.940 1.510 0.608 0.004 −76.564 �7 4.575 0.974 0.317 0.337 −282.988 �7 3.284 0.394 0.470 0.262−283.959
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TABLE V. Irreducible representations of zone-center states, energies, effective masses, and linear and cubic Dresselhaus coefficient for the WZ phase of InP, InAs, and InSb. All
energies are referenced to the top of the valence band for each material.

InP InAs InSb

IR
E

�eV� m� m�


1

�eV A�

3

�eV A3� IR
E

�eV� m� m�


1

�eV A�

3

�eV A3� IR
E

�eV� m� m�


1

�eV A�

3

�eV A3�

�7 −11.746 1.660 1.677 0.000 −28.484 �7 −11.875 2.071 2.034 0.001 −30.395 �7 −10.181 1.802 1.778 0.001 −40.757

�8 −10.711 0.936 2.509 0.036 −0.038 �8 −11.151 1.397 3.377 0.034 −0.116 �8 −9.421 1.094 2.932 0.043 −0.155

�8 −5.091 0.390 1.845 0.087 0.223 �8 −4.526 0.469 1.349 0.088 0.248 �8 −4.351 0.420 1.244 0.004 −0.317

�8 −0.949 1.833 0.237 0.011 3.746 �8 −0.910 2.116 0.210 0.078 5.879 �8 −1.021 2.185 0.222 0.188 2.114

�9 −0.849 1.894 0.230 0.000 2.693 �9 −0.652 2.164 0.166 0.000 27.849 �7 −0.847 0.203 0.210 0.595 633.586

�7 −0.348 0.097 1.205 0.074 97.187 �7 −0.469 0.115 0.319 0.849 744.548 �9 −0.508 2.310 0.206 0.000 7.028

�7 −0.063 0.839 0.169 0.084 65.030 �7 −0.105 0.101 0.113 1.414 648.740 �7 −0.098 0.058 0.094 1.812 178.644

�9 0.000 1.273 0.158 0.000 45.639 �9 0.000 1.700 0.084 0.000 1107.720 �9 0.000 2.060 0.066 0.000 2450.059

�7 1.474 0.105 0.088 0.011 −54.015 �7 0.481 0.060 0.042 0.571 −1143.621 �7 0.287 0.051 0.035 1.212 −2955.560

�8 1.712 1.094 0.132 0.032 −1.600 �8 1.222 1.276 0.113 0.007 −1.456 �8 1.116 1.781 0.118 0.197 −11.492

�7 4.535 1.646 0.952 0.097 70.102 �7 4.445 3.377 0.255 0.790 −106.736 �7 3.395 1.785 2.105 1.909 −44.165

�9 4.575 1.701 0.845 0.000 95.004 �7 4.631 2.025 0.059 0.791 −2927.150 �7 3.513 0.656 1.635 1.987 42.178

�7 4.802 0.804 0.448 0.158 −98.388 �9 4.662 2.580 0.052 0.000 2824.700 �9 3.930 0.565 2.502 0.000 38.729
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ting, �cr, and the offset between the valence-band edge of
each polytypes. �so and �cr are extracted using the quasicu-
bic approximation which assumes WZ to be equivalent to
�111�-strained ZB,81,88 with �so and �cr related to the �7v
hole energies by

E��7v
1,2� − E��9v� = −

�so + �cr

2
�

���so + �cr�2 − u−1�so�cr

2
,

�26�

where u is related to the lattice constants by �u=a /c and
takes the value 3/8 for an ideal WZ structure assumed here.

In the ZB phase, AlP, AlAs, AlSb, and GaP are indirect
gap semiconductors with their conduction-band minima or-
dered X, L, and �. Our calculations show that all of the
indirect gap ZB semiconductors become direct gap WZ ma-
terials with �8 conduction-band minima. Previous LDA cal-
culations obtained indirect gaps for AlP and AlAs in the WZ

phase, with the conduction-band minimum at M.37,38 Al-
though this is not the case in our results, we do find the M
valley conduction-band minimum only slightly above the �
minima �182 meV for AlP and 157 meV for AlAs�. The same
LDA calculations also predicted AlSb and GaP to have �8
conduction-band minima in agreement with our results.37

The direct gaps of AlP and AlSb in the WZ phase are larger
than the indirect �X-valley� gaps of their respective ZB coun-
terparts; whereas the direct ��8� gaps of AlAs and GaP in
WZ phase are smaller than the indirect gaps of their ZB
counterparts.

