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An ac electric field applied to a single donor-bound electron in a semiconductor modulates the orbital

character of its wave function, which affects the electron’s spin dynamics via the spin-orbit interaction.

Numerical calculations of the spin dynamics of a single hydrogenic donor (Si) embedded in GaAs, using a

real-space multiband k � p formalism, show the high symmetry of the hydrogenic donor state results in

strongly nonlinear dependences of the electronic g tensor on applied fields. A nontrivial consequence is

that the most rapid Rabi oscillations occur for electric fields modulated at a subharmonic of the Larmor

frequency.
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Electronic ground states characterized by nonzero spin
are attractive candidates for encoding quantum informa-
tion in a solid state system, and the use of electric fields is
an attractive method to address individual spins [1,2].
When the ground state has a nonzero integer spin it is
possible to perform all needed spin operations using elec-
tric fields alone [3,4], whereas for manipulation of spin- 12
electronic ground states at least a static applied magnetic
field is required. Advances in focused ion beam single-ion
implantation [5], as well as the use of a scanning tunneling
microscope to implant a single ion with atom-scale preci-
sion [6,7], suggest that spin clusters and spin-based circuits
consisting of large numbers of precisely positioned spins
could be designed with near-atomic resolution. Proposals
to control individual spin- 12 states in such an environment

with local electric fields include changing the magnitude of
the Landé g tensor to bring spins into resonance with an
extended ac magnetic field [8–11], moving spins in a
fringe field [12] or a hyperfine [13] gradient, modulating
zero-field spin splittings [14,15], and g-tensor modulation
resonance (g-TMR) [16]. g-TMR uses the electric-field
dependence of the Landé g tensor anisotropy to manipulate
the spin, and so does not require microwave magnetic
fields or nanoscale magnetic materials or nuclear polariza-
tion gradients. Although g-TMR works by changing the
orbital character of the wave function with an electric field,
and thereby indirectly influencing the spin through the
spin-orbit interaction, it does not require zero-field spin
splittings (so g-TMR could be performed in a silicon or
diamond host). Predictions for quantum dots indicate con-
trol of the g tensor anisotropy can produce rapid Rabi
oscillations and full Bloch-sphere control with a single
vertical electric field [17].

The promising approach of g-TMR has yet to be ex-
plored for electrons bound to dopants. Shallow donors
might seem a poor candidate for modulation of g tensor
anisotropy, as they have cubically symmetric g tensors in
the absence of an electric field. Quantum dots, by contrast,
have highly asymmetric g tensors that are very sensitive to
applied electric fields [17]. However, we find the g tensors

of electronic spins bound to donors depend nonlinearly on
applied electric and magnetic fields, and thus substantial g
tensor anisotropy and rapid spin manipulation can be
achieved for a hydrogenic donor state. As the dominant
electric-field dependence is nonlinear, the most rapid Rabi
oscillations are found at unexpected frequencies—subhar-
monics of the Larmor frequency rather than the fundamen-
tal—permitting rapid spin manipulation using ac electric
fields with frequencies far below the Larmor frequency.
Furthermore, the g tensors of quantum dots are very sensi-
tive to dot shape and composition [18] and thus each
quantum dot will have different resonance frequencies
for g-TMR. Donor wave functions and g tensors will,
however, each be reliably the same.
These hydrogenic states have other attractive features

for spin clusters or spin devices; they possess the biggest
radii of any ionic bound states in the solid, with Bohr radii
of the order of 10 nm in GaAs. Thus the spin-spin coupling
between states would be easier to control than for deep
levels whose interaction strength changes substantially on
the atomic scale [7]. Our treatment focuses on a single
substitutional silicon donor in GaAs, SiGa, as it is one of the
best understood semiconductor point defects and is well
described by the hydrogenic model. We expect that similar
results are possible for a shallow donor in silicon, although
the details may be complicated by the presence of multiple
valleys in the conduction band.
The geometry of g-TMR for a single electron spin bound

to a donor is shown in Fig. 1(a), with the electron wave
function indicated by the shaded circle, and the silicon
nucleus indicated by the dark dot at the center. A static
magnetic field along with a gated time-varying electric
field is applied to the crystal containing the SiGa donor.
We considered all orientations of the field and found that
the most rapid Rabi oscillations occur when the magnetic
field is applied at an angle � ¼ 45� to the electric field,
which is the configuration shown in Fig. 1(a).
Although many properties of shallow impurities (such as

the energy spectrum) can be treated to an excellent ap-
proximation by two-band effective mass theory [19],
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g-tensor calculations require a multiband treatment as the
coupling among multiple bands needs to be considered,
and the spin-orbit interaction must be treated accurately
[20]. Moreover, the electric field breaks the spherical sym-
metry of the impurity site [Fig. 1(b)]. These complexities
are best handled numerically.

