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We have calculated band-edge energies for most combinations of zinc blende AlN, GaN, InN, GaP, GaAs,
InP, InAs, GaSb, and InSb in which one material is strained to the other. Calculations were done for three
different geometries !quantum wells, wires, and dots" and mean effective masses were computed in order to
estimate confinement energies. For quantum wells, we have also calculated band-edges for ternary alloys.
Energy gaps, including confinement, may be easily and accurately estimated using band energies and a simple
effective mass approximation, yielding excellent agreement with experimental results. By calculating all ma-
terial combinations we have identified interesting material combinations, such as artificial donors, that have not
been experimentally realized. The calculations were perfomed using strain-dependent k ·p theory and provide
a comprehensive overview of band structures for strained heterostructures.
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I. INTRODUCTION

Diagrams of band edges versus material composition or
lattice constant for bulk semiconductors1 have proved indis-
pensable for band-gap engineering. For heterostructures con-
taining materials with two different lattice constants, how-
ever, such diagrams are problematic because the band
energies are modified by strain. A familiar example is the
band gap of InAs !Eg#0.41 eV" which approximately
doubles when grown on GaAs. The strain depends on the
lattice mismatch, the elastic properties of both materials, and
the geometry. The energy shift in turn depends on the strain
and the electronic material parameters, primarily the defor-
mation potentials. Theoretical treatments often rely on ap-
proximating a structure as a slab because it is amenable to
simple analytic calculations, in spite of the fact that wires
and dots are poorly approximated by a slab, particularly in
their strain distribution.

To address this problem, we have calculated strain-
dependent band energies for heterostructures consisting of
direct gap binary III-V compounds, including zinc-blende
nitrides, and also including GaP and AlN as substrate mate-
rials. We have taken the geometries of the embedded mate-
rials to be !001"-oriented slabs !quantum wells", circular
wires oriented along $001%, and lens-shaped dots. We have
restricted ourselves to direct gap materials because they are
the most interesting for optical applications, and because de-
formation potentials for indirect materials are less well
known. For quantum wells we have also calculated band
energies for ternary alloys grown on substrates having lattice
constants between 5.4 and 6.5 nm. The results provide a sys-
tematic and comprehensive resource for the design and inter-
pretation of strained low-dimensional heterostructures.

For some material combinations the extremely large lat-
tice mismatch makes the growth of pseudomorphic structures
on large area substrates problematic. However, there has
been progress in the fabrication of heterostructures in free-

standing wires or whiskers2 with diameters between 10 and
100 nm. Whiskers allow the realization of larger mismatches
in part because relaxation of the barrier material results in
smaller strain in the well material. The lack of misfit dislo-
cations in whiskers may allow heterostructures to be grown
beyond the classical limit of Matthews and Blakeslee.3 While
we do not consider such wires here, the results for slabs are
applicable.

In Sec. II we describe the method for computing strain,
electronic energies, effective masses, and estimating confine-
ment energies. In Sec. III we present results for slabs, wires,
and dots composed of binary materials and compare with
available experiments. In Sec. IV we present mean effective
masses for structured composed binary alloys. In Sec. V we
consider slabs of ternary alloys of varying composition on
substrates of binary materials.

II. METHOD

The calculations were performed by a method that has
been previously described.4,5 The strain was calculated using
continuum elasticity and the finite element method. Spatially
dependent energies were then computed using the local value
of the strain with an eight-band strain-dependent k ·p
Hamiltonian6 for k=0. Since the valence and conduction
bands are coupled by terms proportional to k, the band en-
ergies are, in fact, computed using a 6+2 band model, how-
ever the effective mass calculations make use of the full
eight-band model.

