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Mean field phase diagtam of an SU(2), x SU(2), lattice Higgs-Yukawa 
model at finite X 
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The phase diagram of an SU(2), xSU(2), lattice Higgs-Yukawa model with finite X is constructed 
using mean field theory. The phase diagram bears a superficial resemblance to that for X = co; 
however, as A is decreased the paramagnetic region shrinks in size. For small X the phase transitions 
remain second order, and no new first order transitions are seen. 

PACS number(s): ll.lS.Ha, 11.15.E~ 
Recent experimental evidence of a top quark with mass 
zz 175 GeV [l] indicates that its Yukawa coupling is of 
order 1, possibly making nonperturbative effects signif- 
icant. Lattice Higgs-Yukawa theories provide a way of 
studying nonperturbative physics of theories containing 
interacting scalars and fermions, although the technical 
problems associated with chiral fermions restricts us to 
vector theories. 

Most of the work on Higgs-Yukawa theories has dealt 
with the limit in which the Higgs field is radially frozefi 
(X = m). Such models have been studied both analyti- 
cally [2-41 and using Monte Carlo simulations [5] for var- 
ious gauge groups. Radially active (finite X) Higgs mod- 
els without fermions have also been thoroughly examined 
[6,7]; however, relatively little work has been done on the 
problem including fermions [8]. In this paper I estimate 
the phase diagram of the SU(~)LXSU(~)R Higgs-Yukawa 
theory for the full range of X and the Yukawa coupling. 
The calculations are performed using the mean field ap- 
proximation (MFA) [Q], with the fermions included in the 
manner used by Stephanov and Tsypin for the radially 
frozen theory [3]. 

The action for the model in d dimensions is 
s=sF+sH+vH, 

SF = ; ~&5y&12+11 - LUY~~~Z) 
“.P 
3 
The fermion field +,!J, is an SU(2) doublet, PE,J = i(l f 
T~+~), and n is the scalar hopping parameter. The scalar 
field has been separated into its magnitude and angular 
degree of freedom, pg and 9,, respectively, where a, is 
a 2 x 2 W(2) matrix. We will also use the O(4) field 
4; satisfying bkr$i = 1. The two notations are related 
by %J = @T” where Tk = (1,ia). Integrating out the 
fern&x gives the effective action for the scalar field: 

See = SH + V, - NF In det M, (4) 

where NF has been introduced as the number of fermion 
species, each having the same action SF. The partition 
function for the effective scalar theory is 

where 04. is the O(4)-invariant group meastire for 4;. 
The variational form of the MFA is employed by intro- 

ducing a parameter X”, and then adding and subtracting 
the trial action p&H” to obtain 
exp(-F) = np3dp J z r ./n~s~exP(-Sdf+Cp.~XX*-Cil,yi:H”) .~ 
a E 

This gives the variational limit on the free energy F: 

(‘3) 
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F “?.I is then minimized with respect to Hk. The integration over pz is necessary since for finite X the magnitude of 
the scalar is no longer constrained to be 1. At small X the shallow scalar potential causes fluctuations about pz = 1 
which alter the results considerably. 

For small Yukawa couplings the fermionic determinant is calculated by expanding in y: 

The second line uses the approximation [3] 

K&! = ;I(,, +0(1/d’), (11) 

which is justified since the MFA is itself only accurate to order l/d. The determinant is then represented by a sum of 
closed hopping diagrams connecting sites associated with alternating G’s and @t’s, Previous work has approximated 
the fermionic determinant by including an infinite subset of hopping diagrams [3] or by expanding Eq. (10) to some 
finite order in y [4]. We will adopt the latter approach. 

The X = m case provides a hint in choosing how far to carry out the expansion of the fermionic determinant. Since 
the radially frozen theory in the MFA agrees quite well with Monte Carlo results when the free energy is expanded to 
order y4, we will evaluate Eq. (10) to order y4. It is a tedious though straightforward exercise to enumerate all such 
hopping diagrams in d dimensions to obtain 

f2@ - l)tr(P,~,P,~~)H(P,~,)H(P,Q,)H + 2(d - lb(PA)R , I (12) 

where the traces are over SU(2) d’ m ices, and the indices 2 and y simply indicate which a’s are distinct group elements. 
The various quantities of the form (A)H in Eq. (12) include group integrals a$ integrals over p. The group 

integrals are calculated to second order in H because that is all that is required to find second order critical lines. We 
first compute the O(4) group integrals by taking derivatives with respect to H of 

1+ $I2 + $p:H’ 
> 

+ O(H’), (13) 

where H = m and I,(z) is the nth order modified Bessel function. We find 

The corresponding SU(2) group integrals are 

tr(a.(P2)H = -27rz + O(P), (1’3) 

(GJH = dgHpz + O(P). (17) 

In Eq. (17) the gauge has been fixed to H” = H6”O. 
In addition, the slightly more complicated group integral involving four +‘s is needed. This is calculated as 



= (J”@l + J”‘@k _ &p’) j 04. exp(p,HV:)&& SD&, ~xP(/@“+;)c@; 

-r4(4+~H2~~+~HZ$)+O(B4). (18) 

The second line relies on the fact that the trace must be separately symmetric in both i, k and in j, 1. ,The sum over 
O(4) indices is computed using Eq. (15) and by again choosing the H” = H6*’ gauge. 