For the direct gap ZB semiconductors GaAs and GaSb,
the zone-folded L-valleys result in lower WZ bands gaps
with a �8 minimum. For WZ, GaAs has a band gap
�1.5 eV� which is only slightly smaller than that of its ZB
polytype, while GaSb has a significantly smaller gap
�0.53 eV� in the WZ phase. In both cases this is due to
EL1c being close to E�1c. This behavior is most apparent for
GaSb, hence, our prediction for GaSb is consistent with that
of Refs. 38 and 37. In light of recent experimental results,
the case of WZ GaAs will be discussed in greater detail
below. All three indium containing compounds InP, InAs,
and InSb are direct gap semiconductors in the WZ phase
with �7 conduction-band minima and have higher band gaps
than their respective direct gap ZB polytypes.

While little is known about the WZ polytypes, some ex-
perimental data are available for the band gaps of GaAs,
InAs, and InP. Table VII compares our calculated band gaps
for these three materials to experiment and ab initio calcula-
tions. It should be noted that none of the ab initio calcula-
tions have included spin-orbit interactions. We have only
tabulated the SX and GW results from Ref. 89 as they make
different qualitative predictions as to whether the band gap
of WZ GaAs is larger or smaller than for ZB. Note that the
values listed for the ab initio methods are not the direct
results from the respective references. The band gaps ob-
tained directly from ab initio calculations have well known
deficiencies. The ab initio band gaps listed in Table VII are
instead obtained by comparing the calculated percentage
change between the two polytypes and then using the experi-
mental ZB gap to scale the WZ results.

TABLE VI. Energies of the direct gap III-V WZ semiconduc-
tors. The symmetry of the conduction-band minimum is indicated
with the band gap. �so and �cr are the spin-orbit splitting and
crystal-field splitting energies extracted using Eq. �26�. �EVB

=EVB
ZB −EVB

WZ is the energy difference between the top of the valance
bands for the two polytypes.

Eg

�eV�
�so

�eV�
�cr

�eV�
�EVB

�eV�

AlP 2.969 ��8� 0.070 0.409 −0.1428

AlAs 1.971 ��8� 0.319 0.338 −0.0841

AlSb 1.891 ��8� 0.683 0.276 −0.0909

GaP 2.251 ��8� 0.082 0.341 −0.0801

GaAs 1.503 ��8� 0.351 0.244 −0.0632

GaSb 0.509 ��8� 0.777 0.239 −0.1186

InP 1.474 ��7� 0.108 0.303 −0.0646

InAs 0.481 ��7� 0.379 0.195 0.0405

InSb 0.287 ��7� 0.787 0.159 0.0872

TABLE VII. A comparison between WZ band gaps from empirical pseudopotentials, those obtained from first-principles calculations,
and experimental results. The symmetry of the conduction-band minimum is indicated with the band gap. The ab initio results are LDA
calculations from Refs. 37 and 38, and GW and SX results from Ref. 89. In all three materials our results are in agreement with the
experimental values and trends. Note that the ab initio values listed are not directly contained in the references, but are obtained from the
calculated difference in the band gap between the two polytypes.

