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Gyrokinetics and AstroGK






Chapter 1

Derivation of the Gyrokinetic Equation

This chapter is intended as a brief derivation of the gyrokinetic equations for the astrophysical community; the plasma
physics literature contains detailed papers relating the development of linear [Antonsen and Lane, 1980] and nonlinear
[Frieman and Chen, 1982] gyrokinetic theory [NOTE: more references to be added].

The general approach to deriving the gyrokinetic equations follows. We begin with the Fokker-Planck equation
and Maxwell’s equations and define the limits of the gyrokinetic approximation. First, the Fokker-Planck equation is
transformed to guiding center coordinates and the ordering specified by the gyrokinetic approximations is applied. At
lowest order, we discover that the equilibrium distribution function is independent of gyrophase angle. At the next order,
it is proven that the equilibrium distribution function must take the form of a Maxwellian; this solution is used to solve
the equation at this order which consists of of a particular solution related to the equilibirium and a homogeneous part
that is indepedent of the gyrophase angle. At the next order, a ring average at fixed guiding center yields a closed
equation for the unknown homogeneous solution—the Gyrokinetic equation.

The remaining equations necessary to define a complete system of gyrokinetic equations are derived similarly from
Maxwell’s equations: integration of the distribution function (to the same order as the gyrokinetic equation) over the
velocity and performing a ring average ar constant position gives the charge and current necessary in Coulomb’s Law
and Ampere’s Law. Performing this procedure on Coulomb’s Law yields the Quasineutrality condition; the parallel and
perpendicular components of Ampere’s Law provide the remaining two equations.

NOTE: This chapter uses the variable g for the gyrokinetic distribution function; in our standard convention, it

should actually be h. I will change this when I get around to it.

1.1 The Gyrokinetic Approximations and Ordering

Two approximations are necessary to derive the gyrokinetic equations: weak coupling and strong magnetization.

The weak coupling approximation, g = n.Ape > 1, where n. is the electron number density and Ap. is the electron
Debye length, means that a given charge interacts with many electrons that fall within its Debye sphere. This is the
standard approximation in plasma physics that allows the use of Fokker-Planck equation to describe plasma species.

For the discussion to follow, we specify standard definitions of thermal velocity, cyclotron frequency, and Larmour

radius of a plasma species s (in cgs units): v, = 2Ts/ms, Qs = ¢sBo/(msc), and ps = vy, /Qs where we have mass m,



charge ¢s, temperature T, (absorbing Boltzmann’s constant to give temperature in units of energy), mean magnetic field
strength By, and speed of light c.

The condition of strong magnetization for gyrokinetics restricts the scales of validity in space and time
g <l w < Q. (1.1)

where L is the macroscopic length scale of the equilibrium plasma and w is the frequency of fluctuations described by
the theory.

Gyrokinetics employs a formal ordering to manage the disparate length and time scales typical of magnetized plasmas.
Two length and three time scales are specified: a large macroscopic length L, the small ion larmour radius p;, the fast time
scale associated with the ion cyclotron frequency ;, the intermediate time scale of the fluctuation freqency w ~ vy, /L,
and the slow time scale of the transport rate 1/7. A small dimensionless parameter is defined by € = p;/L < 1. Splitting
the distribution function into an equilibrium and fluctuating component f = Fy + df, we define the formal gyrokinetic
ordering by

p_w O 5Bl Ele

1. 1.2
L% "R~ B " Boum ki ¢S (1-2)

Here 0B and JE are the fluctuating components of the magnetic and electric field and k|| and k, are typical wavenumbers
parallel and perpendicular to the mean magnetic field Bg. In this ordering, the equlibrium quantities Fy and Bg vary at
the slow transport rate 1/7 ~ €3Q;. Note that fluctuations perpendicular to the magnetic field are of the same order as

the ion Larmour radius

kypi~1. (1.3)

1.2 The Gyrokinetic Ordering

1.3 Definitions

1.3.1 General

1. Cyclotron frequency: The cyclotron frequency (in cgs units) for a species s in a equilibrium field of strength By is

given by
s B
QS = —q 0 (1'4)
msc
2. Thermal velocity: The thermal velocity of a particle species s is defined by
2T
Vg, = - (1.5)
1.3.2 Spatial Coordinates and Transformations
1. Guiding Center Coordinates: The position r, guiding center R, and gyroradius p are related by
r=R+p (1.6)



2. Gyroradius: The gyroradius is related to the perpendicular velocity by

(1.7)

NOTE: The gyroradius is given by (1.7) for a positive charge ¢. If the charge is negative, there is a negative sign.

3. Particle velocity:

v = vz + v (cos Ox + sin 0y)

1.3.3 Velocity Coordinates and Transformations

2
1. Velocity coordinates & = ”—22 w= ;T%O 6 =tan~! (Z—:)

2. The Jacobian for this transformation is

e d€dudo BodEdudo
VvV = =
|12E  2u. 20 [0y

3. This can be seen using

oE

ov

Op _ vi

ov - BQ

%_iXVL

2
ov v

1.3.4 Ring Averages

1. Ring Average at constant guiding center R
1 VX Z
(alev. O = o f dsa®— 2 vi0)
2T Q

2. Ring Average at fixed position r

(a(R, €, 11,0,6))r = —— jé dha(r + -2 €, 11,0,1)
2T Q
Note here that
v(0) xz
—q =,

(1.8)

(1.10)

(1.11)

(1.12)

(1.13)

(1.14)

(1.15)



1.4 Maxwell’s Equations

1. The set of Maxwell’s Equations (in cgs units) are

V - 6E = 4mp (1.16)
L0 o sm-Yss (1.17)
c Ot c

V.6B =0 (1.18)
196B

We'll look at each of these equations in the Gyrokinetic Approximation.

2. Faraday’s Law:
106B

We will use the standard potentials

B=VxA (1.21)
and
10A
E=-V¢p— —— 1.22
6 Vo — - (1.22)
3. Ampere/Maxwell Law:
47 1 00E

Here we drop the displacement current under the approximations for gyrokinetics. This leaves us Ampere’s Law:

V x 6B = 253 (1.24)
C

4. The Poisson equation from Coulomb’s Law:

V-0E =47 qon, (1.25)

Under our approximations, the divergence is small, leaving us the Quasineutrality Condition:

> g =0 (1.26)



1.5 Fokker-Planck Equation

1. The Fokker-Planck Equation: For a species o with the distribution function f, = fu(r,v,t), we have

of.  Of
8ft v aLJF—{E* «B). 9o ana far fo) (1.27)

2. The Landau form of the Collision operator is

0J
Cag(fa: f3) = =52 (1.28)
where
Tos =2y B0 [ (a7 ) {280 - Ly 20 (1.29

3. We begin with the Fokker-Planck equation and split the distribution function f into a slowly changing equilibrium
solution Fy and a quickly changing behavior ¢ f

f=Fy(v,7)+0f(r,v,t,7) (1.30)

where the long time behavior 7 = t/e2.