Our calculations of g-TMR for SiGa donors were carried
out using 8-band k � p theory [21] in the envelope approxi-
mation using finite differences on a real-space grid [18,22–
24]. Unlike quantum dots, however, there is no strain in this
system. Material parameters were taken from Ref. [25]
assuming T ¼ 0. On a grid with sites located at points r,
the hydrogenic impurity potential is given by

VcðrÞ ¼
��C r ¼ ro;

�e2

4��Rjr�roj r � ro;
(1)

where �R is the low frequency dielectric constant of GaAs
and C is the sum of the screened Coulomb potential and a
central cell correction (CCC) averaged over the voxel
centered on the donor located at r0. The CCC arises due
to the differing chemical nature of various impurities. C
was adjusted until the binding energy of the 1s donor state
matched experiment. A value of C ¼ 0:84 eV results in a
binding energy of 5.8 meV [26] and a Bohr radius of 9.5 nm
for a 1 nm grid spacing and 1303 sites. The Landé g tensor
for the impurity ground state was then obtained from the
calculated Zeeman splitting of the 1s level in a uniform
magnetic field.

Figure 2 shows g½001�, the tensor component for the 1s
impurity state as a function of collinear magnetic and
electric fields. Increasing the electric field increases the
relative change in g, whereas increasing the magnetic field
decreases the relative change in g. For an applied electric
field of 1 kV=cm, a 5% change in g is seen for the smallest
applied magnetic field, which is encouraging for manipu-
lating the donor atom’s spin. The impurity g½001�’s depend
nonlinearly on the magnetic field, as shown in Fig. 2(b).

This behavior is unlike that seen in small quantum dots
(QDs) such as treated in Ref. [17], for which the g tensor is
nearly independent of the applied magnetic field. This is
due to the large separation between the ground and first
excited state in a QD (�50 meV), which is much larger
than the typical Zeeman energy (�0:1 meV). In contrast,
the first excited state of a Si donor is only a few meVabove
the ground state.
The competing effects of B and E on g½001� can be

understood by examining the donor electron’s wave func-
tion, shown in Fig. 3. As the magnetic field is increased in
the ½001� direction [from Figs. 3(a) to 3(b)], the cyclotron
radius decreases, contracting the extent of the wave func-
tion in the direction transverse to B. Similarly, the oppo-
site effect is evident when the electric field is increased
[Fig. 3(c)], which allows the impurity wave function to
spread into a region with lower overall potential. This
decreases the confinement for the donor electron and
thereby increases jgj [18]. This effect is more prominent
for a smaller magnetic field.
The g tensor components were calculated for various

directions of B with E applied along [001], as shown in
Fig. 4. Note that @g=@E decreases with increasing B.
The variation in @g=@E as a function of B is greater
when E ? B. However, at an intermediate B (�2T),
@g=@E is identical in all directions. These results imply
that an electric field induces a g tensor anisotropy oriented
relative to E, which makes it possible to modulate the g
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FIG. 2 (color online). Normalized donor g½001� values as a
function of (a) E½001� and (b) B½001�. Insets show unnormalized

donor g½001� values. The full range of the x axis of the insets is the
same as that of their respective (normalized) plots.
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FIG. 1 (color online). (a) Proposed geometry for g-tensor
modulation, with a single silicon atom (dark dot) surrounded
by the wave function of the electron shallowly bound to the
silicon donor (shaded circle). (b) Closeup view of the impurity
potential (Coulomb potential plus a central cell correction)
shown along with the applied electric field’s biasing effect on
the zone center band energies.
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FIG. 3 (color online). Calculated wave functions for
(a) E½001� ¼ B½001� ¼ 0; (b) E½001� ¼ 0, B½001� ¼ 4 T;

(c) E½001� ¼ 1:5 kV=cm, B½001� ¼ 0. Contours outline selected

amplitudes as a guide to the eye.
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tensor using an alternating electric field in addition to the
static electric and magnetic fields.

