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Pseudopotentials, tight-binding models, and k � p theory have stood for many years as the standard

techniques for computing electronic states in crystalline solids. Here, we present the first new

method in decades, which we call atomistic k � p theory. In its usual formulation, k � p theory has the

advantage of depending on parameters that are directly related to experimentally measured quanti-

ties, however, it is insensitive to the locations of individual atoms. We construct an atomistic k � p
theory by defining envelope functions on a grid matching the crystal lattice. The model parameters

are matrix elements which are obtained from experimental results or ab initio wave functions in a

simple way. This is in contrast to the other atomistic approaches in which parameters are fit to

reproduce a desired dispersion and are not expressible in terms of fundamental quantities. This fit-

ting is often very difficult. We illustrate our method by constructing a four-band atomistic model

for a diamond/zincblende crystal and show that it is equivalent to the sp3 tight-binding model. We

can thus directly derive the parameters in the sp3 tight-binding model from experimental data. We

then take the atomistic limit of the widely used eight-band Kane model and compute the band

structures for all III–V semiconductors not containing nitrogen or boron using parameters fit to ex-

perimental data. Our new approach extends k � p theory to problems in which atomistic precision is

required, such as impurities, alloys, polytypes, and interfaces. It also provides a new approach to

multiscale modeling by allowing continuum and atomistic k � p models to be combined in the same

system. VC 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4936170]

I. INTRODUCTION

An electron in the periodic potential of a semiconductor

may be described using pseudopotentials,1,2 tight-binding

models,3–6 or k � p theory.7 All three have been applied to

semiconductor nanostructures5,8–16 in which the translational

symmetry is broken by heterostructures, an applied potential,

or a finite size. Pseudopotentials and tight-binding models

are inherently atomistic in that they allow, and even require,

specification of the locations of atoms. In contrast, k � p
theory provides a Hamiltonian for the coarse grained crystal

using parameters that depend on the composition and struc-

ture of the material. Alloys are treated in the virtual crystal

approximation in which the parameters specifying the band

structure are empirically fit to the observed electronic prop-

erties of a material. While this precludes a description with

atomic scale precision, typically one does not know the exact

position of every atom in a system anyway.

The three methods involve tradeoffs in the approximations

made and the physical phenomena that they describe most

accurately. While k � p theory is a continuum model, the mo-

mentum matrix elements which parameterize it depend on the

atomic scale structure of the electronic wave functions. This is

advantageous in the computation of optical properties, since

the dipole matrix elements depend on the momentum matrix

elements of the Bloch functions which also determine the band

structure. Tight-binding models use atomistic scale wave func-

tions but involve a large number of parameters which are

determined using complicated fitting procedures17 such as

genetic algorithms.5,18 Pseudopotentials also require a large

number of form factors and must rely on complex fitting pro-

cedures, especially when strain is involved.19 Pseudopotentials

are atomistic, but smooth out the core wave function which

results in smaller momentum matrix elements and thus smaller

optical matrix elements. By including enough bands, any of

the three methods can be made to be accurate throughout the

Brillouin zone.20–24 Here, we will focus on the dispersion

around zone center.

k � p theory in the envelope approximation has been used

successfully to describe electronic states in a wide variety of

inhomogeneous semiconductor systems. The electronic wave

function is taken to be a sum of Bloch functions, each multi-

plied by a slowly varying envelope function. The effective

Hamiltonian for the envelopes consists of material-

dependent coefficients multiplying derivatives acting on the

envelopes. The electronic states are then determined by put-

ting the envelopes on a computational grid and using finite

difference approximations for derivatives, giving a model

that is coarse-grained over a size comparable to the grid

spacing.

An interesting question arises: can the computational

grid be made small enough to make the model atomistic?

Finite differences make the model superficially resemble a

tight-binding model with hopping between grid sites, sug-

gesting a connection between tight-binding and k � p models.

In this paper, we will develop an atomistic k � p theory by

constructing it on a grid in which the sites correspond to

atomic positions in the crystal lattice. We will show that the
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atomistic limit of a simple four-band k � p theory is equiva-

lent to a tight-binding model, thus allowing the determina-

tion of k � p parameters and tight-binding parameters in terms

of each other. This connection may be used to derive atomis-

tic models that identically reproduce the long wavelength

physics of k � p theory.

We will begin in Sec. II with a discussion of k � p theory

in the envelope approximation (henceforth simply k � p theory)

on a three-dimensional grid of points, and using finite differ-

ences. We generalize this widely used method to an arbitrary

grid which need not be cartesian or regular. In Sec. III, we

take the grid to be the crystal lattice itself and introduce differ-

ence operators on a diamond or zincblende grid. In Sec. IV,

we discuss how matrix elements are computed on such an at-

omistic grid and examine the new non-zero momentum matrix

elements which appear. In Sec. V, we take the atomistic limit

of a simple four-band model without spin-orbit coupling and

show that it is identical to a tight-binding model. In Sec. VI,

we examine the non-Hermiticity that can arise (as in the four-

band model) and in Sec. VII show how it may be resolved

using the finite volume method. In Sec. VIII, we take the at-

omistic limit of the more realistic (and widely used) eight-

band Kane model with spin-orbit coupling. In Sec. IX, we

describe our fitting method and present our numerical fits of

the atomistic parameters for the non-nitride III–V semicon-

ductors. We conclude with a discussion of some of the unique

features and merits of the atomistic limit.

II. ENVELOPE THEORY

We begin with the basics in order to establish notation.

The Hamiltonian for a single electron in a semiconductor is

Ĥ ¼ Ĥ0 þ Ĥso; (1a)

Ĥ0 ¼
p̂2

2m0

þ V0 rð Þ þ Ve rð Þ; (1b)

Ĥso ¼
�h

4m2
0c2

r�rVð Þ � p̂; (1c)

where V0ðrÞ is the crystal potential, and VeðrÞ is a possible

externally applied potential. In a translational invariant sys-

tem, the single electron states may be found using multi-

band k � p theory by writing the wave function as

wkðrÞ ¼
XN

n¼1

ank expðik � rÞunðrÞ; (2)

where unðrÞ are the zone-center Bloch functions, and ank are

numerical coefficients. The Hamiltonian is then an N�N nu-

merical matrix

Hmn ¼ �
�h2

2m0

k2 dmn �
i�h

m0

k � humjp̂juni

þ humjĤ0juni þ um

���� �h2

4m2
0c2

r�rVð Þ
����un

� �
� k ; (3)

where N is the number of zone-center Bloch functions

included in the basis. We will initially omit the spin-orbit

term and restore it later in Section VIII. Note that there is no

explicit requirement of small k and Eq. (3) is exact except

for errors introduced by truncating the basis. For any finite

value of N, the accuracy decreases with increasing k, since

the solution will not be accurately expressed as a finite sum

of zone center Bloch functions.

If translation symmetry is broken due to a heterojunction

or an applied potential then the plane waves of Eq. (2) are

replaced with envelope functions, and the wave function

becomes

wðrÞ ¼
XN

n¼1

fnðrÞunðrÞ; (4)

where the unðrÞ are Bloch functions, but otherwise quite ar-

bitrary. Substituting wðrÞ into the Schr€odinger equation, and

multiplying both sides by u�mðrÞ, we obtain

� �h2

2m0

amn rð Þr2 þ Pmn rð Þ � r þ vmn rð Þ

" #
fn rð Þ

¼ Eamn rð Þfn rð Þ; (5a)

amnðrÞ ¼ u�mðrÞunðrÞ; (5b)

Pmn rð Þ ¼ �h

im0

u�m rð Þp̂un rð Þ; (5c)

vmn rð Þ ¼ u�m rð Þ 1

2m0

p̂
2 þ V rð Þ

� �
un rð Þ; (5d)

where Pmn and vmn are simply functions (i.e., the operators

they contain act only on the Bloch functions contained

within them). We may make one re-arrangement which will

be useful when we consider Hermiticity

� �h2

2m0

ramn rð Þr þPmn rð Þ � r þ vmn rð Þ

" #
fn rð Þ

¼ Eamn rð Þfn rð Þ; (6a)

Pmn rð Þ ¼ 1

2
Pmn � P�nm

� �
: (6b)

Since um may be chosen as real, Pmn is real, and therefore

Pmn ¼ �Pnm. The above equations give the effective

Schr€odinger equation for the envelope functions in which the

Bloch functions appear as parameters. Note that both are

exact even with an incomplete set of Bloch functions, since

the envelopes are arbitrary. For example, the trivial case of a

single Bloch function u1ðrÞ ¼ 1 simply gives back the origi-

nal Schr€odinger equation, in which case the solution would

consist of an envelope with variation over atomic scales. If a

sufficiently large Bloch basis is used, however, the wave

function is well approximated with slowly varying enve-

lopes. Eq. (5a) will be approximate if the fn are constrained,

as they are when defined on a grid that imposes a momentum

cutoff.