1.6 Moments of the Distribution Function

1. Number Density ng

ng = /d?’vfs(r,v,t) (1.31)

2. Current Density J

J= Z/dqusvfs(r,v,t) (1.32)

1.7 Ordering the Equation

1.7.1 The Ordered Fokker-Planck Equation

0Fy (95f asf 0A 0Fy
8— W—F a—-l-VL V(Sf—F’UHZ V(Sf—l—-( V¢——+VX5B+VXB0>'W (1.33)
a6 f
V¢——+V><5B+V><Bo 'a—v:C(FOaFO)+C(5f7FO)+C(F075f)+c(6f>5f) (1.34)



€20Fy /0T  +05f/0t +€205f /0T +vy -Vif +vyz - Vo f
2 3

€ € € 1 €
—|—% (=Vo —0A /ot +vx B +vxBg)0F/0v
1 € 1 1/e
+Z (=Vo —0A /Ot +vxdB  +vxBg)-9if/ov
€ €2 € 1
1 € € €2
1.7.2  Order O(1/e¢)
At lowest order we find
oFy
20

so the equilibirum distribution function does not depend on gyrophase,

FOZFO(SJIU/7T)

1.7.3 Order O(1)

1. At first order we have the equation

95f

- QCW = C(Fb, Fo)

vi Vo + L {-Vo+vxoB). 20
m ov

2. From Boltzmann’s H theorem, we can show that the equilibrium distribution function takes the form

7 ng 1 V2
0= =355 P (5
3/2 1,3 2

/2 v, Uth

where the mean density ng = ng(7) evolves only on the long timescale.

(1.35)

(1.36)

(1.37)

(1.38)

(1.39)

3. Using this solution for Fy and the fact that for an equilibirum state C(Fp, Fy) = 0, we can simplify (1.38) to yield

06
VJ_-Véfl—Qca—glz—V-v<%>Fo

This inhomogeneous equation supports a particular solution and a homogeneous solution.

4. The particular solution to this equation can be picked from this equation to be

5fp = _?FO

(1.40)

(1.41)



5. We add a homogeneous solution g to the solution for ¢ f1 to get a complete solution
5f1 = —%Fg +g (142)

where the homogeneous part of the solution must satisfy the equation

99 .99 _

vi S -0 =0 (1.43)

If we express g in terms of the guiding center variables g = g(R, &, u,0,t,7), changing variables simplifies this

(%)R = 0. (1.44)

This part of the solution is independent of gyrophase at constant guiding center R (but not at constant position
r).

6. We must go to the next order to learn how g evolves on the medium timescale.

equation to

7. NOTE: In our solution thus far, we can take the term 1 — g¢/T = exp(qp/T) + O(e?) and combine the €2 bit with
the second order part of the solution 4 fs.

8. Summary: We have found a solution of the form

f=Fy& 1) exp(—@) +gR,E b, T) + 8 fa + - - (1.45)

The first term in the solution is the Boltzmann, or adiabatic, term; the second term is the gyroaveraged distribution
function that we want to solve.

1.7.4 Order O(e)

1. Here we go to second order to find an equation for g. We will also need to find equations for ¢, 4, and d By.

2. At second order we have the equation

dg OR Oy q 0] v, 0 B
94 f q (06 OA )
e (W)RJFT(E_V a) Fo+ O+ (1.46)

3. We need to eliminate J fo from this equation; we accomplish this by gyroaveraging over ¢ at fixed guiding center
position R. We eliminate it using the fact that § fo must be periodic in 6.

2w 85](-2
/0 df—2= =0 (1.47)




4. After this ring average, we are left with

Jdg /OR\  09g _29r
8t+<8t >R ar ~ (CrloFor =75~

where
v-A
c

X=¢—

5. A little more simplification yields the Gyrokinetic Equation

b+l (oo o) = 22y

7 Yl T ot

ot

Here the Poisson bracket, which is the nonlinear term, is defined by

[(X)r, 9] = (aggR X %) 5= 90r Y9 9w Oy

or 0Oy dy Ox

1.8 Maxwell’s Equations in Gyrokinetics

1. Ampere’s Law:

V x 6B = 4—7TéJ
c
2. Quasineutrality
p=0
3. Potentials
B=V xA
and
10A
E=-V¢— -
¢ c ot
4. We choose the Coulomb Gauge
V-A=0

Thus, we can decompose the current into
V x 6B = —VQAHZ + VB x 2
This is true in the gyrokinetic limit, since, for the case Fourier components k = kz + kX,
J=VxB= (kA —kkiAL, )2+ (kfAL, —kk ADX+ (kT AL, + kALY
In the gyrokinetic limit, k| < k1, so we can drop the terms with k) to yield

J=V XBZkiAHi—l-kiAlyy

10

(1.48)

(1.49)

(1.50)

(1.51)

(1.52)

(1.53)

(1.54)

(1.55)

(1.56)

(1.57)

(1.58)

(1.59)



We know that
BHZZ~VXA:i(kLXAL)-ZZZ.]CLALM (160)

so the relation for current can be expressed by (1.57)

. Discussion of potentials in gyrokinetics, or how we reduce to just three free independent variables for the fields

(from six).

We specify the potentials

B=VxA (1.61)
and
10A
E=_vep_ 22 1.62
1) V¢ - (1.62)
and choose the Coulomb Gauge
V-A=0. (1.63)

The gyrokinetic ordering means that, to lowest order, V, - A; = 0, so we can write the perpendicular component
of the vector potential as the curl of a scalar A} =V x £z = V¢ x z. Thus, the vector potential depends on only
two independent components A and &,

A=Az+VExz (1.64)
Solving for the magnetic field gives
B =VA x2+V(V-£2)— V2 (1.65)
For the case that k = k1 X + k2, we can Fourier transform the equation and solve for the magnetic field to find
0B = —k ky&k — ik Ay + k3 € (1.66)

Choosing to express our potentials in terms of 6BH instead of &, we substitute

JB
£ = k_2” (1.67)
1
Hence, the vector potential is expressed as
Y : T
A=Az—-i—y. (1.68)
k1
Hence, in the gyrokinetic ordering, the electric and magnetic fields are then given by
5B = —ik “+MSB”A ik [ 4 WAy, 1.69
= —ik, ¢x kLcy ik | @ e Z (1.69)
and
R ky .~ . R
6B = — 0Bk — ik Ay + 0By2 (1.70)
1

11



1.8.1 Quasineutrality

1. Quasineutrality
Neiq = Noe€ (1.71)

or

D negs=0 (1.72)

2. Since the number density is found by integrating the distribution function over velocity, we can find this by (1.31)

using the distribution function from (1.45). The integration over velocity of the Boltzmann term becomes
qs / dSVFOS (€, T)equqb(r,t)/Ts = qsnsequqb(r,t)/Ts (1.73)

Expanding the exponential and dropping terms higher then order O(e) , this terms yields

quns <1 - w) Z Gins (1.74)

since the equilibrium must satisfy neutrality ), gsns =0

3. At order O(e) we have

S [@vater Yo et =0 (1.75)

4. Performing a ring average at fixed r , this becomes

Z (—%Qﬁ—l—qs/d:”v(gsh) =0 (1.76)

S

/d3v_/ devl/ dvy /Qﬂde (1.77)

where

1.8.2 Parallel Ampere’s Law

1. Here we take the parallel component of Ampere’s Law
. 47
Z - (V X (SB) = —6.]” (1.78)
c

2. The current can be found by taking a moment of the distribution function (1.45) according to (1.32) and integrating
the over velocity. For the parallel component of the current, the contribution from the Boltzmann part of the

distribution function vanishes upon integrating over v .