Eg �eV� present
calculations

Eg �eV� ab initio
methods

Eg �eV�
experiment

GaAs 1.503 ��8� 1.623a, 1.6b, 1.381c, 1.811c 1.498d, 1.476e, 1.494f 1.51g

InP 1.474 ��7� 1.5403b 1.44h 1.452i, 1.49j, 1.508k, 1.645l

InAs 0.481 ��7� 0.6424b, 0.47c 0.54 l

aReference 38
bReference 37
cReference 89
dReference 96
eReference 97
fReference 6

gReference 98
hReference 91
iReference 92
jReference 93
kReference 94
lReference 90
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As can be seen, our results are in very good agreement
with experiments. More importantly, they are in agreement
with the experimental trends as to whether the WZ band gap
is larger or smaller than the ZB gap. This is most apparent in
the case of GaAs, for which ab initio calculations �except the
SX method89� predict that GaAs should have a larger direct
band gap in WZ phase than in ZB, in disagreement with
experiment. All of the low temperature experimental results
show that for GaAs the WZ phase has a smaller band gap
than ZB �which suggests that the conduction-band minima
for WZ phase GaAs has �8 symmetry instead of �7�. In
addition, the experimental gaps are obtained from photolu-
minescence measurements on GaAs nanowires, which will
be slightly larger due to confinement. In the case of InP our
results are in agreement with experiments as well as with the
trends from LDA calculations. In Ref. 90, photocurrent spec-
troscopy measurements on InAs1−xPx �for 0.14�x�0.48�
nanowires have been extrapolated in x to obtain a band gap
for InP of 1.645 eV, which is higher than the values from
photoluminescence measurements91–94 and our calculated re-
sults. Similarly, extrapolation to InAs gives a band gap of
0.54 eV,90 which is also higher than our pseudopotential cal-
culations and may be due to quantum confinement effects in
the nanowires.

The spin-orbit coupling can alter the ordering of the
valence-band states in different WZ semiconductors. For ex-
ample, in CdS and CdSe the top three valence states are in
descending order �9, �7, �7 �referred to as normal
ordering�59,95 while in ZnO the ordering is �7, �9, �7
�anomalous ordering� which results from a negative spin-
orbit energy. In our calculations, all materials except InSb
have normal ordering. In the case of InSb the ordering of the
valence-band states is complicated by its very large spin-
orbit splitting which forces the �7 split-off hole bellow the
next �9 state �which comes from the “folded over” p-like
L-valley states in ZB�. This results in the unusual �9, �7, �9,
�7 ordering of valence-band states in InSb.

Tables III–V also give the Dresselhaus coefficients for
each band. As expected,58 all �9 states have zero linear
Dresselhaus coefficients �
1� while all �7 and �8 states have

nonzero linear and cubic spin-splitting coefficients. Among
the five WZ phase semiconductors with the largest spin-orbit
energies ��so�, InSb has the largest Dresselhaus coefficients,
followed by GaSb, InAs, GaAs, and AlSb.

V. SUMMARY

We have calculated the electronic band structure for nine
III-V semiconductors in WZ phase using empirical pseudo-
potentials with the inclusion of spin-orbit coupling. The pre-
dicted band structures are based on the concept of transfer-
able model potentials. Our calculations show that in the WZ
phase, InP, InAs, and InSb have a direct gap ��7� which is
larger than the corresponding zinc-blende material. AlP,
AlAs, AlSb, GaP, GaAs, and GaSb also have direct gaps, but
with �8 conduction-band minima. WZ AlP and AlAs have
larger direct gaps than the indirect gaps of their ZB poly-
types. The opposite trend is seen in AlSb and GaP which
have smaller direct gaps than their indirect gaps in ZB phase.
In the WZ phase GaAs and GaSb have direct gaps which are
smaller than their ZB counterparts.

Our calculations are in excellent agreement with experi-
mentally obtained band gaps for GaAs, InAs, and InP in the
WZ phase. Significantly, our results agree with experiment
over whether the WZ band gap is larger or smaller than the
ZB gap in contrast to ab initio methods. We have extracted
the linear and cubic Dresselhaus spin-splitting coefficients
and find they are generally, though not always, larger for
materials with larger spin-orbit coupling. The relatively large
spin-splittings may be of use for spin-dependent transport in
WZ nanowires. More recently, the WZ phase of GaAs has
been grown in bulk.51 More experimental measurements on
such bulk WZ phase III–V semiconductors would lead to a
clearer understanding of their electronic properties.
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