To obtain numerical solutions for systems that are not

amenable to analytic methods requires reduction to a discrete

system, such as by using a finite basis set or functions
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defined on a grid. For nanostructures with irregular geome-

tries, putting the envelope functions on a grid and replacing

derivatives with finite differences is especially convenient,

since no assumptions about the geometric symmetry are

required.13,25,26 We denote the grid points with coordinates

R and use r for continuum coordinates. The continuous

space can be broken up into cells XR, each centered on the

grid site at R, and the integral over all space can then be

written as a sum of integrals over the cellsð
d3r ¼

X
R

ð
XR

d3r: (7)

If a sufficiently large number of Bloch functions are used

the envelope functions will be slowly varying, and fnðrÞ
and its derivatives will be approximately constant over

each cell. This seemingly reasonable assumption can result

in a non-Hermitian Hamiltonian, which will be resolved in

Sec. VI. Integrating Eq. (5a) over XR and approximating

derivatives of fnðrÞ by finite differences on the grid, we

obtain "
� �h2

2m0

humjuniXR
D2 þ �h

im0

humjp̂juniXR
� D

þ humjĤ0juniXR

#
fnR ¼ EhumjuniXR

fnR; (8)

where fnR is the nth envelope function on the site at R, and D
is the finite difference approximation to the gradient,

DfnR � @xfnðrÞjr¼R, which is a weighted sum of the values of

fn at R and nearby grid sites. We adopt an abbreviated nota-

tion for the projected matrix element of an operator Ôð
XR

u�mðrÞÔunðrÞ d3r ¼ humjÔjuniXR
: (9)

If XR contains an integer number of crystal unit cells then

humjuniXR
¼ dmn. The solution of Eq. (8) is obtained by com-

puting the eigenvalues and eigenvectors of a large sparse ma-

trix, for which there are efficient algorithms.27,28

If the Bloch functions are the same throughout the struc-

ture, then the humjp̂juniXR
are constants and Eq. (8) can be

used directly to determine the electronic states. This will be

the case if confinement is provided by an externally applied

potential or for a nanocrystal in which the vacuum is mod-

eled as a large potential barrier. In a heterostructure, how-

ever, the matrix elements appearing in Eq. (8) will vary

spatially. In the atomistic limit, in which the Rs correspond

to individual atoms, the matrix elements will vary spatially

even in a bulk crystal if it contains different atoms. This will

cause the Hamiltonian in Eq. (8) to be non-Hermitian, requir-

ing a more careful treatment. We will return to this problem

and its remedy in Section VI.

III. ATOMISTIC GRID

The finite difference approximation consists of replacing

a derivative at a grid site with a difference operator which

acts by taking weighted sums of the values on nearby grid

sites. For example, on a uniform cartesian grid, the deriva-

tive of a function f at a grid site located at R may be approxi-

mated using the symmetric difference

Dxf rð Þ
����
r¼R

¼ f Rþ �x̂ð Þ � f R� �x̂ð Þ
2�

¼ @xf rð Þ
����
r¼R

þO �ð Þ;

(10)

where � is the grid spacing, and x̂ is a unit vector. This gives

the lowest order approximation to @x, and more accurate

results may be obtained by including more sites in the sum.29

The accuracy of the finite difference approximation

improves as the grid spacing decreases, making it tempting

to shrink the grid spacing as much as possible. The existence

of a physical crystal lattice suggests using the crystal lattice

itself as the computational grid. The values of the envelope

functions will then be defined on the atoms themselves,

yielding an atomistic theory. We will develop this model for

the diamond/zincblende lattice because of its importance in

semiconductor physics, but the approach can be applied to

any crystal structure.

On a rectangular grid, the low order finite difference

approximations may be written down intuitively, but on a

non-rectilinear grid one needs a more systematic approach.

The general method for constructing a difference operator is

to write down a Taylor series expansion of a function at a

point R, express the function values on sites in terms of that

expansion, and solve for the linear combination of the func-

tion values on the site and its neighbors that gives the desired

derivative to lowest order.29–32 This method is used to obtain

high-order difference approximations with smaller errors,

and it may be used with non-rectilinear grids or even irregu-

lar grids.

Because the zincblende/diamond lattice has a basis with

two atoms per unit cell, the difference operators will be dif-

ferent on the inequivalent sites. We denote the atom at (0, 0,

0) as type 1 (assumed to be the anion in zincblende) and the

atom at alatt

4
1; 1; 1Þð as type 2 (cation in zincblende), where

alatt is the lattice constant. The nearest neighbors of the type

1 atoms are at displacements

d1 ¼
alatt

4
1; 1; 1ð Þ; (11a)

d2 ¼
alatt

4
�1;�1; 1ð Þ; (11b)

d3 ¼
alatt

4
�1; 1;�1ð Þ; (11c)

d4 ¼
alatt

4
1;�1;�1ð Þ; (11d)

and the nearest neighbors of the type 2 atoms are at displace-

ments �dn. On the type 1 sites, the nearest neighbor differ-

ences are given by

@xf ðrÞjr¼R ¼ D1xf ðRÞ þ OðalattÞ
¼ ½f ðRþ d1Þ � f ðRþ d2Þ � f ðRþ d3Þ
þ f ðRþ d4Þ�=alatt þOðalattÞ; (12a)
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@yf ðrÞjr¼R ¼ D1yf ðRÞ þ OðalattÞ
¼ ½f ðRþ d1Þ � f ðRþ d2Þ þ f ðRþ d3Þ
� f ðRþ d4Þ�=alatt þOðalattÞ; (12b)

@zf ðrÞjr¼R ¼ D1zf ðRÞ þ OðalattÞ
¼ ½f ðRþ d1Þ þ f ðRþ d2Þ � f ðRþ d3Þ
� f ðRþ d4Þ�=alatt þOðalattÞ; (12c)

r2f rð Þjr¼R ¼ D2
1f Rð Þ þ O alattð Þ

¼ 8

a2
latt

½f Rþ d1ð Þ þ f Rþ d2ð Þ þ f Rþ d3ð Þ

þ f Rþ d4ð Þ � 4f Rð Þ� þ O alattð Þ; (12d)

and on the type 2 sites the difference operators are

D2xf ðRÞ ¼ ½�f ðR� d1Þ þ f ðR� d2Þ þ f ðR� d3Þ
� f ðR� d4Þ�=alatt; (13a)

D2yf ðRÞ ¼ ½�f ðR� d1Þ þ f ðR� d2Þ � f ðR� d3Þ
þ f ðR� d4Þ�=alatt; (13b)

D2zf ðRÞ ¼ ½�f ðR� d1Þ � f ðR� d2Þ þ f ðR� d3Þ
þ f ðR� d4Þ�=alatt; (13c)

D2
2f Rð Þ ¼ 8

a2
latt

½f R� d1ð Þ þ f R� d2ð Þ þ f R� d3ð Þ

þ f R� d4ð Þ � 4f Rð Þ�: (13d)

Using the site at R and its four nearest neighbors, only the

four derivatives r and r2 can be constructed. Substituting

the above difference operators in Eq. (8) gives the

Hamiltonian for the envelopes, parameterized by the matrix

elements in Eq. (8) which would be empirically fit to meas-

urements on bulk materials.

Perturbative k � p models require approximations for sec-

ond derivatives as well. Since no derivative approximation

beyond r and r2 can be constructed with four nearest neigh-

bors, second nearest neighbors must be used. The second near-

est neighbor differences are the same for type 1 and 2 sites

@2
x f Rð Þ ¼ 1

a2
latt

½4f Rð Þ � f Rþ d�1;�1;0ð Þ � f Rþ d1;�1;0ð Þ

� f Rþ d�1;1;0ð Þ � f Rþ d1;1;0ð Þ
�f Rþ d�1;0;�1ð Þ � f Rþ d1;0;�1ð Þ
� f Rþ d�1;0;1ð Þ � f Rþ d1;0;1ð Þ
þf Rþ d0;�1;�1ð Þ þ f Rþ d0;1;�1ð Þ
þ f Rþ d0;�1;1ð Þ þ f Rþ d0;1;1ð Þ� þ O a2

latt

� �
;

(14a)

@x@yf xð Þjx¼R ¼
1

a2
latt

½f Rþ d1;�1;0ð Þ þ f Rþ d�1;1;0ð Þ

� f Rþ d1;1;0ð Þ � f Rþ d�1;�1;0ð Þ� þO a2
latt

� �
;

(14b)

where di;j;k ¼ alatt

2
ix̂ þ jŷ þ kẑ½ � is the displacement to the

second nearest neighbor from the central site at R.

Difference formulas for @2
y ; @

2
z ; @x@x, and @y@z are obtained

by cyclic permutation of x, y, z. Note that while the approxi-

mation to r2 involves only nearest neighbors, mixed deriva-

tives and @2
x ; @

2
y , and @2

z require next nearest neighbors. This

does not present any fundamental or technical problems and

is consistent with the source of these terms, second order

perturbation theory. Since the zeroth-order Hamiltonian con-

tains nearest neighbor couplings from r2, the second order

Hamiltonian contains next nearest neighbor couplings.

IV. MATRIX ELEMENTS

The atomistic matrix elements are somewhat different

from those usually appearing in k � p theory due to the projec-

tion of the Bloch states to atomistic cells. The most obvious

choice for XR would be the Wigner Seitz cell around each R,

as shown in Fig. 1 for the diamond/zincblende lattice. Many

of the same selection rules from k � p theory apply since they

depend on Td symmetry, which the atomic cells possess. The

most notable difference is the existence of matrix elements

that are zero in the continuum model but are non-zero in the

atomistic limit with cancellations between the atomistic

cells. Over the primitive unit cell, X1 þ X2, the Bloch func-

tions satisfy

humjuniX1þX2
¼ humjuniX1

þ humjuniX2
¼ dmn; (15)

but the atomistic matrix elements are not necessarily propor-

tional to dmn, since for m 6¼ n there could be two nonzero

terms that cancel. If no two bands transform as the same rep-

resentation of Td, then humjuniX1;2
/ dmn. For example, in a

model with an SXYZ basis, hXjSiX1;2
¼ 0 because under a

rotation by p about the y-axis the crystal is invariant, but

FIG. 1. Wigner Seitz cells in a zincblende crystal. X1 is the cell around the

type-I atom at (0, 0, 0), and X2 is the cell around the type-II atom at

ð1=4; 1=4; 1=4Þ. The hexagonal faces are the planes separating nearest

neighbors, and the small triangular faces are the planes separating second

nearest neighbors, which are of the same type. If only the nearest neighbor

planes were included, the cells would be tetrahedra. Taking next nearest

neighbors into consideration truncates the corners of the tetrahedra, replac-

ing them with (shorter) triangular pyramids.
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hXjSiX1;2
will change sign. In this paper, we will consider

models in which all the states transform differently, and in par-

ticular, models derived from an SXYZ basis. In these cases the

right hand side of Eq. (8) is a diagonal matrix, which we

choose to be a multiple of the unit matrix, and there is no need

to solve a generalized eigenvalue problem. It is only necessary

to multiply the left hand side by the inverse of this matrix.