All material parameters were taken from Ref. 7 with T
=0 K, and all nitrides were taken to be in the zinc-blende
form. The final results depend on the material parameters of
each semiconductor, including the lattice constant, elastic
constants, unstrained valence band energy, energy gap, spin-
orbit coupling, Luttinger parameters !for effective masses",
Kane momentum matrix element !for effective masses", de-
formation potentials, and bowing parameters !where avail-
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able". Material parameters are subject to varying degrees of
uncertainty, and the calculations presented here are primarily
constrained by the accuracy of these tabulated parameters.
The parameters for the nitrides are especially uncertain, and
mostly based on theoretical calculations. For example, the
band gap of wurtzite InN has recently been reevaluated by a
large factor.8 Previous investigations have shown that calcu-
lations for strained heterostructures vary in their sensitivity
to material parameters, with the deformation potentials and
Luttinger parameters being the most important.9 Even for
well characterized materials the parameters are known with
varying degrees of accuracy. For example, lattice and elastic
constants are known to four or more significant figures,
while Luttinger parameters are typically only certain to
within a few tens of percent.

The computational grids were 100"100"100 and 100
"100 for dots and wires, respectively. For wells only two
sites were needed since the strain is biaxially symmetric. As
a check on the results, the calculations were done indepen-
dently by each author. For wires and dots the independent
calculations were done with the same software, but the quan-
tum well calculations were checked by using different pro-
grams.

For bulk materials the band edges are characterized by
single numbers, as are the band edges for strained quantum
wells since their strain is homogeneous. For wires and dots,
however, the inhomgeneity of the strain gives rise to spatial
variation in the band edge !Fig. 1". To represent complex
strain distributions, histograms of the band edges were com-
puted.

While a band edge is well-defined for bulk materials,
wires, and wells, quantum dots do not have bands. Nonethe-
less, it is useful to consider the local band edge that would be
present in bulk material having the same strain as a location
in the heterostructure. For a sufficiently large heterostructure
such band edges give the potential in the effective mass ap-

FIG. 1. !Color online" !a" The lens-shaped geometry used for all quantum dot calculations. The dot height is 1
4 the diameter of sphere out

of which the lens is cut. The z-axis is along $001%. !b" Band structure as a function of position along an InAs/GaAs dot’s axis of symmetry.
The energies are calculated for k=0 using the local value of the strain. !c" Histogram of the conduction and valence band edges including
each point in the dot. !d" Histogram as a shaded density, as shown in Figs. 3–10.

FIG. 2. !Color online" Confinement energy as a function of the
barrier height V0, the effective mass m* !in the well and barrier
material", and the dimension of the structure, L. For V0=1 eV, m*

=me, and L=1 nm, U=26.247. There is always a bound state for the
1D and 2D cases, but for 3D a minimum potential strength is
required.

FIG. 3. !Color online" Band energies vs composition for dot,
wire, and well structures on an AlN substrate. !All nitrides are zinc
blende." The two long lines spanning the graph indicate the conduc-
tion and valence band energies for the unstrained substrate material.
The lines of medium length indicate the unstrained valence and
conduction energies for different well materials. The short lines are
histograms of the valence and conduction energies for dots, wires,
and wells of the indicated composition with strain effects included.
The shading of the short lines is proportional to the volume of
material with the indicated energy !see Fig. 1". Energies are calcu-
lated for k=0 using the local value of the strain, and the histograms
include all points in the well material.
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proximation. Even for nanometer scale structures the effec-
tive potential obtained from the local band edge provide a
useful estimate of electronic energies.5

Since the equations governing the strain are scale invari-
ant, the strain and band energies do not vary with the size of
the structure, and the band-edge results are applicable to any
size structure. However, the size of the structure does affect
the confinement energy. To facilitate estimation of the con-
finement energy, we have calculated mean effective masses
for the structures. These were determined by numerically
computing E!k" at k=0, ±#k and fitting E!k"=$2k2 /2m*

with &#k& equal to 10−2 of the Brillouin zone. Anisotropy was
accounted for by taking #k in the x-, y-, and z directions and
averaging over those directions with confinement. Finally,
the mean masses were determined by averaging over all
points in the well material.