12



3. After performing a ring average at fixed r and using (1.57), the parallel component of Ampere’s Law yields the

equation

47 47
—ViAH = ?61]” = Z ?qs/d3V’UH<gs>r (179)

1.8.3 Perpendicular Ampere’s Law

1. Here we take the perpendicular component of Ampere’s Law
. ar
zx (VxéB)= —Ex 0J (1.80)

2. Again,the current is found by taking a moment of the distribution function (1.45) according to (1.32) and integrating
the over velocity. For the perpendicular component of the current, the contribution from the Boltzmann part of
the distribution function vanishes upon integrating over 6.

3. After performing a ring average at fixed r and using (1.57), the perpendicular component of Ampere’s Law yields

the equation
VLB = Taxod=y %qs/d%(i X VLgo)e (1.81)
4. This can be written in a more physical way as a pressure balance in the direction perpendicular to the field
Vi [0ByBoZ+6P.] =0 (1.82)

where Z is the identity matrix and §P, is the ring averaged perturbed perpendicular pressure tensor. Rewriting
this, we find

4 4
VoB|By = —%V S0P = Z %T /dgv<mS(VLvL)gs(R,E,mu,t))r (1.83)

13



1.9 The Driven Gyrokinetic Equation

To see the changes in the gyrokinetic equation when it is driven with an external antenna, we first must look at the
driven Fokker-Planck Equation.

1.9.1 The Driven Fokker-Planck Equation

We begin with the full Fokker-Planck equation including a source on the right hand side due to an external driving
antenna that creates a driving electric field —E, (the negative sign is just so that the total electric field, plasma plus

antenna, ends up as E + E,)

dfs _ 0fs ds
%_ 8t +v st-i-ﬁs E+

= - 1.84
c ov s ov (1.84)

B\ 4fs s Ofs
vx > f 7ZCST(fSafT)+CSS(f57fS)_%Ea' f

Note that if we take the energy moment of this equation by multiplying by %msvz, integrating over all space and velocity,

and simplifying according to Section (2.1.1), we obtain

3 dlys 0 [dr 3 1 2 dr d*r 3 1 9
—Nogs —— — — d°v— s g = —J - (E E, - d’v— s sr\JsyJr): 1.
s T2 2 [ S [avimatop = [ S5 @ap+ [T [evimatcnan). s

1.9.2 Ordering the Driven Gyrokinetic Equation

Folowing the method of Section (1.7), we will note here the additions to the derivation of the gyrokinetic equation created

by including the driving term. Splitting the driving antenna electric field into antenna potentials, E, = —V¢, — %8(19&;7

and splitting the distribution function into its equilibrium and perturbed quantities, the right hand side of the gains the

additional terms

(Voo +0A/0t) O0Fys/Ov +7E.( Voo +0A,/0t) -00fs/Ov
2

1 . s . . (1.86)
Now we will look at each of the orders of the equation and find the differences.
Order O(1/e)
At lowest order there is no change from the usual derivation.
Order O(1)
At first order, the equation for the first order perturbation can be found to be

dofr q9 qPa
VJ_'Véfl_Qc 90 ——V-v<? Fo—V'v T FO (187)

14



which has the particular solution

ofp = _MFQ. (1.88)
T
Hence, we eventually end up with a solution of the form
fo= Fos(E.m)exp(~ 200y L (R e utr) 4 ofan (1.8

T,

Order O(e)

At second order, we find we must replace all instances of ¢ by ¢ + ¢,; we also must change only the instances of A that
are multiplied by Fps to A + A,. The resulting driven gyrokinetic equation for hs; becomes

(1.90)

+ [0OR.: sl + 5 ot T, ot T, ot

Ohyg ohs ¢ c Ohs _ qsFos OX)Rr. | 4sFos 0{pa — V- Au/O)R,
ot 1z * B B [($a)r., o] <( )0011>R - i

1.9.3 Driven Alfvén Wave Antenna

In our case, we drive with an antenna whose only nonzero component is 44, so the effective gyrokinetic equation that

we need is

ahs 6hs ¢ [<X>R ,hs] — <(6hs> 11> _ quOs a<X>Rs _ qSFOS 6<v||A”a/C>RS (191)
co R

ot "V, T B ot T, ot T, ot
1.9.4 The Entropy Equation from the Driven Gyrokinetic Equation

We multiply the driven gyrokinetic equation (1.91) by Toshs/Fos and integrate over all space and velocity at constant
guiding center R to obtain the driven entropy equation

PR o0), d [&R T PR Ty P
s [ dtvg= X g, — 2 s [ div 02 / S/d?’ > (hyC(hs _/— Eja=0. (192
/ v / Yo i) Vv / Var, ) TV VR, O, = [ 57 i By =0 (192)

where we have manipulated the driving antenna term by

PR, vy Aja/C)R. d3r 104y, d3r
/T/dqushs% :/728_!/(13%@“@5),? :/7J”SE”a (1.93)

and used the definition of the species parallel current J, = J d?’vquH (hs)r

15
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Chapter 2

Derivation of Heating in Gyrokinetics

2.1 Derivation of Entropy-Balance and Power-Balance Equations

2.1.1 Energy Equation: Second Moment of the Fokker-Planck Equation

We begin with the full Fokker-Planck equation

dfs  Ofs s B\ 9fs
%: aji +v.st+:l_S<E+VXC ).8{,:zrjcsr(fs,fr)-i-css(fs,fs). (2.1)

We begin by multiplying this equation by %mSUQ, integrating over all space and velocity, and dividing by the box volume
V.

Expanding the distribution function using

fs:F05+6fls+5f25+"' (22)
the first term becomes
d3r 1 afs 3 0Ty o [ dr 1
— [ Bvimw® 2l = Snga—t + — —/d?’—SQS 2.3
/V/ Vst Tt T | v ACUCLRE (2:3)
where we have used the definition
/@/cﬁvlm v Fys = = §n T (2.4)
% 2 s 0s = Pos = 2 0s1L0s .
and the fact that
a3 1
/Vr/d?’vimsv%fls =0 (2.5)

because first-order perturbations spatially average to zero.

The second term can be integrated by parts to give

dBr [ 4,1 3 d®r 1,
/7/dvimsv V-st—/dv/vv-(Qmsv st)—O (2.6)

17



where the boundary terms disappear by periodicity and the divergence theorem shows this term is zero also by periodicity.

The third term can be written using a similar integration by parts as

/d3 /ds m02£<E+VZB) Ofs _ /d3 /d?’ai [%(EJrVXB)fS]
_/?/d%qsv-( XB) ﬂZ-/%/dBVqu'Efs (2.7)

The collisional terms can be written

d3
/71“ /dgvému2 ;CST(]“S, fr) = ;noszT(Tr - Ts) (2.8)

and
/d3 /dgv mv?Cus(fs, fs) = 0 (2.9)

since like-particle collsions do not produce a loss of energy.