The use of atomistic cells modifies the momentum ma-

trix elements as well. For states projected to a volume X, the

momentum matrix element is given byð
X

u�m rð Þ �h

i
r un rð Þ d3r ¼

ð
X

u�n rð Þ �h

i
r um rð Þ d3r

	 
�

þ
ð

X

�h

i
r u�m rð Þun rð Þ
� �

d3r; (16)

where the second integral on the right hand side will vanish

due to periodicity if X contains an integer number of unit

cells. If X contains some fraction of a unit cell, then

u�mðrÞunðrÞ is not periodic over X and there is no reason for

the second integral on the right hand side to vanish. We write

the projected matrix element in the more compact form

humjp̂juniXi
¼ hunjp̂jumiXi

þPXinm; (17)

where PXinm is given by the second integral on the right

hand side of Eq. (16) and is nonzero only if X does not con-

tain an integer number of unit cells. If we sum over two sub-

cells X1 and X2 to make a whole unit cell, the correction

must vanish, and therefore PX1nm ¼ �PX2nm.

The atomistic momentum matrix elements between the

conduction and valence bands obey the same selection rules

as in continuum k � p theory, since they rely only on Td sym-

metry, however because the projected matrix elements on

the two atoms can be different, we have

iP0 ¼
�h

m0

hSjp̂xjXiX1þX2
¼ �h

m0

hSjp̂xjXiX1

þ �h

m0

hSjp̂xjXiX2
¼ iPa1

þ iPa2
; (18)

where the subscript a denotes that the matrix elements are pro-

jected to single atoms. Throughout this paper, we will use an

a subscript to distinguish atomistic parameters from those of

the continuum k � p theory. For the diamond crystal Pa1
¼ Pa2

due to inversion symmetry, while for zincblende Pa1
6¼ Pa2

.

In k � p models with more than one p-like band, such as

the 16 and 14-band models,33,34 there are also matrix ele-

ments of the form iQ ¼ �h
m0
hXvjp̂yjZci where the v and c sub-

scripts indicate the valence and conduction bands. Matrix

elements with this general form but within the same band,

such as hXvjp̂yjZvi, are zero by a simple symmetry argument

which depends on the periodicity of the unit cell. Due to

invariance under a 180� rotation about the y-axis, hXvjp̂yjZvi
¼ hZvjp̂yjXvi. For matrix elements over a whole unit cell,

we also have hXvjp̂yjZvi ¼ hZvjp̂yjXvi�, and therefore

hXvjp̂yjZvi ¼ hXvjp̂yjZvi�. But since the states jXi; jYi; jZi
can all be taken as real, hXvjp̂yjZvi must be pure imaginary

and therefore the matrix element is zero. In the atomistic

case, we see from Eq. (17) that hXvjp̂yjZviXi
6¼ hXvjp̂yjZvi�Xi

and the above argument breaks down. While the projected

matrix element can be nonzero, the matrix element over the

whole cell is zero and therefore

0 ¼ �h

m0

hXvjp̂yjZviX1
þ �h

m0

hXvjp̂yjZviX2
¼ iQa � iQa: (19)

We see that the atomistic k � p model has an additional pa-

rameter not present in the continuum k � p model from which

it is derived. In an inversion non-symmetric crystal, the at-

omistic limit will also double the number of Hamiltonian

matrix elements since there will be different matrix elements

on each atom.

Summarizing, in the atomistic model, we have

iPai
¼ �h

m0

hSjp̂xjXiXi
¼ �h

m0

hSjp̂yjYiXi
¼ �h

m0

hSjp̂zjZiXi
;

(20a)

iP0ai
¼ � �h

m0

hXjp̂xjSiXi
¼ � �h

m0

hYjp̂yjSiXi

¼ � �h

m0

hZjp̂zjSiXi
; (20b)

iPa1
þ iPa2

¼ �iP0a1
� iP0a2

¼ iP0; (20c)

where P0 is the usual continuum k � p parameter. In addition,

there are new intraband matrix elements

iQai
¼ �h

m0

hXjp̂yjZiXi
¼ �h

m0

hZjp̂xjYiXi
¼ �h

m0

hYjp̂zjXiXi

¼ �h

m0

hZjp̂yjXiXi
¼ �h

m0

hXjp̂zjYiXi
¼ �h

m0

hYjp̂xjZiXi
;

(21)

which satisfy iQa1
¼ �iQa2

.

As will be seen in Sec. V, in an inversion non-

symmetric crystal, the combination of finite differences and

the fact that Pi 6¼ P0i results in a non-Hermitian Hamiltonian.

One solution is to simply use an inversion symmetric basis,

which is reasonable since k � p theory is often formulated in

the symmetric approximation. As will be shown in Sec. VIII,

inversion symmetry may still be broken by the sub-unit cell

structure of the envelope function. Alternatively, we may

change the volumes of X1 and X2 by using generalized

Voronoi cells.35,36 By adjusting X1 and X2, we can make

Pi ¼ P0i while maintaining inversion non-symmetry. A gen-

eralized Voronoi cell may be constructed by rescaling the

distances that would be used to determine the Wigner Seitz

cell. Consider a site at R, with nearest neighbors at RNN;i,

and next nearest neighbors at RNNN;j. The generalized

Voronoi cell around R is the set of points p satisfying the

two conditions

ajp� Rj < jp� RNN;ij; (22a)

jp� Rj < jp� RNNN;jj; (22b)

where a is a scaling factor that determines the relative sizes

of a cell. Note that the second condition does not have a
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scaling factor because the next nearest neighbors are of the

same type. Using a 6¼ 1 on the type-1 sites, and a! 1=a on

the type-2 sites, we change the relative volumes of X1 and

X2 while maintaining X1 þ X2 as a unit cell. Shrinking X1

will decrease both Pa1
and P0a1

while increasing Pa2
and P0a2

,

and therefore we may adjust the scaling factor to make

Pa1
¼ P0a2

and P0a1
¼ Pa2

. This method will prove useful for

restoring Hermiticity in the inversion non-symmetric case in

Sec. V.

V. FOUR-BAND MODEL

To demonstrate the basic structure of the atomistic limit,

we first consider the simple four-band k � p model without

spin orbit coupling, using zone-center Bloch states

jXi; jYi; jZi for the valence band and jSi for the conduction

band. This model and the tight-binding model with which it

will be compared are too simple to be used for realistic cal-

culations, but they demonstrate the basic structure of the at-

omistic limit. Using plane waves for the envelopes, the k � p
Hamiltonian is

S X Y Z

H0 ¼

EcþEcðkÞ iP0kx iP0ky iP0kz

�iP0kx EvþEvðkÞ 0 0

�iP0ky 0 EvþEvðkÞ 0

�iP0kz 0 0 EvþEvðkÞ

0
BBB@

1
CCCA;

(23a)

iP0 ¼
�h

m0

hSjp̂xjXi; (23b)

Ec kð Þ ¼ 1

2
þ Fc

	 

�h2

m0

k2; (23c)

Ev kð Þ ¼ 1

2
þ Fv

	 

�h2

m0

k2; (23d)

where Fc and Fv are remote band contributions to the con-

duction and valence band, respectively, and are included to

make the k � p model agree with a tight-binding model. In the

atomistic limit, the Hamiltonian also includes terms involv-

ing the momentum matrix element of Eq. (21)

HQ ¼

S X Y Z

0 0 0 0

0 0 iQakz iQaky

0 iQakz 0 iQakx

0 iQaky iQakx 0

0
BBB@

1
CCCA ; (24a)

iQa ¼
�h

m0

hXjp̂yjZiX1
¼ � �h

m0

hXjp̂yjZiX2
: (24b)

Eq. (24a) is only for an anion site, and on the cation site we

will have �HQ. In a plane wave basis, it is convenient to

define the approximate wave vectors obtained from the finite

difference operators acting on plane waves

K1n ¼ �ie�ik�rD1n eik�r ðn ¼ x; y; zÞ; (25a)

K2
1 ¼ �e�ik�rD2

1 eik�r; (25b)

K2n ¼ �ie�ik�rD2n eik�r ¼ K1n
� ðn ¼ x; y; zÞ; (25c)

K2
2 ¼ �e�ik�rD2

2 eik�r ¼ K2
1
�; (25d)

where the subscripts 1 and 2 on K indicate the atom type on

which the difference is centered. On a diamond/zincblende

lattice, using Eq. (8) and the finite differences defined in

Eqs. (12a)–(13d), we obtain

S1 X1 Y1 Z1 S2 X2 Y2 Z2

H ¼

Ec1 þ Vc 0 0 0 T c1 iPa1
K1x iPa1

K1y iPa1
K1z

0 Ev1 þ Vv 0 0 �iP0a1
K1x T v1 iQaK1z iQaK1y

0 0 Ev1 þ Vv 0 �iP0a1
K1y iQaK1z T v1 iQaK1x

0 0 0 Ev1 þ Vv �iP0a1
K1z iQaK1y iQaK1x T v1

T c2 iPa2
K2x iPa2

K2y iPa2
K2z Ec2 þ Vc 0 0 0

�iP0a2
K2x T v2 �iQaK2z �iQaK2y 0 Ev2 þ Vv 0 0

�iP0a2
K2y �iQaK2z T v2 �iQaK2x 0 0 Ev2 þ Vv 0

�iP0a2
K2z �iQaK2y �iQaK2x T v2 0 0 0 Ev2 þ Vv

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA
; (26)

where the subscripts 1, 2 label the atoms within the unit cell

and

T bc ¼
1

2
þ Fb

	 

�h2

m0

K2
a �

32

a2
latt

	 

; (27a)

Vb ¼
1

2
þ Fb

	 

�h2

m0

32

a2
latt

	 

; (27b)

where b is the band index (v or c for valence or conduction),

c indicates the type of atom (1 or 2), and the momentum ma-

trix elements are given by Eqs. (20c) and (21).

If the crystal lacks inversion symmetry, then

Pa1
6¼ P0a2

; P0a1
6¼ Pa2

, and H is not Hermitian. The problem

may be remedied by starting with a set of inversion symmet-

ric Bloch functions, in which case Pa1
¼ Pa2

¼ P0a1
¼ P0a2

.