We next solve for the donor atom’s spin dynamics by
explicitly integrating the time-dependent Schrödinger
equation. The nonlinear nature of g complicates a quanti-
tative treatment within the rotating-wave approximation.
The directional dependence of g (Fig. 4) can be used to
obtain an analytical form of the g tensor by fitting each
tensor component to a 4th order polynomial in E, a0ðBÞ þ
a1ðBÞE2 þ a2ðBÞE4. A time-dependent g tensor can then
be constructed for the time-varying electric field EðtÞ ¼
Edc þ Eac sinð!tÞ. The maximum amplitude of EðtÞ is al-
ways held constant at 2 kV=cm, so as not to exceed the
breakdown field of the GaAs host. The spin dynamics of
the donor atom can then be calculated using the effective
time-dependent Hamiltonian,

HðtÞ ¼ �B

2
� � ~gðtÞ �B; (2)

where �B is the Bohr magneton. As the Hamiltonian is
explicitly time dependent, the state of a spinor, Sj (where

j ¼# , " ) at time t can be obtained by evolving Sjðt ¼ 0Þ
forward in time in n steps of�t ¼ t=n � 1=2! as follows,

jSjðtÞi ¼ T̂
Yn
�¼0

exp

�
iHðt�Þ�t

@

�
jSjð0Þi; (3)

where T̂ is the time-ordering operator. For sufficiently
small �t this is equivalent to

jSjðtÞi ¼ T̂ exp
Z t

0

�
iHðt0Þdt0

@

�
jSjð0Þi: (4)

The time-dependent probability of making a spin-flip tran-
sition is jhS"ð0ÞjS#ðtÞij2. Rabi oscillations are obtained

when spin flip transitions are made resonantly (i.e.,
jhS"ð0ÞjS#ðtÞij2max ¼ 1). Resonant spin-flip transitions are

usually made when EðtÞ is driven at the Larmor frequency
�L. However, in case of the hydrogenic impurity system
considered here, the donor electrons spin can be resonantly
flipped at any subharmonic of the Larmor frequency:
�L=N, where N is an integer. This is illustrated in
Fig. 5(a), where the peak spin-flip transition probabilities
are shown as a function of the driving E-field frequency!.

Multiple resonance lines are apparent, located at�L and its
subharmonics. This unusual behavior arises from the
highly nonlinear dependence of g on the applied electric
field (Fig. 4). For subharmonics higher than N ¼ 2, the
Rabi frequencies �R are lower than those at N < 2 and
hence are not considered further for spin manipulation. The
largest �R can be achieved by driving E at the second
subharmonic (N ¼ 2) of �L. Because of the smaller dc
component of the electric field the Rabi oscillations are
less rapid at �L, than at its second subharmonic. The
resonance lines in Fig. 5(a) at ! ¼ �L=N, have a full
width at half maximum of �! ¼ 2�R=N.
The Rabi frequencies are calculated next as a function of

Edc and � and are shown in Fig. 5(b) with the electric field
driven at �L. For all �, and ! ¼ �L, �R is largest when
the ac and dc components of the electric field are equal. If
the electric field is driven at �L=2, however, as shown in
Fig. 5(c), then �R is largest if Edc ¼ 0. In both Figs. 5(b)
and 5(c), the optimal angle of the magnetic field to the
electric field is � ¼ 45�. Although the maximum �R in
Figs. 5(b) and 5(c) are identical, driving E at �L=2 offers
two key advantages. When the peak value of E is close to
the breakdown of the host crystal, a pure ac field with an
adjustable duty cycle is much less likely to ionize the donor
electron, as the carriers can recover during a thermal
relaxation time. This allows for higher driving fields,

Ω
 R

) z
H

M(

25

15

5

90

0
0           0.1          0.2 0           0.1          0.2 

ω = Ω 
L

ω = Ω 
L
/2

Edc (mV/nm) Edc (mV/nm)

θ 
(d
eg

)

(b) (c)

2 4 6 8 10 12
0

1

ω (GHz)

|〈
S ↓(0

)|S
↑(t)