Thus, the second moment of the Fokker-Planck equation yields the Energy Equation

3
;) Osdtczl—‘gs 8t/d /d3vlm () 6f28 / /d3VQS E v fs /d r/d3V Ms ’U Sr(f57fr)' (2’10)

An alternative way of writing this expression involves the plasma current

3 dTS d3 d3r 1
570 di(f) 5t/ /dgv mgv 5f25—/—.] -E+ /V/dgvimsUQCsr(fs,fr). (2.11)

2.1.2 The Gyrokinetic Poynting’s Theorem

Poynting’s Theorem tells us that

d3

(@ +Ja) - E, (2.12)

d d&r (E? B? 1 ¢
V 4r

E 7 8_7T+87T +——7§(EXB)~dS=—

where J, is the current in the antenna driving the system and J is the plasma current. For periodic boundary conditions,
the surface term from the Poynting flux is zero. The gyrokinetic ordering specifies that the order of the electric field
energy is [0E[* ~ O(e?Bgvy, /¢?) and the magnetic field energy is [IB|? ~ O(e?B§). Thus, in the non-relativistic limit,
the magnetic energy dominates and we may drop the electric field energy; this is expected since the displacement current

is dropped in the non-relativistic ordering. We are left with

d d3r |6B|?
dt V 8w

+ —J ‘E=— /—J E. (2.13)

18



Derivation of the Plasma Current in Gyrokinetic Variables

To determine [ %J -E, we note that
J= Z/d3vqsvfs (2.14)

where f5 is the full distribution function from the Fokker-Planck equation (without any ring averaging). We also choose

to express the electric field in terms of potentials,

10A
E=-Vp——— (2.15)

Hence, for each species we have

dr 3 dr 3 gs OV - A

First we want to manipulate the first term to extract a piece in the form of the gyrokinetic potential x = ¢ —v-A/ec.

Adding and subtracting g fs% produces

d3 d3 d3
—/—r/dqusv-ngfs :/—r/dqusfs—?f - —Vr/d?’V(]sfs (%‘FV'VQb) (2.17)
Using
8¢ 0 fs afs
790 - %00 _ ;2 (2.18)

and integrating by parts in space on the last term we obtain

—/?/dqusv-ngfs - (2.19)

d’r 3 ¢ d3r 3 Ofs d3r 3 09fs
/7/d VQSfSE—’— 7/d VQS¢(8t +V'st)—/7/d Vas o,

We can use the Fokker-Planck equation to substitute for the second term

3f v x B

Bt

v-Vfs= g; (E + > : % + ) Cor(for £2) + Caslfs £5) (2.20)

and we find that this term becomes

4 i (3 e )< 2 e+ V22) 2

d’r
|5 [ dvao (Z Cor(for ) + Cas(fer fs)> (2.22)
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The integrals over the collision operators give zero because all collisions conserve particles. Integration by parts in velocity

on the first term gives

/dr/d3 qs¢<E+v>;B) o/, /d3 /d3 qs¢_ < +V>ZB)fs—0 (2.23)

Putting all of this together, we find

/—J E= /d3 /d?’vqsfsat( v A> /d3 /d3 ﬁ‘bfs (2.24)

Next, we decompose the distribution function into a Maxwellian equilibrium and a fluctuating component fs = Fys+9 fs.

d®r 3 0 v-A dr 3 0pFys

because the Maxwellian is spatially uniform and first order perturbations spatially average to zero. Now we can connect to

The terms

the gyrokinetic system by identifying the gyrokinetic potential and splitting the fluctuating component of the distribution

function into its gyrokinetic and Boltzmann pieces

qsP
T,

6 f1s = (hs)r — =5 Fos- (2.26)

Here we have defined the non-Boltzmann part, a function of position r and not guiding center R, by the symbol (h),. We
will specifically define the meaning of this symbol in terms of the standard gyrophase independent gyrokinetic distribution

function later—for now we take it simply as some function of position r. Doing this we obtain

s me 4 ol [ 4 [ 8 [ o (w5

which can be rearranged to form

d’r 3 8X d3r s 29 . Ov-A d’r 3 P2
[ Ly PO R Ly PN LT Y P AR

We can show (HOW?—v part is odd and integrates to zero, what about v, part?) that

d3r ¢ _ Ov-A
— | BVvELFR,—— = 2.2
/V/ Vet =0 (2.29)

leaving us with the final result

_J ‘E= /d3 /d3 hs) /d3 /d3 (qSQS ¢2F05> (2.30)
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Completing the Gyrokinetic Poynting’s Theorem

By substituting eq (2.30) into eq (2.13) we arrive at the Gyrokinetic Poynting’s Theorem

o[ [ > (-aoth ¢2Fos> e
+/?/d3v¥qsg—’;<hs>r =0 (2.31)
2.1.3 Derivation of the Entropy Equation
Next, we must look at the gyrokinetic equation to investigate the entropy balance
G g+ g ool = () ) = peSR, (2.32)

We multiply the gyrokinetic equation by Tyshs/Fos and integrate over space and velocity at constant guiding center R

to obtain the entropy equation
d3R 0 <X> ng T() d R T()
——= | &*vg—Hhg — — d*v—"h?+ / /d3 > (hsC(h =0. 2.33
/ v / Vi ¢ dt / 2Fps Fo, 1eClhs)im, (2:33)

2.1.4 Derivation of the Power Balance Equation

By interchanging r and v integrations, we can show that

dr [ 5 Ox [ PR 5. IR,

Summing eq (2.33) over species, we can substitute into eq (2.103) to obtain

PR, [ 5 Toh2 [ dr ¢>2 dr [0B2
dt [/Z VR, / Z( gsp(h Fos | + | 57—~

/d3R /d3 Z §z< ( )COH>R _0 (2.35)

Note that the first term can be alternatively expressed as

BR Tosh? &r To, (hs)?
s d3 s 3 s s 9.
/ v / Vo, / / T (2:36)

which enables us to combine the first three terms and factor to produce the Power Balance Equation
d3r To qs® d3r |6B|?
d3 s s F N @b
/ / sz( TSO)+/V 8

/d a /d3 Z£22< < >COII>R B (237)

s

d3
+ [ %55, E

d3
—J ‘E
1%
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Using the definition of the first-order perturbed distribution function 6 f15 given by eq (2.26), this is seen to be
ng' To |5f1 |2 |(SB|2
il 43 5 S —J -E
v (/ ¥ Z Fos 2 /

SR () @39

2.2 Heating Using g

We begin with equation (15) from GKI.

8h 6hs C 6hs _Gs 6<X>Rs
Gt g+ g lonond = ((G) ) =g tER, (2.39)

NOTE: Is this ¢/ B or ¢/By? First we define two quantities

~ kJ_’UJ_ Jl( )mUJ_(SB”
= 2.4
and
_ kv v4
A= Jo ) ) p (2.41)
so that we have
X)=¢-A4 (2.42)

Dropping the species subscript s and equilibrium subscripts 0, using C(h) to denote the collision operator, and substituting

for (x), we get

oh Oh ¢ [~ q (g —A)
— —+—=|p—Ah|—-(C(h)==—F——F 2.43
5 T g [0 A - e = 575 (2.43)
Next, we define an alternative version of the gyrokinetic collision operator,
99
=h——=F 2.44
g T (2.44)
Thus, the relation between ¢ and h is
@(¢) ,  mvi (OBy)
=h-— F— F 2.4
g T T By (2.45)
Writing the gyrokinetic equation in terms of g gives
dg dg ¢ o ¢ [- _q 0A
v+ A P+ 5 (- Ah| = (C(h) = —2 P (2.46)
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2.2.1 Heating in terms of g

Multiplying (12.24) by g and integrating over all space and velocity yields

[ o5+ [mogt+ /Unggf v 2 [alo-an] - [ocwy -2 [FroSe (2.47)