The Hamiltonian can still be inversion non-symmetric due to

the different potentials on the anion and cation, giving rise to
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inversion non-symmetric zone-center envelope functions. An

alternative approach is to modify the differencing scheme

using the generalized Voronoi cells described at the end of

Section IV. The cell size can be adjusted so as to make

Pa2
¼ P0a1

and P0a2
¼ Pa1

, restoring Hermiticity while main-

taining Pa1
6¼ P0a1

and Pa2
6¼ P0a2

. Deforming the cells will

also change the values of the Qai
, but since Qa1

¼ �Qa2
the

form of H will not be affected. In a model with more bands,

modifying X to make H Hermitian would appear to be lim-

ited to tuning the Pai
s for just one pair of bands. One could

use different Xs for different bands, or simply set the Pai
s on

an ad hoc basis.

We may compare the atomistic four-band k � p model of

Eq. (26) with the four-band tight-binding Hamiltonian37

S1 X1 Y1 Z1 S2 X2 Y2 Z2

Htb ¼

Es1 0 0 0 Vssg1 Vspg2 Vspg3 Vspg4

0 Ep1 0 0 �Vspg2 Vxxg1 Vxyg4 Vxyg3

0 0 Ep1 0 �Vspg3 Vxyg4 Vxxg1 Vxyg2

0 0 0 Ep1 �Vspg4 Vxyg3 Vxyg2 Vxxg1

Vssg
�
1 �Vspg�2 �Vspg�3 �Vspg�4 Es2 0 0 0

Vspg�2 Vxxg�1 Vxyg�4 Vxyg�3 0 Ep2 0 0

Vspg�3 Vxyg�4 Vxxg�1 Vxyg�2 0 0 Ep2 0

Vspg�4 Vxyg�3 Vxyg�2 Vxxg�1 0 0 0 Ep2

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA
; (28)

where the gs are the standard tight-binding functions, which

are related to the K s by

g1 ¼
1

4
½exp id1 � kð Þ þ exp id2 � kð Þ þ exp id3 � kð Þ

þ exp id4 � kð Þ� ¼ 1� a2
latt

32
K2;

g2 ¼
1

4
½exp id1 � kð Þ þ exp id2 � kð Þ � exp id3 � kð Þ

� exp id4 � kð Þ� ¼ ialatt

4
Kx;

g3 ¼
1

4
½exp id1 � kð Þ � exp id2 � kð Þ þ exp id3 � kð Þ

� exp id4 � kð Þ� ¼ ialatt

4
Ky;

g4 ¼
1

4
½exp id1 � kð Þ � exp id2 � kð Þ � exp id3 � kð Þ

þ exp id4 � kð Þ� ¼ ialatt

4
Kz: (29)

Equating the matrix elements in Eqs. (26) and (28), the tight-

binding and k � p parameters are related by

Vss ¼ �
�h2

m0

32

a2
latt

1

2
þ Fc

	 

; (30a)

Vxx ¼ �
�h2

m0

32

a2
latt

1

2
þ Fv

	 

; (30b)

Vs1p2
¼ 4Pa1

=alatt; (30c)

Vs2p1
¼ 4Pa2

=alatt; (30d)

Vxy ¼ 4Qa=alatt; (30e)

Es1 ¼ Ec1 þ
�h2

m0

32

a2
latt

1

2
þ Fc

	 

; (30f)

Ep1 ¼ Ev1 þ
�h2

m0

32

a2
latt

1

2
þ Fv

	 

; (30g)

Es2 ¼ Ec2 þ
�h2

m0

32

a2
latt

1

2
þ Fc

	 

; (30h)

Ep2 ¼ Ev2 þ
�h2

m0

32

a2
latt

1

2
þ Fv

	 

: (30i)

We thus find that the atomistic limit of the k � p model is

equivalent to a tight-binding model. In order to make this

one-to-one correspondence, it was necessary to include

spherically symmetric remote band contributions to both

the conduction and valence bands and to have different mo-

mentum matrix elements on the two atoms (at least in the

inversion non-symmetric case). Our inclusion of only lim-

ited remote band contributions to the valence band gives

the Luttinger model in the spherical approximation with

�c ¼ 1
5

2c2 þ 3c3ð Þ.
The atomistic limit always adds at least one new param-

eter, Qa. For inversion symmetric crystals, the Hamiltonian

matrix elements are the same on both atoms, so there are as

many parameters as in the original k � p model, plus the addi-

tional parameter Qa. For inversion non-symmetric crystals,

the Hamiltonian matrix elements are different on each atom,

so the number of diagonal matrix elements is doubled, plus

the additional Qa. In Sec. VIII, we will take a hybrid

approach in which the Hamiltonian is not inversion symmet-

ric, but the Bloch basis is chosen to be symmetric. In that

case, the matrix elements of Ĥ0 (cf. Eq. (1a)) will be differ-

ent on different atoms, but the momentum matrix elements

will be the same on each atom since they depend on deriva-

tives of the inversion symmetric Bloch functions. Therefore,

the number of diagonal parameters will be doubled, the num-

ber of momentum matrix elements will remain the same, and

Qa will be added.
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An important feature of the atomistic limit is that the en-

velope varies within a unit cell even at zone center, and thus

modifies the effective Bloch functions. In Eq. (26), we see

that D2 couples the two atoms even at k ¼ 0 via the off-

diagonal matrix elements T c1; T v1; T c2, and T v2. This

results in a doubling of the number of bands over the contin-

uum model, with the additional bands being shifted by an

energy on the order of �h2=m0a2
latt. Since the atomistic model

includes two grid sites per unit cell, the envelope functions

include wave vectors outside the first Brillouin zone. These

states may be interpreted as approximate Bloch functions

with different symmetry from the zone-center Bloch func-

tions of the theory. For example, when multiplied by an en-

velope that changes sign from site to site the anti-bonding S-

like Bloch function of the conduction band becomes similar

to the bonding S-like state. Of course such a “fake” Bloch

function is not the true zone-center Bloch function, but an

approximation. This simple model illustrates the basic fea-

tures of the atomistic limit, but in order to develop more real-

istic models, we need to examine the inversion non-

symmetric case more closely and study the relationship to

heterojunctions.

VI. NON HERMITICITY

As we saw in Sec. V, straight-forward application of the

atomistic limit to an inversion non-symmetric crystal gives a

non-Hermitian Hamiltonian, since the momentum matrix ele-

ments are different on different atoms. This problem generally

arises when a finite difference operator is multiplied by a spa-

tially varying coefficient, and also occurs at a heterojunction in

continuum k � p theory.13,25,26,38 In this section and Section

VII, we will examine this issue in a general framework that is

applicable to both continuum k � p models that have been put

on a grid and our atomistic model. Consider a Hamiltonian

containing a Hermitian differential operator D which is

approximated by a difference operator D consisting of a

weighted sum of the function values on nearby grid sites

Df ðrÞ
����
r¼R

�Df ðrÞ
����
r¼R

¼
X

R0
dRR0 fR0 ; (31)

where dR;R0 are coefficients defining the difference operator,

most of which are zero except when R0 and R are close to

each other. Since D is Hermitian, hgjDf i ¼ hDgjf i and the

corresponding difference operator must satisfy

X
R;R0

g�R dR;R0 fR0 ¼
X
R;R0

d�R;R0 g
�
R0 fR ¼

X
R;R0

d�R0;R g�R fR0 ; (32)

where the sums on R and R0 range over all lattice sites.

Therefore, the Hermiticity of D requires dR;R0 ¼ d�
R0;R. If the

continuum Hamiltonian contains a differential operator mul-

tiplied by a spatially varying coefficient cðrÞ, then simply

multiplying that operator by cðRÞ gives

cðrÞDf ðrÞ
����
r¼R

! cðrÞDf ðrÞ
����
r¼R

¼
X

R

cR dR;R0 fR0 : (33)

Since Hermiticity requires cRdR;R0 ¼ ½cR0dR0;R��, any spatial

variation in the magnitude of cðrÞ spoils the Hermiticity.

This problem arises in a one-band model with a spatially

varying effective mass as well as in multi-band envelope

models with spatially varying parameters. This problem will

occur in Eq. (8) for a heterostructure, but in the atomistic

limit it will arise even for a bulk material if the atoms differ

from one another.

A common solution is to symmetrize over the connected

sites13,25,26

c rð ÞDf rð Þ
����
r¼R

!
X

R0

1

2
cR þ cR0½ �dR;R0 fR0 : (34)

The symmetrization is applied to Dx, Dy, and Dz, which are

then used to construct other operators. This resolution of the

problem is not as ad hoc as it may seem, since the first deriv-

ative is most naturally defined on a link between two sites.

For example, on a one dimensional grid with spacing �, the

difference between two adjacent sites gives an approxima-

tion to the derivative on the link connecting them

@xf xð Þjx¼x0þ�=2 � Dxf xð Þjx¼x0þ�=2 ¼
1

�
f x0 þ �ð Þ � f x0ð Þ
� �

:

(35)

Therefore, the value of a coefficient multiplying the deriva-

tive is naturally defined on the link itself and should be inter-

polated between the two points being differenced, giving

c xð Þ@xf xð Þjx¼x0þ�=2�
1

2�
c x0ð Þþc x0þ�ð Þ
� �

f x0þ�ð Þ� f x0ð Þ
� �

:

(36)

For terms containing variable coefficients and second deriva-

tives, one must also be careful about the operator ordering.

Neither cðxÞ@2
x nor @2

x cðxÞ can be made self-adjoint, even in

the continuum, however a symmetrized operator such as

@xcðxÞ@x can.38–40 Therefore, we can write

@xc xð Þ@xf xð Þjx¼x0
� 1

�
½cxDxfxjx¼x0þ�=2 � cxDxfxjx¼x0��=2�

� 1

2�2
½ cx0
þ cx0þ�ð Þfx0þ� þ cx0

þ cx0��ð Þfx0��

� cx0þ� þ cx0�� þ 2cx0ð Þfx0
�: (37)

VII. FINITE VOLUME METHOD

The symmetrization procedure described above has an

intuitive appeal; however, a more formal approach will give

the same result while providing some additional insight into

the problem. The root cause of the non-Hermiticity is that in

discretizing Eq. (5a) we assumed the envelopes and their

derivatives were constants over XR. Instead, we can make

use of the finite volume method41 in which the divergence

theorem is used to convert the volume integral over a cell

into a surface integral. Discretizing this modified version

results in finite differences over two sites that are multiplied

by a quantity defined on the link between the sites. This
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means that the coefficient is the same (except for a possible

sign) when evaluated on either of the sites, thus guaranteeing

Hermiticity.