Given the dimensions of a nanostructure, the barrier
height, and an effective mass one can estimate the confine-
ment energy using a simple effective mass model. Figure 2
gives the confinement energies for quantum wells, circular
wires, and spheres with various barrier heights, effective
masses, and sizes. The confinement energies shown in Fig. 2
assume that the well and barrier materials have the same
effective mass. For strong confinement, the penetration of the
wave function into the barrier will be small, and the confine-
ment energy will be dominated by the effective mass in the
well material. For weak confinement the approximation of a
uniform effective mass will be less accurate since the differ-
ent effective mass in the barrier will influence the confine-
ment energy somewhat. However, the size of this effect may
be estimated by using an effective mass intermediate be-
tween that of the barrier and well.

Self-assembled quantum dots have complex and variable
shapes, but we have found that modeling them as circular
cylinders works well for estimating the confinement energy.
Assuming a dot to be a lens-shaped cap with base diameter d
and height h we model it as a circular cylinder of diameter d
and a height hcyl that gives the cylinder the same volume as
the lens-shaped cap $V=%h!2d2+4h2" /24%. Since typically
h&d, the confinement energy is dominated by the one-
dimensional !1D" confinement along the shorter direction.

III. BINARY MATERIALS

We first consider dots, wires, and wells consisting of com-
binations of binary materials. For each substrate material we
have plotted the conduction and valence energies of the em-
bedded material, along with the value for the unstrained bulk
substrate material. The energy of the top of the valence band
for unstrained InSb has been taken as a reference level and
set to zero. The spatial variation of the band edges in dots
and wires is displayed as a histogram in which the shading of
the lines is proportional to the frequency of a particular en-
ergy. The histograms include every point in the well material.
An example of the potential profile in a quantum dot along
with the corresponding histogram is shown in Fig. 1. The
range of energies is larger for dots than wires as a conse-
quence of the larger strain inhomogeneity in dots. The spa-
tially averaged mean values of the band energies are given in
Tables I–III.

A. AlN, GaN, and InN substrates

Figures 3–5 show the energies for zinc-blende GaN, InN,
GaAs, InP, InAs, GaSb, and InSb strained to AlN, GaN, and
InN, respectively. We find that for AlN substrates all of the
nitrides are type I, while all of the non-nitrides except InAs
are type II, with only hole confinement. On GaN substrates
we find only InN to be type I !i.e., confining both electrons
and holes". For GaSb and InSb wires and wells there is a
broken gap, with the valence maximum above the conduc-
tion minimum of GaN. In such a case the strained material
will donate electrons to the barrier material. A sheet of InSb
in GaN would act as a delta-doping layer. On InN substrates
we find that the strained structures are either type II or have
a broken gap. Common to all these cases is that the compres-
sive strain opens up the band gap and that the top of the
valence band moves up in energy compared with the un-
strained situation both for compressive and tensile strain.

FIG. 4. !Color online" Band edge diagram of strained dots,
wires, and wells on GaN. All nitrides are zinc blende !see Fig. 3 for
details".

FIG. 5. !Color online" Band edge diagram of strained dots,
wires, and wells on InN !see Fig. 3 for details".
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Also, the spread in energies increases with increasing strain.

B. GaAs substrate

Figure 6 shows the energies for InP, InAs, GaSb, and InSb
strained to GaAs, one of the most commonly used substrates.
We find that the band edges of InP structures are nearly
aligned with GaAs, with only small differences between InP
wells, wires, and dots. For materials with greater mismatch
to GaAs than InP we find that wires and dots have similar
band-edge profiles, but the gaps for wells are substantially
smaller. This is generally true for all non-nitride systems in
which the mismatch is not too large. The reason is simply
that wells can relax freely in the growth direction, resulting
in a lower hydrostatic strain than for wires and dots. For
sufficiently strained systems there is a strong interaction be-
tween the valence band and the conduction band allowing
quantum wells to have a larger band gap than dots. For InAs
dots we find an edge-to-edge gap of about 0.9 eV in agree-
ment with previous calculations.5,10 GaSb and InSb are both
strongly type II for all geometries.