The second term on the LHS is zero for periodic BCs and the nonlinear (fourth term on LHS) can be written

%/g[(z_A,h]:%/(_@F)[gb Ah:——/qﬁFAh (2.48)

since any terms multiplying the Poisson Bracket that are the same as terms within the Poisson bracket will vanish for
periodic BCs. We are left with

;gt g +T/v||Fga—+ /quAh / c(h )>:_%/Fg%—f (2.49)

The second and third terms in (2.49) are problematic. We can eliminate these terms by multiplying (12.24) by qéF/ T

and integrating over all space and velocity to find

o2 L [uprds L for —+——/¢>F¢ ] - & [orem =1 [F658 @s0

Integrating the second term by parts, noting that the third term will vanish for periodic BCs, and eliminating terms in
the Poisson bracket in the fourth term yields

~0A
F= — —=— [ ¢F[Ah] - F(C F?p— 2.51
2 fort-2 [uret- 22 [orian -1 [or o (251)
Rearranging this equation, we see that we have found an alternative form of the two problematic terms in (2.49):
q ~0A
T /v”Fga— + = /¢F [A,h] = /¢F— — —/¢F /F%E (2.52)

Therefore substituting into (2.49) gives

2at _/¢F_‘_/¢ / 2¢——/ {C(h) :—%/Fg% (2.53)

Collecting like terms gives

35 [P [orZ e L [rg+2omSE = [+ Lorem) (2.54)

Using the definition of g (12.22), this becomes

%a_ —/¢F %/Fh% - /h<<:(h)> (2.55)
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2.2.2 Connection to h form of heating

We can manipulate the form of (2.55) to demonstrate the result agrees with the heating in terms of h from GKI. First,

we combine the first two terms

/(g+ F—+ /Fh / (C(h))

Then, using again the definition of g (12.22), it can be written,

JEELE= A Ny

12 [1e- %/Fhw = [ niew

and identifying (x) = ¢ — A gives the final form

2at/h2——/Fh— :/h(C(h))

which agrees with equation (B10) from GKI.

Expanding the first term gives

2.2.3 Explicit Derivation of Equation (B19)

Neglecting interspecies collisions, we have equation (B5)

dThs d’r d3
gnOS d?? /d3V msv 5f25:/7r/d3VQSV'Efs

where we can write
JS-E:/d3vqsv~EfS
Thus,
3 dTos 0 d3r 3 1 9 d3r
—5———d—sés=—JE
2" " gt +8t/V/ vamsviof %

Also, we have equation (B9)

3 dTOs d3r 3 d3r Nosq2d d3r 3 8X
—— d°v s s <Ohg = d°v h
2" T @ U / mv5f2 + a9 2T0s / /

Combining these two equations gives

d3r Br [ d’r nosq; dBr [ 5 Ox
J -E+ dt[/ /dvqs¢h— ZTOS}—/V/dquEh
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(2.61)

(2.62)
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NOTE: This combination is unnecessary. All we need is the gyrokinetic version of [ %J s - EE which is just what this

equation is (although the energy moment of the Fokker-Planck equation is used to get this result).

But we also have equation (B10),

d3r To d3 To 8h ng
Vo [ [ 0 (52) )~ e
1% / 2Fps Fos coll

Thus we can subsitute to get

d3r d*r 3 rnosqs¢2
v B+ U /dvqs¢h 2T ]
_ 9 @/dgvToS p /d3 /dg Too /, (0
ot \% 2Fys ° Fos Ot ) con/ w,

We can combine time derivative terms, use the definition of density

Ngs = /dSVFOS(I‘7V7t),

sum over species and note that > Js = J to get

/—JE n d3/ Z( ToS S¢h_F02S§OS¢>

=/”/f2%<(>ym

But Poynting’s Theorem in the gyrokinetic approximation gives

d 2
el d3r |5B| _
dt 8w

—/dgr(J—l-Ja)-E

so we can subsitute to get

d d3r Tos 2 FOsq ¢2 d /d3 |6B|2
—Jq E — | = h qsPhs — s
/ J * dt/ V / ( 49 2T0s S dt vV 8

o _/d_/ TOS h ahs
B 14 Fos S\ ot coll/ R,

Finally, we get equation (B19),
d d3r 0 0 q |5B|2
_ - - d3 s h2 qs hs sUsg
at ] vV l/ VZ< 4sOhs T o >+ 8

e (e () ) e

25

(2.65)

(2.66)
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(2.68)

(2.69)

(2.70)

(2.71)



Another way of writing this is

3 2
d [dr l Tos (h _ QS¢FOS> " |0B|

2.72
dt 2FOs T() 8w ( )

Er [ 5~ I O / &r
ar h [ Y, E
/ |4 / Fos < ( ot )coll>Rs 14
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2.3 Hyperviscous Heating

2.3.1 Energy Equation: Second Moment of the Fokker-Planck Equation

We begin with the full Fokker-Planck equation

%_f%
dt ~— ot

Vht L (E+ = X ol )+ Cusl o ) = vV, (2.73)

v x B 8 fs
c

where we have added to the right-side a hyperviscous term of the form VHV4 fs, although in general any even power of

the V operator will do. We begin by multiplying this equation by msv?, integrating over all space and velocity, and

dividing by the box volume V.

Expanding the distribution function using

fs = Fos +0f1s +dfas +--- (2.74)
the first term becomes
d3r 3 1 (9fs 3 8TOS d*r 3 9
/ /d = 5”05 ot 8t/ /d V=m0 fas (2.75)
where we have used the definition
/@/cﬁvlm v Fy, = = §n T (2.76)
% 2 s 0s = Pos = 2 0s1L0s .
and the fact that
d3
/ /d3v msv?fis =0 (2.77)

because first-order perturbations spatially average to zero.

The second term can be integrated by parts to give

/d3 /d3V msv?v - Vfs = /d3 / ( Msv st) =0 (2.78)

where the boundary terms disappear by periodicity and the divergence theorem shows this term is zero also by periodicity.

The third term can be written using a similar integration by parts as
d’r s B s d3r s B
[ o (00252 B [ o [ 022
c c
d? B d?
—/7r/d3vqsv-<E+v>Z )fsz—/vr/(PV(]SV-E (2.79)

The collisional terms can be written

3
/ d7 / d3v§m“2 chdfs, fr) = Zn(T ~T) (2.80)
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and
3
/%/d%%mﬁcﬁ(fs,fs) —=0 (2.81)

since like-particle collsions do not produce a loss of energy.

Finally, the hyperviscous term becomes

3
_/%/fv%mv?mqulfs = /d3 /d r ( muv I/Hfs> =0 (2.82)

due to the periodic boundary conditions.