Let us return to the continuum, but using Eq. (6a) rather

than Eq. (5a), and consider the PmnðrÞ � rfnðrÞ term. When

integrated over a volume around the grid site Rð
XR

PmnðrÞ � rfnðrÞ d3r ¼
ð
@XR

fnðrÞPmnðrÞ � ds

�
ð

XR

fnðrÞr � PmnðrÞ d3r; (38)

where @XR is the bounding surface of XR. Since fnðrÞ is

slowly varying, we can replace it with fn R in the second inte-

gral on the right to obtainð
XR

PmnðrÞ � rfnðrÞ d3r �
ð
@XR

fnðrÞPmnðrÞ � ds

� fn R

ð
@XR

PmnðrÞ � ds: (39)

The surface @XR is a polyhedron centered on the point R

with faces Sd, each of which is normal to the displacement

from R to the neighboring site at Rþ d (see Fig. 1). Because

f is slowly varying, its value on one of the faces Sd is approx-

imately constant, with a value that may be approximated

by linearly interpolating between the two sites, fnðrÞjSd

� ½fn R þ fn Rþd�=2. This givesð
XR

Pmn rð Þ � rfn rð Þ d3r � 1

2

X
d

fn Rþd � fn R½ �
ð

Sd

Pmn rð Þ � ds

(40a)

� 1

2

X
d

PRd Dd fn R; (40b)

where

Pmn Rd ¼
ð

Sd

d � PmnðrÞ ds; (40c)

and Dd is the forward difference in the d direction defined by

Ddfn R ¼ ½fn Rþd � fn R�=jdj. The discretized k � p term now

consists of a link connecting sites multiplied by a coefficient

defined on the link, which is therefore Hermitian. When

approximated with naive finite differences, r � amnðrÞrfnðrÞ
also becomes non-Hermitian. Applying the same methods as

above givesð
XR

r � amnðrÞrfnðrÞ d3r �
X

d

Amn RdDd fn R; (41a)

Amn Rd ¼
ð

Sd

amnðrÞds: (41b)

Using the finite volume method, a derivative term

becomes a sum of differences between sites multiplied by a

coefficient that depends on an integral over the surface sepa-

rating the cells centered on the two sites. Therefore, the matrix

element connecting two sites will be the same whether eval-

uated at R or Rþ d, making H Hermitian. The quantities

given by Eqs. (41b) and (40c) do not need to be explicitly

computed, and we may simply use the naive differencing for-

mulas with coefficients empirically fit to bulk properties. The

finite volume method provides the justification for the coeffi-

cient being determined by the two sites being connected.

We may see explicitly how the finite volume method

works by considering the Hamiltonian matrix elements

involving the S and X states on two nearest neighbor sites at

R1 and R2. Using the differences given by Eqs. (12a) and

(13a) in Eq. (8), we would have

S1 X1 S2 X2

H ¼ 1

alatt

�h

im0

0 0 0 hSjp̂xjXiX1

0 0 hXjp̂xjSiX1
0

0 �hSjp̂xjXiX2
0 0

�hXjp̂xjSiX2
0 0 0

0
BBBB@

1
CCCCA; (42)

which is clearly not Hermitian since all four of the non-zero

matrix elements are different. Using Eq. (6a) will partially

symmetrize Eq. (42) because Pmn ¼ �Pnm, but the matrix

elements projected to X1 and X2 will still be different if the

basis is inversion non-symmetric. Applying the finite volume

method then gives

S1 X1 S2 X2

H ¼ 1

alatt

0 0 0 PSX

0 0 PXS 0

0 �PSX 0 0

�PXS 0 0 0

0
BBBB@

1
CCCCA; (43)

where we have omitted the coordinate indices on P. Since

Pmn is real and Pmn ¼ �Pnm, H is Hermitian.

There are actually two separate symmetrizations: Eq.

(6a) and the finite volume method. The former anti-

symmetrizes the momentum matrix element with respect to

the band index (“index symmetrization”) and the latter

symmetrizes with respect to the coordinate (“spatial

symmetrization”). With an inversion symmetric Bloch basis

only the index symmetrization is necessary to obtain a

Hermitian Hamiltonian, but in the inversion non-symmetric

case the finite volume method provides spatial symmetriza-

tion. The finite volume method results in equal momentum
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matrix elements, unlike the generalized Voronoi cell

approach used in Sec. V which gave two distinct S-X mo-

mentum matrix elements for an inversion non-symmetric

basis. It is interesting that Eq. (6a) gives a diagonal kinetic

term with the same form as the common operator ordering

choice in the effective mass approximation, r � 1
mðrÞ

rwðrÞ.38–40

Note that if the Bloch functions centered on R and Rþ
d are different, there will be a discontinuity in the slope of

unðrÞ at the interface and the surface integrals in Eqs. (40c)

and (41b) will be ill-defined, depending on whether we use

PmnðrÞ and amnðrÞ from the cell around R or Rþ d. Since

Bloch functions do not vary greatly among different III–V

semiconductors, we may take the surface integral to simply

be a parameter depending on the atomic species at R and

Rþ d. Moreover, the true um at a heterojunction will be a

smooth function depending primarily on the type of the

dimer, with some small dependence on the nearby atoms.

Taking the coefficient to depend only on the two atoms con-

nected is essentially ignoring the influence of nearby atoms

on the microscopic V0ðrÞ and assuming the Bloch function at

a dimer is the same as what it would be for that dimer in a

bulk binary material. The discontinuity in the Bloch func-

tions at a heterojunction potentially spoils current conserva-

tion which requires wðrÞ have continuous first derivatives. A

discontinuity in the slope of um requires a compensating dis-

continuity in the slope of the associated envelope. Such an

envelope is certainly possible in the continuum, however this

cannot be accomplished in a real-space formulation on a grid

since such a discontinuity would be over a length scale

smaller than the cutoff imposed by the grid. The Burt-

Foreman formulation of envelope theory resolves this prob-

lem and ensures current conservation, but requires additional

momentum matrix elements between wave vectors outside

the first Brillouin zone.42,43

VIII. EIGHT-BAND MODEL

We now apply the ideas developed in Secs. I–VII to the

eight-band Kane model with spin-orbit coupling and pertur-

bative remote band contributions. This model has been used

to describe electronic states in bulk materials, impurities,

and nanostructures. The Hamiltonian is given by44–46

uC6

�1=2
uC6

1=2
uC8

þ1=2
uC8

þ3=2
uC8

�3=2
uC8

�1=2
uC7

�1=2
uC7

þ1=2

H8¼

A 0 T� þV� 0 �
ffiffiffi
3
p

T�Vð Þ
ffiffiffi
2
p

W�Uð Þ W�Uð Þ
ffiffiffi
2
p

T� þV�ð Þ
0 A

ffiffiffi
2
p

W�Uð Þ �
ffiffiffi
3
p

T� þV�ð Þ 0 T�V �
ffiffiffi
2
p

T�Vð Þ W� þU

TþVð Þ
ffiffiffi
2
p

W� �Uð Þ �PþQ �S� R 0

ffiffiffi
3

2

r
S �

ffiffiffi
2
p

Q

0 �
ffiffiffi
3
p

TþVð Þ �S �P�Q 0 R �
ffiffiffi
2
p

R
1ffiffiffi
2
p S

�
ffiffiffi
3
p

T� �V�ð Þ 0 R� 0 �P�Q S�
1ffiffiffi
2
p S�

ffiffiffi
2
p

R�

ffiffiffi
2
p

W� �Uð Þ T� �V� 0 R� S �PþQ
ffiffiffi
2
p

Q

ffiffiffi
3

2

r
S�

W� �U
ffiffiffi
2
p

T� �V�ð Þ
ffiffiffi
3

2

r
S� �

ffiffiffi
2
p

R�
1ffiffiffi
2
p S

ffiffiffi
2
p

Q Z 0

ffiffiffi
2
p

TþVð Þ WþU �
ffiffiffi
2
p

Q
1ffiffiffi
2
p S�

ffiffiffi
2
p

R

ffiffiffi
3

2

r
S 0 Z

0
BBBBBBBBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCA

;

(44)

where

A ¼ Ec þ 1þ 2Fð Þ �h2

2m0

k2; U ¼ 1ffiffiffi
3
p P0kz; V ¼ 1ffiffiffi

6
p P0 kx � ikyð Þ; W ¼ iffiffiffi

3
p Bkxky;

T ¼ 1ffiffiffi
6
p Bkz kx þ ikyð Þ; P ¼ �Ev þ

�h2

2m0

c1k2; Q ¼ �h2

2m0

c2k2;

R ¼ �
ffiffiffi
3
p �h2

2m0

c2 k2
x � k2

y

� �
� i2c3kxky

� �
; S ¼

ffiffiffi
3
p

c3

�h2

m0

kz kx � ikyð Þ; Z ¼ Es �
�h2

2m0

c1k2;

(45)

where Ec, Ev, and Es ¼ Ev � D are the zone-center energies

of the conduction, valence, and split-off bands, respectively,

F is the remote band contribution to the conduction band

effective mass, iP0 ¼ �h
m0
hSjPxjXi, and B is the inversion

asymmetry parameter due to remote bands, which we take to

be zero. The modified Luttinger parameters are given by
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c1 ¼ cL
1 �

EP

3Eg
; c2 ¼ cL

2 �
EP

6Eg
;

c3 ¼ cL
3 �

EP

6Eg
:

(46)

Note that we use the definitions from Ref. 44 rather than

Ref. 46, since they give the standard relationships between

hole masses and Luttinger parameters

m0

m�hh

	 
 100½ �
¼ cL

1 � 2cL
2 ;

m0

m�lh

	 
 100½ �
¼ cL

1 þ 2cL
2 ;

m0

m�hh

	 
 111½ �
¼ cL

1 � 2cL
3 ;

m0

m�lh

	 
 111½ �
¼ cL

1 þ 2cL
3 :

(47)

For actual III–V materials, the modified Luttinger parameters

in Ref. 46 give effective masses that differ from the relation-

ships given above by about 10%.