Experiments on GaSb dots in GaAs show strong photolu-
minescence !PL" with a gap of Eg#1.1 eV,11,12 and pump
power dependence indicating a type II structure with hole
confinement. Our calculations also indicate a type II struc-
ture with hole confinement. Measurements of uncapped
GaSb/GaAs dots show them to have a diameter d=28 nm
with a height h=3.3 nm.11 To estimate the confinement en-
ergy, we approximate these dots as cylinders with the same
diameter and total volume as a lens-shaped cap of the mea-
sured dimensions !d=28 nm and hcyl=1.68 nm". Using the
spatially averaged hole effective mass for a GaSb/GaAs dot
from Table VI !mef f =0.097" and a barrier height of 0.84 eV,
the confinement energy for the growth direction is 380 meV,
and the confinement energy for the transverse direction is
10 meV. Adding the confinement energy to the !spatially av-
eraged" edge-to-edge gap gives Eg=1.06 eV, in excellent
agreement with the measured value 1.1 eV.

InSb structures on GaAs are similar to GaSb on GaAs,
with type II alignment and hole confinement for wells, wires,
and dots. The calculated gaps are smaller however. PL ex-
periments on InSb dots in GaAs indicate Eg#1.1 eV,11

while our estimate of the confinement energy !using h
=5.1 nm, d=67 nm" gives Eg=0.88 eV. This discrepancy
suggests that some alloying of the dot material has occurred
or the covered dots are substantially smaller than measure-
ments on uncovered dots indicate. It is likely that the dots
became smaller during capping since the GaAs was depos-
ited using migration enhanced epitaxy.11

C. InP substrate

Figure 7 shows the energies for materials strained to InP.
On InP substrates we find that GaAs should be a type I
quantum well with a band gap of about 1 eV. Experiments
on 1.8 nm and 2.8 nm GaAs quantum wells on InP find a
transition energy of 1.148 and 1.088 eV, respectively.13 Our
calculations of confinement energy give transition energies
of 1.234 eV and 1.150 eV. It should be noted that the GaAs
thicknesses are somewhat uncertain since they were deter-
mined from the growth, and were not directly measured.13

Also, in Ref. 13 the quantum wells were interpreted using
calculations with type II alignment and hole confinement.
Our calculated band alignment in Fig. 7 is nearly type II,
with only a 60 meV barrier for the electrons. This discrep-
ancy in band alignments is due to different material param-
eters.

InAs dots in InP have been shown to be type I and to emit
light at an energy of about 0.8 eV.14 The size of the dots in
Ref. 14 was determined by fitting the experimental data to
detailed eight-band k ·p calculations, giving dimensions of
45 nm"35 nm"6 nm. The confinement energy is domi-
nated by the 6 nm dot height, and we obtain an estimated
gap of Eg=0.8, in excellent agreement with experiment and
detailed eight-band calculations.14 !The confinement energy
associated with the long dimensions of the dot is an order of
magnitude smaller than that coming from the dot height."

FIG. 6. !Color online" Band edge diagram of strained dots,
wires, and wells on GaAs !see Fig. 3 for details".

FIG. 7. !Color online" Band edge diagram of strained dots,
wires, and wells on InP !see Fig. 3 for details".
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InSb quantum dots grown on InP have been found to emit
photons with an energy of about 1 eV and were interpreted
to have a type II band alignment.15 This type II alignment
has been confirmed by photoreflectance measurements on
InSb islands which have been partially covered by InP giving
a type I to type II transition with increasing cap layer
thickness.16 The dots in Ref. 15, were found to be 24±4 nm
in diameter, and 6±3 nm high, as measured by AFM on
uncapped dots. From these dimensions we obtain a confine-
ment energy of 0.34 eV, giving a total gap of Eg=0.6 eV.
The discrepancy between calculated and measured gaps in-
dicates that the dots probably shrunk during deposition of the
InP cap layer.