Thus, the second moment of the Fokker-Planck equation yields the Energy Equation

3 dly,s O [ dr 1 d3r d3r 1
inOSd—?+a/7/d3V§m5025f25 :/V/dqus(E'V)fs-l-/v/d3V§mSv205T(f5,fT)- (2'83)

We see that hyperviscosity does not change the form of this expression. An alternative way of writing this expression

involves the plasma current

3 dTOS dr [ EBr [ 41
5 M0s o at/ /d V=mv?fo, = /—J E+/7/d V5 Mmsv Cor(fsy fr). (2.84)

2.3.2 The Gyrokinetic Poynting’s Theorem

Poynting’s Theorem tells us that

d [dc (E? B2 1 ¢ d3r
— | — | =— —— ¢(ExB)-dS=— J+J 2.85
dt V<87r )+V47r ( ) /V(+ a) B ( )
where J, is the current in the antenna driving the system and J is the plasma current. For periodic boundary conditions,
the surface term from the Poynting flux is zero. The gyrokinetic ordering specifies that the order of the electric field
energy is [0E[* ~ O(e?Bgvy, /c?) and the magnetic field energy is [IB|? ~ O(e?B§). Thus, in the non-relativistic limit,
the magnetic energy dominates and we may drop the electric field energy; this is expected since the displacement current

is dropped in the non-relativistic ordering. We are left with

d [ B
dt V8w

+ —J ‘E=— /—J E. (2.86)

Derivation of the Plasma Current in Gyrokinetic Variables

To determine [ %J -E, we note that

J= Z/d3vqsvfs (2.87)

28



where f; is the full distribution function from the Fokker-Planck equation (without any ring averaging). We also choose

to express the electric field in terms of potentials,

10A
E=-V¢--—. (2.88)

Hence, for each species we have

d®r dr 3 dr 3 s OV - A

First we want to manipulate the first term to extract a piece in the form of the gyrokinetic potential x = ¢ —v-A/ec.

Adding and subtracting g fs% produces

a3 43 ) d3 0
[T i vor= [ [avaig - [ [ivas (G evevo) 240

8fs

Using
¢> 3¢>f s

— ¢

fs (2.91)

and integrating by parts in space on the last term we obtain

—/?/cﬁvqsv-vm“s = (2.92)

d’r 3 ¢ d3r 3 Ofs d3r 3 09fs
/7/d VQSfSE—’— 7/d VQS¢(8t +V'st)—/7/d Vas 5,

We can use the Fokker-Planck equation to substitute for the second term

Ofs
ot

+V-st——q—S<E+VXB>~afS
ms c

v +Z:Osr(fs’fr)+css(fs’fs) — vV (2.93)

and we find that this term becomes

/?/d%qsaﬁ @f +V-st) - ‘/?/dgvg@_igf’ (E+ v XCB) gL (2.94)
/ = [ dvas (ZCST for £2) + Ci fs,fs> |5 dr = [ v,

The integrals over the collision operators give zero because all collisions conserve particles and the integral over the

hyperviscous term gives zero after application of the divergence theorem with periodic boundary conditions. Integration
by parts in velocity on the first term gives

_/g/d3vi—g¢(E+sz) o/ /d3 /d3 .(E+V>ZB)fS:O (2.95)
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Putting all of this together, we find

d3r d’r 0 v-A d’r 0o f
—J, E= | — [ &®vq.fe= ——— ) - | — [ d&®vqs = 2.
% /V/qu6t<¢ c>/V/Vq8t (2:96)
Next, we decompose the distribution function into a Maxwellian equilibrium and a fluctuating component fs = Fys+9 fs.
The terms
d’r 0 v-A d®r 0P Fy
— | v Fos— — | == | d®vq, ® = 2.
/V/Vq°6t< c) /V/Vq ot " (2:97)

because the Maxwellian is spatially uniform and first order perturbations spatially average to zero. Now we can connect to
the gyrokinetic system by identifying the gyrokinetic potential and splitting the fluctuating component of the distribution
function into its gyrokinetic and Boltzmann pieces

. _ qs
0fs = hs T.

FOs (298)

to obtain

d’r 3 Ox d’r 3q§¢ d’r 3
/—J ‘E = /7/dv —Zhy / /d Fosat 8t/ /d (qscﬁ

which can be rearranged to form

d3r 30X d’r s 2P . Ov-A d3r 3 2 ¢?
—J -E = / /d Vs 5y h +/ /d FOs 5 at/ /d <qs¢h o, F05> (2.100)

We can show (HOW?—v part is odd and integrates to zero, what about v, part?) that

d3r ¢ _ Ov-A
— | BvELF,—— = 2.101
/V/ Vi Fos g, 0, (2.101)

40" FOS) (2.99)

leaving us with the final result

—J E= /d3 /d3 8Xh 8t/d3 /d3 <qs¢h ¢2 > (2.102)

Completing the Gyrokinetic Poynting’s Theorem

By substituting eq (2.30) into eq (2.13) we arrive at the Gyrokinetic Poynting’s Theorem

gt/ |5B|2 /d3 Z( Gehs +qs¢2F05>
/ /d3 qu Xh =0 (2.103)

d3
—J -E
\%4
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2.3.3 Derivation of the Entropy Equation: Hyperviscosity

Next, we must look at the gyrokinetic equation, including the hyperviscous term, to investigate the entropy balance

6hs ~ 6hs ah/s S 6
- 1 vz - i [<X>Rsah5] - <( ) > + I/HV4]7,S — q_ < >RS A TELZE 2 (2104)
BO coll/ R

ot OR; ot Tos Ot

[QUESTION: Is the form of the hyperviscous term here consistent with that from the Fokker-Planck Equation?] We
multiply the gyrokinetic equation by Tpshs/Fos and integrate over space and velocity to obtain the entropy equation

SBR[, ) e [ s Tos g, [dr [ s To.
[ [t |7 [ v [ [ ovgs .cmn
d'r [ o5 Tos [ (9%h 9%hs o%h\?|
[ [eve [<a2 ) #2(5) +<a2y>]‘° (2:105)

where we have applied the gyrokinetic approximation kj < k1 to the hyperviscous operator V4 — V‘i and note here

that

ot ot ot

b= 4o - 4~ 2.1
Vi ozt + 0x20y> + oyt (2.106)
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2.3.4 Derivation of the Power Balance Equation: Hyperviscosity

By interchanging r and v integrations, we can show that

dr [ 5 Ox ERs [ 5 IR,
/ /d qs h /V /dvqs 1 h

Summing eq (2.105) over species, we can substitute into eq (2.103) to obtain the Power Balance Equation
e[y e (- 05)  UBE] [y
/“/cﬁ WA )mn>

St ) () ()]

2.3.5 GS2 Normalization of Hyperviscous Heating Term

dr

Note that in a Fourier decomposition we have

5 2 2 2 2 2
() +2(5my) () = 0w kdpnz =i

Oxdy 0%y
so we will use this as a shorthand for the term in the normalization below.

(2.107)

(2.108)

(2.109)

Now we need to normalize the hyperviscous term in the power balance equation; we’ll focus on only this term here,

but we’ll do it in exactly the same way as the rest of the equation was done in section (26.2.3). We multiply the equation

2
by & (%) 'UtoFooTo to get
= (2 e /9
vio \po/) viFooTo Vv — Fos ARLTs
d3r pa Vi 3TFS VHG hs a
[ Vi z/ *() wr (i) e (£5)
V/(p§ao) v \vw/) To Foo \ paveo Fos po
pan NP
/ Z/dg 3/2 ijl-hg

Note that in GS2, the hyperviscosity is scaled by
D_v = D_hypervisc / akperp4 max

when the option gridnorm = T.
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2.4 Hyperresistive Heating

Hyperresistivity is implemented by replacing A /0t by A /0t +nrV*A in the gyrokinetic equation (which arises in the
gyrokinetic potential x on the right hand side).