To take the atomistic limit of the eight-band model, we

proceed as in Sec. V, replacing k’s with the appropriate dif-

ference operators on the crystal lattice. As in Sec. V, we

must include the additional atomistic momentum matrix ele-

ment iQa ¼ �h
m0
hXjpyjYiX1

¼ � �h
m0
hXjpyjYiX2

, where X1 (X2)

is the volume around the anion (cation). With this sign con-

vention, a positive Qa will give a long wavelength 16-band

model with Q> 0 in agreement with Ref. 33. With the inclu-

sion of spin and transforming to the total angular momentum

basis in which Eq. (51) is written, we obtain

HQ ¼

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 � 1ffiffiffi
3
p Qak�

1ffiffiffi
3
p Qakz 0 � 1ffiffiffi

2
p Qakþ 0

0 0
1ffiffiffi
3
p Qakþ 0 0

1ffiffiffi
3
p Qakz �

ffiffiffi
2

3

r
Qakz � 1ffiffiffi

6
p Qakþ

0 0 � 1ffiffiffi
3
p Qakz 0 0

1ffiffiffi
3
p Qa kx � ikyð Þ

1ffiffiffi
6
p Qak� �

ffiffiffi
2

3

r
Qakz

0 0 0 � 1ffiffiffi
3
p Qakz � 1ffiffiffi

3
p Qakþ 0 0

1ffiffiffi
2
p Qak�

0 0
1ffiffiffi
2
p Qak�

ffiffiffi
2

3

r
Qakz � 1ffiffiffi

6
p Qakþ 0 0 0

0 0 0
1ffiffiffi
6
p Qak�

ffiffiffi
2

3

r
Qakz � 1ffiffiffi

2
p Qakþ 0 0

0
BBBBBBBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCCCCCCA

; (48)

where k6 ¼ ðkx6ikyÞ. As in the case of the four-band model,

HQ is the atomistic contribution on the anion site with �HQ

on the cation site.

Rather than using modified Voronoi cells as we did with

the four-band model, here we avoid the Hermiticity problem

by choosing a basis of inversion symmetric Bloch functions.

The eight-band model with B¼ 0 is inversion symmetric, so

adopting such a basis is quite natural, and in any case the

choice of basis is arbitrary. Although the basis is symmetric,

inversion symmetry is broken by Ĥ0 (cf. Eq. (1a)) which will

cause the envelope functions to be inversion non-symmetric.

The eight-band model depends on eight parameters (Ec, Ev,

Es, P0, c1, c2, c3, and F). As discussed in Sec. V, the diagonal

energies will be different on each atom, doubling their number

to six. The other parameters, which depend on derivatives of

the inversion symmetric Bloch functions, will be the same on

each atom. With the inclusion of Qa, the number of parame-

ters is increased from eight to 12 in the atomistic limit.

The remote band contributions in the eight-band model

introduce additional ks, and thus additional difference operators.

As discussed in Sec. III, the fact that each atom has 4 neighbors

means that only k2, kx, ky, and kz can be constructed using near-

est neighbor differences, while kxky; kxkz; kykz; k2
x ; k2

y , and k2
z

require next nearest neighbor differences. Replacing the ks with

difference operators acting on plane waves as in Sec. V, the

Hamiltonian becomes a 16� 16 matrix of the form

H11 H12

H
†

12 H22

	 

; (49)

where the diagonal blocks H11 and H22 include on-site and

next-nearest-neighbor couplings, and the H12 block contains

nearest neighbor couplings. For k¼ 0, the nearest neighbor cou-

plings from kx, ky, and kz vanish but those from k2 remain, shift-

ing the zone-center energies from their eight-band values. This

can be seen in Eq. (26) where T s are nonzero even for k ¼ 0.

For zincblende, the onsite energies are different on the two

atoms (Ec1; Ev1; Es1 on the anion and Ec2; Ev2; Es2 on the cat-

ion), breaking the inversion symmetry. With two grid sites per

unit cell, the number of bands in the original k � p model is

doubled in the atomistic limit and each zone-center state of the

continuum model splits into two states: one having an envelope

with the same sign on each atom (þþ) and another with oppo-

site signs (þ�). The þþ eigenvectors correspond to the origi-

nal eight-band states (C6c; C7v; C8v), and the þ� states

correspond to the additional states found in the 16-band model

(C6v; C8c; C7c) as shown in Fig. 2.
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To understand the band doubling, consider a continuum

Hamiltonian having a diagonal term H ¼ Ec þ Cck2 where

the subscripts indicate the parameters are for the continuum

model. The parameters of the atomistic model are determined

by fitting to the parameters of the continuum model. Because

r2 couples the two atoms within a unit cell, the atomistic

Hamiltonian is a non-diagonal 2� 2 matrix even at k ¼ 0

Ea1 þ
32

a2
latt

Ca � 32

a2
latt

Ca

� 32

a2
latt

Ca Ea2 þ
32

a2
latt

Ca

0
BBB@

1
CCCA; (50)

where Ea1; Ea2 are the atomistic energies for atom 1 and 2

(anion and cation, respectively, for zincblende), and Ca is the

atomistic coefficient corresponding to Cc in the continuum

Hamiltonian. The zone-center eigenvalues and eigenvectors

are then

E ¼ 32

a2
latt

Ca þ
Ea1 þ Ea2

2
6

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ea2 � Ea1ð Þ2 þ 4096C2

a=a4
latt

q
;

(51a)

f ¼ A=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ A2
p

1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ A2
p

	 

; (51b)

A ¼ a2
latt

64Ca
Ea2 � Ea1ð Þ7

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a4

latt

4096C2
a

Ea2 � Ea1ð Þ2 þ 1

s
: (51c)

In the inversion symmetric case, Ea1 ¼ Ea2 and the

zone center energies are given by E¼Ea and E ¼ Ea

þ 32Ca=a2
latt. The atomistic parameter Ea is then set equal

to the continuum zone center energy, Ec, and the atomistic

limit gives rise to an additional band with zone-center

energy 32Ca=a2
latt higher. If Ca is fixed by fitting to an effec-

tive mass, there are no additional parameters to fit. In the

inversion non-symmetric case, the zone center energies of

the atomistic model are functions of three parameters,

Ea1; Ea2, and Ca, the last of which would be fixed by fitting

to an effective mass. We require two conditions to fit Ea1

and Ea2. The simplest approach is to set Eq. (51a) to Ec and

the energy of one additional band. Alternatively, one could

fit to Ec, and another condition such as the ratio of envelope

functions on the two atoms. Since empirical data for ener-

gies of excited bands are more readily available than Bloch

functions, we will determine Ea1 and Ea2 by fitting to the

two band energies. Our fitting procedure is by no means

unique, and additional data may make some other method

preferable.

We take as our target energies those of the 16-band

model, E6v; E7v; E8v; E6c; E7c; E8c (see Fig. 2). These have

been measured for some materials47 and calculated for

others.2 Setting the zone-center eigenvalues of the atomistic

Hamiltonian equal to the target energies gives the atomistic

on-site energies

Ec1 ¼
1

2
E6c þ E6vð Þ � 16 1þ 2Fað Þ�h2=m0a2

latt �
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E6c � E6vð Þ2 � 1024 1þ 2Fað Þ2�h4=m2

0a4
latt

q
;

Ec2 ¼
1

2
E6c þ E6vð Þ � 16 1þ 2Fað Þ�h2=m0a2

latt þ
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E6c � E6vð Þ2 � 1024 1þ 2Fað Þ2�h4=m2

0a4
latt

q
;

Es1 ¼
1

2
E7c þ E7vð Þ þ 16ca1�h2=m0a2

latt �
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E7c � E7vð Þ2 � 1024c2

a1�h4=m2
0a4

latt

q
;

Es2 ¼
1

2
E7c þ E7vð Þ þ 16ca1�h2=m0a2

latt þ
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E7c � E7vð Þ2 � 1024c2

a1�h4=m2
0a4

latt

q
;

Ev1 ¼
1

2
E8c þ E8vð Þ þ 16ca1�h2=m0a2

latt �
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E8c � E8vð Þ2 � 1024c2

a1�h4=m2
0a4

latt

q
;

Ev2 ¼
1

2
E8c þ E8vð Þ þ 16ca1�h2=m0a2

latt þ
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E8c � E8vð Þ2 � 1024c2

a1�h4=m2
0a4

latt

q
;

(52)

where Ec1 is the on-site conduction band energy on the atom at the origin (anion for zincblende), Ec2 is the on-site energy for

the atom at ðalatt=4; alatt=4; alatt=4Þ (cation for zincblende), and likewise for the valence band (subscripts v1 and v2) and the

spin-orbit band (subscripts s1 and s2). The a subscripts on Fa and ca1 indicate they are the atomistic versions of the continuum

k � p parameters F and c1. The corresponding envelope functions are obtained from Eq. (51b), giving

A6v ¼ ððEc2 � Ec1Þm0a2
latt þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1024ð1þ 2FaÞ2�h4 þ ðEc2 � Ec1Þ2m2

0a4
latt

q
Þ=32ð1þ 2FaÞ�h2;

A6c ¼ ððEc2 � Ec1Þm0a2
latt �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1024ð1þ 2FaÞ2�h4 þ ðEc2 � Ec1Þ2m2

0a4
latt

q
Þ=32ð1þ 2FaÞ�h2;

A7v ¼ �ððEs2 � Es1Þm0a2
latt þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1024c2

a1�h4 þ ðEs2 � Es1Þ2m2
0a4

latt

q
Þ=32ca1�h2;

A7c ¼ �ððEs2 � Es1Þm0a2
latt �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1024c2

a1�h4 þ ðEs2 � Es1Þ2m2
0a4

latt

q
Þ=32ca1�h2;

A8v ¼ �ððEv2 � Ev1Þm0a2
latt þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1024c2

a1�h4 þ ðEv2 � Ev1Þ2m2
0a4

latt

q
Þ=32ca1�h2;

A8c ¼ �ððEv2 � Ev1Þm0a2
latt �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1024c2

a1�h4 þ ðEv2 � Ev1Þ2m2
0a4

latt

q
Þ=32ca1�h2:

(53)
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The states with energies E6c; E7v; E8v have envelopes of

the form þþ, while those with energies E6v; E8c; E7c have

þ� envelopes. Note that the envelopes break inversion

symmetry and the momentum matrix elements taken over a

unit cell must include the sub-unit cell structure of the

envelopes.