D. InAs substrate

Figure 8 shows the energies for materials strained to InAs.
On InAs, only GaAs has any confinement !type II hole con-
finement". On InAs substrates both GaSb and InSb are ex-

pected to have broken gaps, with the valence band edge of
GaSb and InSb above the conduction band minimum of
InAs. This has been observed and has many interesting con-
sequences for the electronic structure due to charge transfer.
While broken gap superlattices have been studied,17–20 lower
dimensional broken gap structures remain unexplored.

E. GaSb and InSb substrates

Figures 9 and 10 shows the energies for materials strained
to GaSb and InSb, respectively. Very little experimental work
has been done on these substrates. However, GaSb has a very
similar lattice constant to InAs and the band edges of
strained structures are thus very similar on these two sub-
strates. The band alignment is very different though and we
note as an example that thin layers of InAs will donate holes
to GaSb.

InSb has the interesting feature that all materials strained
to it have negative gaps. For wires and wells this inversion of
the conduction and valence bands should give rise to a semi-

FIG. 9. !Color online" Band edge diagram of strained dots,
wires, and wells on GaSb !see Fig. 3 for details".

FIG. 10. !Color online" Band edge diagram of strained dots,
wires, and wells on InSb !see Fig. 3 for details". For all well mate-
rials the gaps are negative, with the state containing mostly valence
character being higher in energy.

FIG. 11. Band diagram of an InAs/ InSb dot along the #001$
direction through the center of the dot. Electrons are strongly con-
fined in the InAs dot, while holes see a strain induced potential well
in the InSb barrier adjacent to the dot.

FIG. 8. !Color online" Band edge diagram of strained dots,
wires, and wells on InAs !see Fig. 3 for details".
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metallic structure. For dots there will still be discrete con-
fined states, however the valence and conduction Bloch
states will be more mixed than usual.

F. Broken gap structures

For wires and dots the strain extends into the barrier ma-
terial, affecting the electronic structure of the barrier as well.

Figure 11 shows an InAs dot strained to InSb, in which the
InSb barrier experiences a sufficiently strong strain that the
band gap is substantially reduced near the dot. Due to the
broken gap structure the InAs acts as an “artificial acceptor,”
but the holes see a confining potential from the InSb around
the InAs dot. This results in a charged shell structure in
which the InAs artificial acceptor has a negative charge
which is surrounded by a positive charge bound to the
strained InSb. For stacks of such dots, one would obtain
semimetallic wires in which the core contains electrons, and
the surrounding shell contains holes.

TABLE I. Conduction and valence band energies !in eV" for quantum wells strained to substrates of
binary materials.

Substrate

Well material

GaN InN GaAs InP InAs GaSb InSb

Conduction
AlN 0.713 −0.292 2.452 1.840 1.112 3.082 2.279
GaN 0.659 −0.322 2.288 1.731 1.020 2.921 2.162
InN 0.444 −0.440 1.635 1.294 0.653 2.278 1.695
GaAs 0.719 0.682 0.137 1.375 1.039
InP 0.424 0.485 −0.029 1.085 0.829
InAs 0.168 0.313 −0.173 0.832 0.645
GaSb 0.117 0.279 −0.202 0.782 0.608
InSb 0.409 −0.042 −0.099 0.370 0.235

Valence
AlN −2.644 −2.162 −0.212 −0.005 0.198 0.800 1.249
GaN −2.640 −2.206 −0.268 −0.080 0.141 0.742 1.178
InN −1.160 −2.380 −0.489 −0.381 −0.084 0.510 0.892
GaAs −0.800 −0.804 −0.400 0.184 0.491
InP −0.528 −0.940 −0.501 0.079 0.363
InAs −0.246 −0.682 −0.590 −0.012 0.251
GaSb −0.188 −0.625 −0.558 −0.030 0.228
InSb −0.405 −0.070 −0.495 0.268 0.000

FIG. 12. !Color online" Band edge diagram of alloyed strained
wells on GaP. The x axis is the lattice constant of the ternary alloy
comprising the quantum well. Dotted lines are the valence band
energies, solid lines are the conduction band energies, and the
lighter lines are the energies for unstrained materials.