〉|
2 m
ax

(a)
0 2 4

0

10

20

30

 B (T)

Ω
R

(M
H

z)
(d)

ω= Ω
L

ω= Ω
L
/2

FIG. 5 (color online). Spin dynamics of the donor atom as a
function of various parameters. Eac þ Edc ¼ 2 kV=cm and is
½001� oriented. � is the angle betweenB andE. (a) Peak spin-flip
transition amplitudes as a function of E’s driving frequency, for
Eac=Edc ¼ 9 and � ¼ 45�. Resonant transitions appear at sub-
harmonics of the Larmor frequency �L. (b),(c) Rabi frequency
�R as a function of Edc and � for: (b) E driven at �L, �R is
maximum at � ¼ 45� and Edc ¼ 1 kV=cm. (c) E driven at
�L=2, �R is maximum at � ¼ 45� and Edc ¼ 0. (d) �R as a
function of B for optimal � and Edc of (b) and (c). Note that
above B ¼ 2 T, �R increases monotonically.
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FIG. 4 (color online). g as a function of E½001� and B applied in
various directions (a) [100], (b) [101], (c) [001]. g is also
calculated for various magnetic field strengths.
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which result in higher �R. It also may be experimentally
more feasible to resonantly flip the spin at the lower
frequency of the subharmonic �L=2 than the fundamental
�L.

Figure 5(d) shows�R as a function of B for � ¼ 45� and
E driven at �L or �L=2. For magnetic fields greater than
2T, �R increases monotonically, whereas below 2T �R

exhibits a nonmonotonic behavior. This feature can be
explained by Taylor expanding the time-dependent
Hamiltonian to first order in the rotating-wave approxima-
tion,

HðEÞ � �B�

2
�
�
~gþ Eac

2

@~g

@E
jE¼Edc

�
� B: (5)

Here the Larmor frequency is given by the time indepen-
dent static precession vector, �0 ¼ �B~g �B=@ and the
electron’s spin dynamics in the rotating frame is described
by the time-dependent spin precession vector, �1ðtÞ ¼
�BEacð@~g=@EÞ � B=2@. �1 can be resolved into compo-
nents that are parallel (�jj) and perpendicular (�?) to�0.

In the rotating frame, j�?j is equivalent to �R (in the lab
frame), as driving E at j�0j leads to spin precession about
�? or Rabi oscillations. As the tensor components @g=@E
decrease with increasing B (see Fig. 4), the magnitudes of
B and @g=@E have opposing effects on �1 (and hence
�?). For B< 1 T the contribution from @g=@E dominates
over B and hence the Rabi frequencies increase. For 1 T<
B< 2 T the competing contributions of B and @g=@E
make the g tensor increasingly isotropic and the Rabi
frequencies smaller. At B � 2 T the g tensor becomes
isotropic and the Rabi frequency vanishes. Above B �
2 T, the effects of a much larger magnetic field dominate
and the spin-flip times decrease monotonically. Two key
inferences, consistent with other work on g-TMR, can be
drawn from this behavior. For spintronic applications the
highest magnetic field possible is desirable in order to
generate the largest possible Rabi frequencies. Second,
the amount of g-tensor anisotropy induced is crucial to
achieving shorter spin-flip times, not the degree of change
in g as a function of E.

We have proposed a scheme for achieving electric-field
driven g-tensor modulation resonance for a single shallow
donor impurity. Electric and magnetic field dependent g
tensors were calculated for the SiGa donor using 8-band
k � p theory on a real-space grid. Varying E and B affects
the confinement for the donor electron, which in turn alters
its g tensor. In addition to the nonlinear E dependence, the
g tensors are also highly nonlinear as a function of B. This
is unlike the case for a QD, where g is essentially inde-
pendent of B. A consequence of the nonlinear dependence
of g on E is that spin-flip transitions can be made reso-
nantly at any subharmonic of the Larmor frequency. Spin-
flip times were calculated exactly, using time evolution
operators, and optimized for various parameters of interest.
If E is driven at the second subharmonic of the Larmor
frequency, then high frequency Rabi oscillations can be

obtained without any dc component of E. This could be
particularly useful in obtaining the largest Rabi frequencies
for a given breakdown-field limit for the semiconductor
host.
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