Having determined the on-site energies, we must now

determine the coefficients of the difference operators. In k � p
theory, effective masses only require knowing E(k) to second

order in k and are therefore computed using second order

perturbation theory in k.34,48,49 The g-factor is also computed

this way.49 For the 16-band continuum k � p model, the

results are

m0

m�
¼ 1þ 2Fð Þ þ EP0

3

2

E6c � E8v
þ 1

E6c � E7v

	 


þ EP1

3

2

E6c � E8c
þ 1

E6c � E7c

	 

; (54a)

g�

g0

¼ 1þ gr

g0

� EP0

3

1

E6c � E8v
� 1

E6c � E7v

	 


� EP1

3

1

E6c � E8c
� 1

E6c � E7c

	 

; (54b)

cL
1 ¼ c1 �

EP0

3 E8v � E6cð Þ �
EP2

3 E8v � E6vð Þ

� EQ

3 E8v � E7cð Þ �
EQ

3 E8v � E8cð Þ ; (54c)

cL
2 ¼ c2 �

EP0

6 E8v � E6cð Þ �
EP2

6 E8v � E6vð Þ þ
EQ

6 E8v � E7cð Þ ;

(54d)

cL
3 ¼ c3 �

EP0

6 E8v � E6cð Þ �
EP2

6 E8v � E6vð Þ �
EQ

6 E8v � E7cð Þ ;

(54e)

where g0 is the bare electron g factor, gr is a possible remote

band contribution, EP0
¼ 2jhScjPxjX vij2=m0; EP1

¼ 2jhScjPx

jXcij2=m0; EP2
¼ 2jhSvjPxjXvij2=m0, and EQ ¼ 2jhXcjPyj

Zvij2=m0. The quantities on the left hand sides of Eqs.

(54a)–(54e) are the target parameters taken from experiment

or possibly ab initio calculations, while F, EP0
; EP1

, EQ, c1,

c2, and c3 are the model parameters empirically chosen to

reproduce the target values. The model parameters are easily

determined, since the equations are linear. Since E8v � E6v is

large, we may set EP2
¼ 0, giving five equations in five

unknowns.

The effective masses and g-factors of the atomistic

model may also be computed using perturbation theory for

small k. The resulting expressions contain effective matrix

elements that depend on the variation of the envelope over

the unit cell and the bands which they connect. For example,

the momentum matrix element between the C6c and C8v

states is

P6c 8v ¼ �i
�h

m0

hSC6c
jPxjXC8vi

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ A2

6c

q A6c

1

 !T
0 iPa

iPa 0

 !
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ A2
6c

q A8v

1

 !

¼ Pa A6c þ A8vð Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ A2

6c

� �
1þ A2

8v

� �q
;

(55)

with the other matrix elements (P6c 8v; P6c 7v; P6c 8c; P6c 7c;
P6v 8v; P6v 7v; P6v 8v, and P6v 7v) defined similarly. The Q ma-

trix elements take the form

Q8c 8v ¼ �i
�h

m0

hXC8c
jPyjZC8vi ¼

A8c � A8vð ÞQaffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ A2

8c

� �
1þ A2

8v

� �q :

(56)

Doing second order perturbation theory directly on the atom-

istic Hamiltonian, we obtain

m0

m�c
¼ 2A6c 1þ 2Fað Þ

1þ A2
6c

þ 1

3

2EP 6c 8v

E6c � E8v
þ EP 6c 7v

E6c � E7v

	 


þ 1

3

2EP 6c 8c

E6c � E8c
þ EP 6c 7c

E6c � E7c

	 

; (57a)

g�

g0

¼ 1þ gr

g0

� 1

3

EP 6c 8v

E6c � E8v
� EP 6c 7v

E6c � E7v

	 


� 1

3

EP 6c 8c

E6c � E8c
� EP 6c 7c

E6c � E7c

	 

; (57b)

cL
1 ¼

2A8v

1þ A2
8v

ca1 �
EP 8v 6c

3 E8v � E6cð Þ �
EP 8v 6v

3 E8v � E6vð Þ

� EQ 8v 7c

3 E8v � E7cð Þ �
EQ 8v 8c

3 E8v � E8cð Þ �
EQ 8v 7v

3 E8v � E7vð Þ ; (57c)

FIG. 2. In the atomistic limit, the number of bands is doubled due to there

being two atoms per unit cell. For each band of the original continuum k � p
model, there will be one state with an envelope that has the same sign on

both atoms (þþ) and another with an envelope having opposites signs (þ�)

on the two atoms. The þþ solutions are taken to be the states of the original

continuum k � p model, and the þ� solutions, which are shifted in energy by

�Oð�h2=m0a2
lattÞ, are taken to be excited bands. The energy of an excited

band also depends on the remote band contribution to the effective mass

(i.e., the coefficient of r2 in the atomistic Hamiltonian). The remote contri-

bution to the valence band is multiplied by ca1 > 0, shifting the C8c and C7c

states to higher energies. Because the remote contribution to the conduction

band mass is negative, the C6v band is displaced downward.
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cL
2 ¼ ca2 �

EP 8v 6c

6 E8v � E6cð Þ �
EP 8v 6v

6 E8v � E6vð Þ

þ EQ 8v 7c

6 E8v � E7cð Þ þ
EQ 8v 7v

6 E8v � E7vð Þ ; (57d)

cL
3 ¼ ca3 þ

A8vQaalatt

6 1þ A2
8v

� �� EP 8v 6c

6 E8v � E6cð Þ

� EP 8v 6v

3 E8v � E6vð Þ �
EQ 8v 7c

6 E8v � E7cð Þ �
EQ 8v 7v

6 E8v � E7vð Þ ;

(57e)

where the band-specific Kane energies are EPmn ¼ 2jhSmjp̂xj
Xnij2=m0 ¼ 2m0P2

mn=�h2 and EQmn ¼ 2jhXmjp̂yjZnij2=m0

¼ 2m0Q2
mn=�h2. The perturbative expression is the same as in

continuum k � p except that matrix elements are replaced

with the effective matrix elements including variation of the

envelope within the unit cell. Unlike the continuum case, the

dependence on Fa and ca1 is nonlinear.

IX. PARAMETER FITTING

To determine the atomistic parameters, we adopt a set of

target material parameters to which we fit the atomistic pa-

rameters (see Table I). These values are known with varying

degrees of certainty, with some taken from high precision

measurements while others are obtained theoretically. The

basic eight-band parameters are taken from Ref. 50. The

zone-center energies of the higher lying bands

(C6v; C7c; C8c) are not as well known, and we have taken

their values from the k � p calculation of Ref. 6, with the

exception of GaAs for which we used the experimental val-

ues from Ref. 47. The values of the conduction band effec-

tive g factor, g�, and the Dresselhaus spin splitting, cc, were

also taken from Ref. 6. Some modifications have been made

for InAs. The spin orbit coupling has been increased to D ¼
0:45 eV in order to be able to obtain g� ¼ �14:9 without

having cc > 100 eV Å
3
. Alternatively, the D could be left

unchanged and g� fit using a remote band contribution gr.

The value of cL
2 for InAs has been reduced from 8.2 to 7.5 in

order to avoid bands that cross the gap at large k, which is

much less of a liberty than it may seem since the Luttinger

parameters for InAs are poorly known.50

The atomistic on-site potentials (Ec1; Ec2; Ev1, etc., in

Table II) are determined from Eq. (52) using the lattice con-

stants and zone-center energies from Table I. To fit the effec-

tive masses, we must determine the values of Fa, Pa, Qa,

ca1; ca2; ca3 for which Eqs. (57a)–(57e) match the empirical

target values. This is more difficult than the fitting procedure

for a continuum k � p model because the effective momentum

matrix elements and remote band contributions depend on Fa

and ca1. We do a nonlinear fit on Fa and ca1. For particular val-

ues of Fa and ca1, Pa is determined by Eq. (57a), Qa is deter-

mined by Eq. (57c), and ca2 and ca3 are determined by Eqs.

(57d) and (57e). Fa is then adjusted to make the resulting g�

match the target value. This results in a curve in the Fa–ca1

plane from which we pick the point at which the Dresselhaus

spin splitting fits the target as well. We determine cc by

numerically computing the spin-splitting EðkÞ in the 110 direc-

tion. The range of Fa and ca1 which must be numerically

searched is reduced by the condition that the amplitudes A6v;
:::;A8c must be real and the solutions corresponding to EðC6cÞ;
EðC7vÞ; EðC8vÞ must have signature þþ. These conditions

restrict the values to �a2
lattðE6c � E6vÞ=32 < ð2Fa þ 1Þ < 0

and �a2
lattðE8c � E8vÞ=32 < ca1 < 0.

The band structures resulting from our numerical fits are

shown in Fig. 3. Since the atomistic model is derived from a

continuum k � p model that is perturbative in k, our results

are accurate for small k and all materials appear to have a

direct gap. Perturbative k � p models eventually break down

at large k, which can result in spurious solutions that cross

the gap. When working in a plane wave basis, these spurious

solutions may be avoided by simply restricting the values of

TABLE I. Target material parameters. These are the physical material parameters which the atomistic model parameters were adjusted to fit. The values of

g�=g0 and cc from Ref. 6 are experimental values when available, and theoretical values when no measurements were available.