FIG. 13. !Color online" Band edge diagram of alloyed strained
wells on GaAs.
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TABLE II. Mean conduction and valence band energies !in eV" for wires strained to substrates of binary
materials.

Substrate

Wire material

GaN InN GaAs InP InAs GaSb InSb

Conduction
AlN 0.731 −0.128 1.831 1.481 0.854 2.464 2.037
GaN 0.659 −0.205 1.678 1.349 0.725 2.265 1.832
InN 0.465 −0.440 1.168 0.912 0.294 1.590 1.128
GaAs 0.719 0.769 0.309 1.581 1.600
InP 0.419 0.485 0.020 1.137 1.109
InAs 0.198 0.289 −0.173 0.837 0.795
GaSb 0.105 0.230 −0.212 0.782 0.786
InSb −0.237 −0.082 −0.391 0.275 0.235

Valence
AlN −2.712 −2.404 −0.037 0.116 0.228 0.837 1.121
GaN −2.640 −2.377 −0.096 0.051 0.194 0.796 1.081
InN −1.900 −2.380 −0.372 −0.250 0.009 0.591 0.886
GaAs −0.800 −0.867 −0.554 0.025 0.182
InP −0.676 −0.940 −0.567 0.007 0.161
InAs −0.568 −0.852 −0.590 −0.024 0.114
GaSb −0.544 −0.835 −0.572 −0.030 0.092
InSb −0.330 −0.644 −0.531 0.148 0.000

TABLE III. Mean conduction and valence band energies !in eV" for dots strained to substrates of binary
materials.

Substrate

Dot material

GaN InN GaAs InP InAs GaSb InSb

Conduction
AlN 0.733 −0.142 1.849 1.553 0.938 2.560 2.186
GaN 0.659 −0.214 1.660 1.391 0.783 2.315 1.948
InN 0.448 −0.440 1.079 0.878 0.279 1.511 1.139
GaAs 0.719 0.768 0.300 1.578 1.551
InP 0.405 0.485 0.023 1.146 1.103
InAs 0.169 0.281 −0.173 0.839 0.800
GaSb 0.078 0.224 −0.212 0.782 0.780
InSb −0.155 −0.114 −0.307 0.256 0.235

Valence
AlN −2.744 −2.253 −0.613 −0.511 −0.290 0.292 0.621
GaN −2.640 −2.270 −0.639 −0.566 −0.321 0.257 0.563
InN −1.658 −2.380 −0.732 −0.761 −0.441 0.124 0.337
GaAs −0.800 −0.876 −0.542 0.042 0.232
InP −0.641 −0.940 −0.563 0.010 0.180
InAs −0.490 −0.794 −0.590 −0.023 0.127
GaSb −0.443 −0.756 −0.568 −0.030 0.114
InSb −0.300 −0.439 −0.547 0.185 0.000
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IV. EFFECTIVE MASSES

Confinement effects will increase band gaps over the re-
sults obtained above. It is simply impossible to cover all
sizes and cases, so we have instead calculated the effective
masses for electrons and holes, which can then be used to
estimate the confinement energy. Such single-band calcula-
tions can be quite accurate, especially for quantum wells.
Even for quantum dots a single band approximation using a
strain-dependent effective mass gives good estimates of the
gap.5 In addition to the effective mass, the confinement en-
ergy will be effected by the geometry. However, the confine-
ment energy is primarily determined by the smallest dimen-
sion of the dot, with the detailed shape playing a smaller
role.9

The results are summarized in Tables IV–VI which give
the mean effective masses, spatially averaged over the well
material, and over directions in which there is confinement
!see Sec. III". Since the heavy-hole light-hole degeneracy is
split by strain the hole effective masses are those for the
highest valence state, which is a mixture of heavy and light
holes, but is primarily heavy hole.