For computing the integrals over p it is useful to define 

Pn = Jrn dPP ~~PF-WI 
0 

=~,,,,-~,(~)D-~~(~)~-(~-2-~), 

where D-T is the parabolic cylinder function. The single-site partition function is then given by 

z1 = 22 
s 

m d/w: ex~[-%z)l[b(~,H) - h(~zH)l 
0 

= 22 irn 4w: exp[-V(~,)l [1+ @pi] + O(@) 

= 27? 
( 

P3 + ;H’Ps + O(H4). 
> 

Similarly, the integrals making up Eq. (7) are given by 

(1% 

(20) 

-p5 p5” 
tr(p,@p&a = x + *X2 + O(H% P-4 

3 

+ H2 P&P7 - 3ps” 

12P,3 
+ O(H4). (23) 
FIG. 1. n, for the FM-PM transition at y = 0. 

FIG. 2. The phase diagram for X = 1. All phase transitions 

are second order. 
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Substituting Eqs. (21)-(23) into Eqs. (12) and (7) gives 

K.P 
There are f?nr phases: (1) the ferromagnetic (FM) 

phase w$h (&) # 0, (2) the pammagnetic (PM) phase 
with (@=) ,= 0, (3) the antiferromagnetic (AFM) phase 
with (&#&) #~ 0 (where 6, = (-l)rl+z++rd), and 
(4) the ferrimagnetic (FI) phase in which (6:) # 0 and 
(&&) # 0. In the MFA these phases are indicated by the 
value of H” which minimizes the variational free energy. 
In the FM phase H” # 0, while for the PM phase Hk = 0. 
To see the AFM phase the action must be transformed 
so as to make the staggered magnetization (&@i) acces- 
sible. ~Since the action is invariant under 4, + &&, 
11, + exp(ilr24/2)&, y + iy, n + --n, the action 
obtained by this transformation will have AFM order if 
H” # 0. Therefore, the MFA, variational action for the 
AFM is given by Eq. (12) with y + iy, n + -n. The 
FI phas’e is indicated by the existence of FM and AFM 
order at the same point. 

The strong coupling regime is reached by expanding 
the fermi&c determinant iri l/y rather than y. In this 
expansion K,, appears rather than K;,, and so the l/d 
approximation of the propagator is not needed. Aside 
from this difference, the free energy is computed in the 
same manner as the weak coupling version. Therefore 
the strong coupling variational free energy is obtained 
making the replacement y + d/2y in Eq. (12). 

The second order phase transitions are found by set- 

ting &F,.lx=o = 0, which is why it was sufficient to 

compute F,, to O(H’). For weak coupling this gives 

p3 
FM-PM : n, = p5d - 

2d12N -.-xy2 d2 

(24) 

p3 
AFM-PM: IC’=-~-- 

2+N 2yz 
5 da 

- 
(25) 

The figures illustrate the above results. Figure 1 shows 
1 

FIG. 3. Second order no’s for various values of X as indi- 
cated by the labels. The X = 0.01, 10 lines are very nearly the 
same as those for X = 0, co, respectively. 

K. as a function of X at y = 0 for the FM-PM transition. 
(At y = 0, n, for the AFM-PM transition is simply the 
negative of n, for the FM-PM transition.) In agreement 
with previous results [6,10], tee --t l/8 as X 3 0, and 
“e + l/4 as X + m. Figure 2 shows the complete phase 
diagram for X = 1, which appears qualitatively similar to 
the X = co case. The one difference from the X = CO case 
is that the PM region has skunk. Figure 3 shows the 6,‘s 
as a function of y for several values of X between 0.01 and 
10. As X is decreased, the phase diagram remains qual- 
itatively the same as the X = co case, although the P&f 
region shrinks in both the y and n directions. All phase 
transitions remain second order, and there is no evidence 
of new.phases. Also, n, saturates for X = O.Ol,lO, with 
little change in n, as X + 0, co. 

In addition to the MFA errors of order l/d’, the errors 
in the expansion of the fermionic determinant we of order 
ye. For y x 1 the results should break down, although a 
comparison of the X = m results with those from Monte 
Carlo simulatioti show good agreement through the in- 
termediate coupling region. 
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