Parameter AlP GaP InP AlAs GaAs InAs AlSb GaSb InSb

alatt ðÅÞa 5.4584 5.4417 5.8613 5.6524 5.6416 6.0501 6.1277 6.0817 6.4690

E6v ðeVÞb �11.21 �12.14 �11.04 �11.73 �12:9c �11.53 �10.62 �11.47 �10.54

E7v ðeVÞa �0.07 �0.08 �0.108 �0.28 �0.341 �0.45d �0.676 �0.76 �0.81

E8v ðeVÞ 0 0 0 0 0 0 0 0 0

E6c ðeVÞa 3.63 2.886 1.423 3.099 1.519 0.417 2.386 0.812 0.235

E7c ðeVÞe 4.78 4.38 4.78 4.55 4.488c 4.858d 3.53 3.11 3.18

E8c ðeVÞe 4.82 4.47 4.97 4.70 4.659c 4.79d 3.77 3.44 3.64

m�=m0 ð1Þa 0.22 0.13 0.0795 0.15 0.067 0.026 0.14 0.039 0.0135

g�=g0 ð1Þe 1.92 1.9 1.26 1.52 �0.44 �14.9 0.84 �9.2 �51.6

cL
1 ð1Þ

a 3.35 4.05 5.08 3.76 6.98 20 5.18 13.4 34.8

cL
2 ð1Þ

a 0.714 0.49 1.6 0.82 2.06 7.5f 1.19 4.7 15.5

cL
3 ð1Þ

a 1.23 1.25 2.1 1.42 2.93 9.2 1.97 6.0 16.5

cc ðeV Å
3Þe 2.1 �2.4 �8.4 11.4 25.0 40.5 40.9 185.0 226.0

aReference 50, except where noted for InAs.
bReference 55, except for InAs.
cReference 47.
dModified to fit g� and cc.
eReference 6, except where noted for GaAs and InAs.
fModified to avoid gap-crossing bands at large k.
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k, however this cannot be done in a real-space formulation.

Spurious gap-crossing states can be eliminated by modifying

the basis,51,52 choosing different material parameters,53 or

altering the differencing scheme to include higher powers of

k that push the spurious solutions out of the gap.54 The threat

of gap-crossing bands is greater in the atomistic limit due to

the larger (computational) Brillouin zone associated with the

smaller computational grid, providing more space for the

bands to turn over and cross the gap. We show energies

throughout the entire Brillouin zone to demonstrate that our

parameterization does not produce spurious gap-crossing

states, and the model is suitable for use in a real-space for-

mulation. Only InAs required modifications to the parame-

ters to suppress spurious solutions, as described above.

X. CONCLUSION

We have demonstrated how to construct an atomistic

k � p theory with finite differences on a grid matched to

the crystal lattice. Taking the atomistic limit of k � p theory

in a straight-forward way results in a non-Hermitian

Hamiltonian, which is seen to be related to the well known

fact that multiplying a difference operator by a spatially

varying coefficient leads to non-Hermiticity. A more careful

treatment shows the problem may be remedied by using the

finite volume method, starting with an inversion symmetric

Bloch basis, or by deforming the computational cells to gen-

eralized Voronoi cells. The use of symmetric Bloch func-

tions does not limit one to the symmetric approximation,

since the atomistic envelope functions themselves vary

within the unit cell even at k ¼ 0. The use of inversion sym-

metric Bloch functions and generalized Voronoi cells solves

the Hermiticity problem, but is not applicable to heterojunc-

tions. As a result, these approaches can be used on systems

such as bulk materials, bulk materials with impurities or

applied potentials, or nanocrystals with a vacuum barrier.

The finite volume method can be used in the presence of

heterojunctions.

The atomistic limit of a simple four-band k � p model

exactly reproduces the four-band tight-binding model, pro-

vided we include spherically symmetric remote band contri-

butions for both the conduction and valence band, and the

atomistic momentum matrix elements are different on

different atoms (for zincblende). In order to have different

momentum matrix elements that make the model exactly

match the tight-binding model requires the use of general-

ized Voronoi cells to symmetrize the momentum matrix ele-

ments without making them all equal. The atomistic limit of

the widely used eight-band model results reproduces effec-

tive masses, g-factors, and Dresselhaus spin splittings of

III–V materials. The fits are exact for most materials, with

the exception of InAs for which it was necessary to increase

the spin-orbit coupling. This may be due to an insufficient

number of bands in the model, or due to uncertainties in the

experimental values.

The particular implementation presented in Sec. VIII is

by no means unique, and different atomistic models are pos-

sible depending on the choice of Bloch basis (inversion sym-

metric or not), the differencing scheme, and whether or not

remote band contributions are included. In addition, different

fitting procedures may be used. For example, the higher

lying band energies could be left as free parameters adjusted

to fit the band structure to other criteria such as charge asym-

metry. We have chosen to exactly fit all zone center energies,

the zone center effective masses for the bottom of the con-

duction and top of the valence bands, as well as conduction

g-factors and Dresselhaus spin splittings, since these quanti-

ties are the most important for electronic states of impurities

and nanostructures.

An interesting property of these models is that the enve-

lope functions have momenta outside the first Brillouin zone,

a feature shared with the Burt-Foreman42,43 approach to

dealing with heterojunctions. Since our model is constructed

in real space, there is not a clearly defined separation

between the wave function components that are associated

with Bloch functions and those that are not, while the Burt-

Foreman approach has a clear distinction between Bloch and

envelope functions in k-space.

As seen from the fit to III–V materials, the atomistic en-

velope theory can reproduce the effective masses of the

bands near the gap. This is in contrast to tight-binding mod-

els which can give incorrect effective masses.56 The four-

band model with only spherically symmetric remote band

contributions illustrates how a nearest neighbor tight-binding

model fails to reproduce the correct cubic band warping of

the valence band. In contrast, the atomistic Kane model gives

TABLE II. Empirical atomistic k � p theory parameters fit to the target parameters in Table I.

Parameter AlP GaP InP AlAs GaAs InAs AlSb GaSb InSb

Ec1 (eV) 1.560633 0.516670 �1.501874 1.387058 0.675926 �0.354316 �1.094007 �0.568950 �11.520260

Ec2 (eV) 5.236823 4.669935 3.360307 4.483957 2.273318 1.099526 4.568593 1.934999 �0.968967

Ev1 (eV) �0.505855 �0.593772 �0.604112 �0.302607 �0.751431 �0.308368 �0.328926 �0.434964 �0.310302

Ev2 (eV) 0.645350 0.824859 0.809339 0.347832 1.162880 0.353026 0.400082 0.591758 3.264512

Es1 (eV) �0.620739 �0.597985 �0.591704 �0.836975 �1.198921 �0.788711 �1.423545 �1.490988 �1.213870

Es2 (eV) 0.650234 0.689072 0.498932 0.452200 1.098370 �0.056631 0.578701 0.557782 2.808081

Fa (1) �1.378388 �1.376856 �1.308404 �1.450082 �1.435248 �1.390038 �1.401502 �1.411955 �0.312572

ca1 (1) �0.571909 �0.514787 �0.671323 �0.609904 �0.554424 �0.731854 �0.569585 �0.498025 �0.117695

ca2 (1) 0.118013 �0.733646 �0.582392 �0.292962 �0.607743 0.572230 0.201367 �0.087151 �1.036618

ca3 (1) 0.139473 �0.334737 �0.221699 �0.010489 �0.113528 0.633312 0.260787 0.246206 �0.582445

Pa (eV Å) 9.325446 10.188130 8.866846 10.192099 10.396101 8.791500 9.428844 10.123984 9.703173

Qa (eV Å) �7.062907 �5.962138 �5.085142 �6.279963 �6.139187 �10.995692 �7.559866 �7.470334 �4.704146
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the correct effective masses because it contains next nearest

neighbor couplings via the Luttinger parameters.

There are many potential applications of this method to

the electronic properties of impurity states, alloys, and poly-

types.57 For sufficiently small nanoparticles, we expect at-

omistic k � p theory to improve the description of the

electronic structure, compared with continuum k � p-theory.

In particular, nanoparticles with an irregular surface necessi-

tate an atomistic description. It would be interesting to test

how well our new method can describe structural defects

such as dislocations, twin planes, and stacking defects. Such

systems cannot be easily treated in continuum k � p-theory.
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Atomistic k � p theory will also allow strain effects to be

directly modelled in terms of atomic positions, a task which

is difficult in both tight-binding and pseudopotential meth-

ods. Finally, atomistic k � p theory has the unique feature that

it allows the combination of atomistic and continuum models

in the same system to facilitate multiscale modeling, since

the grid can be highly non-uniform. One could use a rectilin-

ear grid in “large” regions described by a continuum model

and an atomistic grid in the regions requiring atomistic preci-

sion. The differencing operators in the regions where the rec-

tilinear and atomistic grids meet would be peculiar to the

details of the grid used, but would be well defined.

Multiscale modeling will dramatically reduce the computing

time of atomistic k � p-theory compared with other atomistic

models, while keeping atomistic accuracy where it is

necessary.
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APPENDIX: BLOCH BASIS STATES

The Bloch state basis for the eight-band model is

u1 ¼ uC6

�1=2
¼ jS #i;

u2 ¼ uC6

þ1=2
¼ jS "i;

u3 ¼ uC8

þ1=2
¼ �iffiffiffi

6
p j X þ iYð Þ #i þ i

ffiffiffi
2

3

r
jZ "i;

u4 ¼ uC8

þ3=2
¼ iffiffiffi

2
p j X þ iYð Þ "i;

u5 ¼ uC8

�3=2
¼ �iffiffiffi

2
p j X � iYð Þ #i;

u6 ¼ uC8

�1=2
¼ iffiffiffi

6
p j X � iYð Þ "i þ i

ffiffiffi
2

3

r
jZ #i;

u7 ¼ uC7

�1=2
¼ �iffiffiffi

3
p j X � iYð Þ "i þ iffiffiffi

3
p jZ #i;

u8 ¼ uC7

þ1=2
¼ �iffiffiffi

3
p j X þ iYð Þ #i � iffiffiffi

3
p jZ "i;

where the ordering of states is the same as for the

Hamiltonian in Eq. (51).
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