Results for InSb substrates were omitted because all well
materials have negative gaps !i.e., strain causes the state with
primarily valence character to be higher than the conduction
state." Nitride materials on non-nitride substrates were also
omitted because of the extremely large range of effective
masses throughout the well material !see Tables IV–VI".
When nitrides are considered, they are assumed to be in the
zinc-blende form.

Table IV !for quantum wells" includes both the calculated
and experimental electron effective masses, which differ be-
cause the eight-band model does not include the effects of
remote bands. The effective electron mass is given by

m* = m0'!1 + 2F" +
EP!Eg + 2'/3"

Eg!Eg + '" (−1

, !1"

F =
1

m0
)

r

*+S&px&ur,*2

Ec − Er
, !2"

where Eg is the gap, ' is the spin-orbit coupling, EP is the
Kane matrix element, and F is the Kane parameter for the

TABLE IV. Mean effective masses of electrons and holes for strained quantum wells on different sub-
strates. Values in italics are experimental electron effective masses for bulk materials. The calculated values
differ because the eight-band model does not include the effects of remote bands. Since strain splits the
heavy-hole–light-hole degeneracy, the hole masses are for the doubly degenerate highest valence state. Hole
masses for unstrained systems are excluded because of the ambiguities due to the heavy-hole–light-hole
degeneracy.

Substrate

Well material

GaN InN GaAs InP InAs GaSb InSb

Electrons
AlN 0.120 0.074 0.088 0.088 0.051 0.084 0.054
GaN 0.117 0.074 0.086 0.088 0.050 0.082 0.053

0.15
InN 0.091 0.072 0.075 0.084 0.045 0.072 0.048

0.12
GaAs 0.053 0.073 0.034 0.053 0.037

0.067
InP 0.042 0.066 0.029 0.045 0.032

0.080
InAs 0.028 0.058 0.023 0.036 0.028

0.026
GaSb 0.024 0.055 0.021 0.035 0.027

0.039

Holes
AlN 0.390 0.233 0.164 0.181 0.063 0.096 0.039
GaN 0.244 0.164 0.183 0.063 0.096 0.039
InN 0.267 0.159 0.192 0.061 0.092 0.038
GaAs 0.207 0.057 0.083 0.035
InP 0.118 0.137 0.078 0.034
InAs 0.074 0.194 0.074 0.032
GaSb 0.061 0.183 0.080 0.032
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TABLE V. Mean effective masses of electrons and holes for strained quantum wires on different
substrates.

Substrate

Wire material

GaN InN GaAs InP InAs GaSb InSb

Electrons
AlN 0.122 0.082 0.078 0.088 0.051 0.076 0.062
GaN 0.117 0.080 0.075 0.085 0.046 0.071 0.055
InN 0.099 0.072 0.064 0.075 0.031 0.055 0.028
GaAs 0.053 0.076 0.045 0.061 0.065
InP 0.043 0.066 0.032 0.047 0.049
InAs 0.034 0.058 0.023 0.037 0.039
GaSb 0.031 0.055 0.020 0.035 0.039

Holes
AlN 0.456 0.354 0.155 0.193 0.082 0.101 0.059
GaN 0.353 0.154 0.191 0.077 0.098 0.056
InN 0.414 0.152 0.194 0.059 0.086 0.036
GaAs 0.254 0.084 0.100 0.053
InP 0.115 0.064 0.085 0.047
InAs 0.088 0.184 0.071 0.041
GaSb 0.078 0.178 0.046 0.040

TABLE VI. Mean effective masses of electrons and holes for strained quantum dots on different
substrates.