RV
Ohs Ohs i (0R., hal — <(3hs> > _qs 8<X>R5F gsFosne O(v - V] A)r,
coll/ R

5 Y% 3R, ot T Toe 0t T T T ot (2.112)

NOTE: One question is whether this will affect the y in nonlinear term; but I will neglect that for the time being.

2.4.1 Derivation of the Entropy Equation: Hyperresistivity

We multiply the gyrokinetic equation by Tyshs/Fps and integrate over space and velocity to obtain the Entropy Equa-

d3I' T() d3 T
— [ BPv R - / /d3 95 (hy
V / V2FOS FOS O )>RS
3
= /d R/d3 R hy —/d R/d3v—qs (v-VIA)g hs (2.113)

where we have applied the gyrokinetic approximation k; < k1 to the hyperviscous operator V4 — V‘j_ and note here
that

tion

o o o
V4 — _ 4=
T 235628?/2 + oyt (2.114)

2.4.2 Positive Definite Form of Hyperresistive Heating Term

We can write the hyperresistive term alternatively by

3 3
/d R/d3 —qs (v-VIA)g hs —/d /d3 —qSV-V‘iA<hs>r (2.115)

and using the definition for the current due to a given species s (NOTE: I have left out the Boltzmann term here!!!
ERRORI!!)

J, = /d3vqsv<hs)r (2.116)
the equation can be written
d3I‘ 3 TQS 2 d3 3 TOs
7/d Vo " / / Y, 1O,
d°R 9 {x) a? a T NH
= — | d®vg—=ELh, — 1A 2.11
/ % / Va5 VeV (2.117)
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We can derive a positive definite form of the heating due to hyperresistivity by noting that (in the Coulomb Gauge
V - A =0), the gyrokinetic form of Ampere’s Law is

47
—V2A = —J, 2.118
> 2119

Hence, if we sum over species we find

d d3r T() d3 T()
— — | & *h?— / / d*v == (hsC(h
dt ;/ v / V2FOS Z FOS )>RS

PR d e
Z/T/d3vq%h5+z—: CIVIA-ViA (2.119)

where have again taken the gyrokinetic limit to give V2 — V2. Focusing on the hyperresistive term, we can integrate

by parts an odd number of times on each term to yield a positive definite form of the heating

ng [ d’r 2
_E/V < ) (2.120)

Note that it may be possible to create an alternative positive definite form of the hyperresistive term involving only

2 |9%A

oy3

O3A
0x0y?

PA |
ox3

' 020y

the distribution function by substituting for —V4{ A =" 4T”VQJ s, but this will involve cross terms between the electron
and ion distribution functions that present computational difficulties with parallelization in GS2 and so may not be

practically useful.

2.4.3 Derivation of the Power Balance Equation: Hyperresistivity

In order to apply the Poynting’s Theorem eq (2.13) to find the Power Balance Equation, we must find the form of
Il %J - E. [QUESTION: What is the form of hyperresistivity inthe Fokker-Planck Equation?] Assuming that the

hyperresistive term does not contribute to any changes (as expected since the hyperviscous term changed nothing), we

will use eq (2.30) as before, which gives the Gyrokinetic Poynting’s Theorem eq (2.103).

Noting eq (2.107), we can summing eq (2.113) over species, we can substitute into eq (2.103) to obtain the Power

Balance Equation

d3r

/d3

TOs QS¢ |5B|2
/d3 Z o ( . ) /—J E (2.121)

T BR
By Z Fz < ( )c011> / /d3 —qs (v-ViA) he=0
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2.4.4 Normalized Hyperresistive Power Balance

Now we need to determine the normalization of the hyperresistive term in the Power Balance equation. First, we must
determine the form of this term in terms of the fields Ay and §B). Taking the Fourier transform we we find the ring

averaged part of the hyperresistive term becomes

v-V4A v-A vy A VJ_'AJ_
< . > —>k‘i< g > =ki< ||C||> +k‘i< . (2.122)
R, R, R R,

and we note that

v kivi v 4
= Jo(——)— .
< p > o= A (2.123)
R
and
VL-AL _ Jl( )m ’UJ_(SB” (2124)
¢ R kfz? ¢ Bo |
Therefore the hyperresistive heating term for each species becomes
ER [ 4 nH 4 PR [ 4 4 Yl 4
/T/d v qu <V'VJ_A>RS hs = /T/d VT/HkJ_QSJO('YS)?AHhs
&*R Ji(7s 6B
_ / /d3 kit 210s) ) msvt L, (2.125)
0

where v, = %

2
As with the rest of the Power Balance Equation, we multiply by 2% " (Z—g) m to obtain

/d R/d3 —qs v-ViA)L hs (2.126)

_ dSR/(poao ( Fos (nmm) (k1o g 22 1L Yt (@ oA @) (hs @)
V/(Poﬁo) vy, 0 \ povi0 Qvsvio \ ¢ To po/) \ Fos po

Bt [ () B () e (D) T ()R (o) vhing
V/( o(IO) vi, \v 00 \ p6v:0 Vs /) Mo \ Vs Vo By po Fos po Ty

Noting that

3

@|C
e

|

2
ViHMo 2710\ mo
2070 _ (222 ) B 9 2.127

we can write this in normalized quantities as

PR AefﬁgAAAAAA/TAA
= / = /d3vsmm{ki‘]@v”snsqs A hs

PR
/ /d3 ° ankJ_JﬂvJ_sn 7,68 hs (2.128)
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2.4.5 Summary of Hyperdiffusivity Results

The equations here are written with the sign with which they are computed in GS2. NOTE: In GS2, Bill’s sign convention
for the collision term is the opposite of what it is here.

The general hyperdiffusive Entropy Equation is

d’R s, 90 d’r 3, Los 2, 3, Los
R At i 7 o zFoSh e /d "R, (1O
_/@/dBVVHTOS N
% Fy 0%x Ox0y 9%y

R
/ /d?’v—qs (v-ViA), he=0 (2.129)

The general hyperdiffusive Power Balance Equation is

d dr 3 TOS QS¢ |6B|2
E/ /d ZzFOS( Tos FOS) /_J B
dBr Tos BR y
ST AR () e T T
A p— 92h, 2hs\°  (0?h\?]
w5 [ VS [( ) #2(5) +<a2y> =Y (2130)

2.4.6 Full Hyperresistive Term in Gyrokinetic Equation

We begin with the gyrokinetic equation including the hyperresistive term

Ohs . Ohs ¢ Ohs g5 O(X)R, s Fosnm O(v - V4 A)r,
ot R, [<X>Rs’ o <<6t >coll> - Tos Ot Fos Tosc ot (2.131)

We note that in the Fourier decomposition,

v-ViA o kv v W) md 0B
yvvia e gy (BLVL O g s T Mst] 07 2.132
< c >RS—> 1o Qs )C I + —kfff gs By ( )

Writing s = kL” and concentrating on only the normalization of this term, we follow the normalization of the gyrokinetic

equation as before. Multiplying by a3/(Fospovio) we get

> 8
_ (@& ! > <q5F°S kit Jo—L Au+ ikt A ) (2.133)

po Vio Fos Tos T LB,

To <’7H“°> (k1 po)* | =22 g 4 2L Lts (vto DA ao) (i) s <”L Uts>2 (53 @) viomo
Ts \ povi0 G Qvsvio \ ¢ To po . Vs Vio By po To

= _nHkL J()’UH AH +77HkLJ12'ULS5B||

Tsms
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Chapter 3

Derivation of Driven Gyrokinetics

In this chapter are assembled the equations for generally driven gyrokinetics and the heating equations in this case.