Substrate

Dot material

GaN InN GaAs InP InAs GaSb InSb

Electrons
AlN 0.121 0.080 0.082 0.095 0.062 0.082 0.072
GaN 0.117 0.078 0.077 0.092 0.057 0.077 0.066
InN 0.097 0.072 0.063 0.078 0.041 0.057 0.045
GaAs 0.053 0.076 0.044 0.060 0.061
InP 0.042 0.066 0.032 0.047 0.047
InAs 0.032 0.057 0.023 0.036 0.037
GaSb 0.028 0.054 0.020 0.035 0.036

Holes
AlN 0.441 0.534 0.189 0.275 0.085 0.110 0.049
GaN 0.539 0.183 0.269 0.082 0.106 0.048
InN 0.343 0.162 0.239 0.068 0.092 0.042
GaAs 0.237 0.074 0.097 0.048
InP 0.124 0.063 0.085 0.044
InAs 0.097 0.211 0.075 0.040
GaSb 0.085 0.202 0.043 0.040
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effects of remote bands, where the index r goes over the
remote bands. For most of the materials, the eight-band ef-
fective mass differs from the experimental value by 10–20%,
which is smaller than the variation in the effective mass due
to strain inhomogeneities.5

V. TERNARY SLABS

We now turn to quantum wells composed of ternary alloys
on substrates with different lattice constants. We have calcu-
lated the band edges of the ternary alloys interpolating
among GaAs, InP, InAs, GaSb, and InSb, when strained to
substrates with increasing lattice constants ranging from that
of GaP to InSb. Figures 12–17 show the band edges of the
alloys strained to binary substrates !GaAs, InP, InAs, GaSb,
and InSb". The complete results including substrates with
intermediate lattice constants are available electronically.21

As expected, the conduction band edges increase in en-
ergy when subjected to compressive strain. In contrast, the
valence band edges increase in energy for both compressive
and tensile strain. This behavior is due to the degeneracy of

the states at the top of the valence band. In the absence of
strain the top of the valence band consists of degenerate
heavy and light hole states which are insensitive to hydro-
static strain, but split under biaxial strain. Since this splitting
raises one band and lowers the other, the valence band edge
increases regardless of the sign of the biaxial strain.

For sufficiently large substrate lattice constants the well’s
material gap may become very small and even negative !e.g.,
GaAs on InSb". We note that for substrate lattice constants
(0.62 nm we begin to see negative band gaps, which could
be useful for small-band-gap applications. Substrates with
almost arbitrary lattice constants may be obtained using flex-
ible substrates.22 Such structures could also be obtained from
free-standing wires !whiskers" with properly selected alloy
composition.

A well material that is nominally metallic due to strain
may obtain a gap due to confinement. It may thus be possible
to obtain narrow gap quantum wells, provided the well thick-
ness can be made sufficiently large that the confinement en-
ergy is not too large. With increasing lattice mismatch the
bandgap of the well material decreases, but the quantum well
thickness decreases as well,3 thus increasing the confinement

FIG. 14. !Color online" Band edge diagram of alloyed strained
wells on InP.

FIG. 15. !Color online" Band edge diagram of alloyed strained
wells on InAs.

FIG. 16. !Color online" Band edge diagram of alloyed strained
wells on GaSb.

FIG. 17. !Color online" Band edge diagram of alloyed strained
wells on InSb.
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energy. Therefore, designing a narrow gap quantum well re-
quires tradeoffs between the band gap of the strained mate-
rial and the thickness of the quantum well.

VI. SUMMARY

We have calculated band edges for strained quantum
wells, circular wires, and lens-shaped dots for a large set of

III-V compounds, including alloys. We have also calculated
the effective masses which can be used as inputs for further
single band calculations to obtain the electronic structure
when the absolute size of the structures is known. These
diagrams are useful for identifying material combinations

with desired band offsets. We have also identified material
combinations for which the embedded materials behave as
artificial donors or acceptors.
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