3.1 The Equations for Driven Gyrokinetics

We begin with the nonlinear, collisional gyrokinetic equation for kg

Oh dhs ¢ Ohs _ gs 9(Y)R,
6t v + BO [<X>Rsahs] <( 8t )COH>RS - TOs 8t FOS

and the gyrokinetic Maxwell’s equations

__v ¢a qu Os :qs/d3v<hs>ra

— VA (A + 4)) qu/d v s,

c
EVL((SBHG_F(SB” qu/ (2 X v1)hs)r.

The gyrokinetic-Maxwell equations can be driven generally by the terms ¢4, 4),, and 6B|,.

3.2 The Equations for Driven Gyrokinetics
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Chapter 4

Gyrokinetic Linear Dispersion Relation

4.1 Linear Collisionless Gyrokinetics

4.1.1 Summary of Gyrokinetic Equations

The starting equations for our linear analysis are

1. Linearized Collisionless Gyrokinetic Equation: Dropping the nonlinear term [{x), g] and the collisional term (C(g)),

we obtain the linearized gyrokinetic equation

2. Quasineutrality

3. Parallel Ampere’s Law

47 47
_VQLAH = 76’]” = Z ?qs/d3V1}H<gs>r
4. Perpendicular Ampere’s Law

4 4
VL(SBH = ?ﬂ.i x 0J = Z ?ﬂ.qs/dgv<i X VLgs>r

5. The perpendicular Ampere’s Law can also be written as a Perpendicular Pressure Balance

4
VoBBy = —%V S0P = Z/dqu5<m5(val)gs(R,E,M,t»r
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4.1

1

.2 Bessel Functions Definitions and Relations

. One definition of the Bessel Function Jy (9.1.18) is
2 )
Jo(z): _/ doe’LZCOSG
0

Derivatives: (9.1.28)

Higher Order Forms: (9.1.21)

27
Jn(z) = /0 df cos(nf)e'= <os?

o

. The form of an Ascending Series expansion for the Bessel functions (9.1.10) is given by

Thus for the zeroth Bessel Function

This can be used to find the small argument expansion for the Bessel Function.

The large argument expansion for the Bessel Function (9.2.1) is
2 | T -1
Jo(2) == {cos(z — /2 — w/4) + el Oz )}
T

This tells us that for large z
Jo(z) ~ O(|2[1)

The modified Bessel function I,,(z) obeys the derivative relation (9.6.27)
dlo(z)
=1
7 1(2)

The recurrence relation for modified Bessel functions (9.6.26) is

L) ) - L)

Ascending series form for modified Bessel functions (9.6.10) is

(=)

L6 = (5) X D
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(4.6)

(4.8)

(4.10)

(4.11)

(4.12)

(4.13)

(4.14)

(4.15)



9. From Watson, Basic Integrals of Bessel Functions,

2,2 1 (2 2 2 pq
a“x + 4a
/0 e Jn(pI)Jn(qx)Idl‘ = —2a2€ (P +a7)/( )In (_20,2) (4.16)

4.1.3 Decompose into Bessel Functions

We decompose the quantities into plane waves. In this case, the ring averages at fixed guiding center R and at fixed
position r simply becomes multiplications by Bessel functions.

1. We will assume fluctuating quantities of the form
a(r.1) = 4(t) exp(ik - 1) (4.17)

2. Consider first the effect of the spatial plane waves on the ring average at fixed guiding center R usingr =R + p

1 ol 1~ ,
(o(r,))m = 5 P dOS(L)e™ FHO) = —g(t)e’ R 74 dfer?) (4.18)
We can write
k~p:k¢~p:%00sa (4.19)

where « is the angle between k; and p. Changing integration variables from 6 to o does not change the ring
integral.

3. Thus, using the definition of the Bessel function (4.6), we can write the the ring average at fixed guiding center R

as a multiplication by a Bessel function

kJ_'UJ_
Q

(p(r,t))r = Jo( )o(t)e™ R (4.20)

4. Similarly, we can write the ring averages at constant r for variables in guiding center coordinates in terms of Bessel
Functions
kLUL

q )9a(E, o, )™ (4.21)

<ga(Rvg7M07t)>r = JO(

5. Taking plane waves for all of the potentials in (x)r = (¢ —vjA)/c—vL-AL/c)r , we can derive an expression for

the gyroaveraged potential in terms of Bessel Functions.

6. Both (¢)r and (vj A /c)r are derived as in (4.20). For the perpendicular component, we find

VL-AL

(

) 1 .
—)r = elk'R% f{ dov . (0) - AL (t)exr?) (4.22)

Here we define an orthogonal coordiante system €; x € = b such that k; = k) &; and, for 6 as the angle between
k, and p, we have
p(0) = p(cos & + sin Oé3) (4.23)
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By (1.7) we get

v () = vy (sinfé; — cosbés) (4.24)
and substituting above, we get
vi-AL kR 1L P i i(kiv. /) cosd
<f>R - dfv; (A1, sinf — A, cosb)e (4.25)

The first term on the right hand side is zero, while the second can be written using the n = 1 Bessel function

(A.17). Using the definition of the cyclotron frequency (1.4), the result is

kiv, 2 ;1.0 A
RE 'CAL Ve = _Jll(uTvgi ) m;)l zle/Ollz kR (4.26)
Using
6B =i(ky x A1) -2=1ik A, (4.27)
we can thus write the result as
vi-Ay _Jl(%)m_viﬂ kR

( )R = Thio, q Boe (4.28)

¢ Q

Therefore, we can express the potential in terms of n = 0 and n = 1 Bessel functions

kioe o oAy (BgR) mel 6By | aw
= Jo(—— — — | e 4.29
r ; [ of Q ) (¢ B )+ lug;u._ q Bo c ( )
which can also be written as
Wn =Y J(/ﬁ&)@;_vuAHHJl(’“#)ﬁ&@ SR (430)
X/R o ol—q B luéu 2 ¢ Bo .

. Assuming the time dependence for all quantities to be e =™, we can solve for the distribution function §, from the
linearized collisionless gyrokinetic equation (4.1) using the potential (6.36) and assuming a form of the distribution

function of
gS(R7g7M07t) = gs(g,uo)ei(k'R—wt); (431)

the resulting solution is

g, = Logte {Jom)il—Ac“ e lJO(%) (és - “;T') e } (1.32)
where
e (133)
Here we have used the expression
w —u;nkn " —u;n’fn kin B ’fﬁn 439

to simplify the result.
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4.1.4 Velocity Integrals of Maxwell Equation Relations

The solution to the distribution function gs, (6.39), is a product of functions of v and v, . This allows us to perform the
integrals over velocity space and express the results in terms of modified Bessel function and plasma dispersion functions.
In this way we can derive algebraic relations for the fields giA), AH’ and BII from the quaisneutrality condition (4.2), the

parallel Ampere’s Law (4.3), and the perpendicular Ampere’s Law (4.4).

The velocity integrals are performed over ffooo fooo fo% vidvjdvy df. The velocity integrals are the same for each

species, so we need only calcualte these integrals for a general species s; accordingly, we drop the species subscript in

this subsection.

Parallel Velocity Integrals: Plasma Dispersion Function

1. Integrating over v from —oo to +o00, many of the integrals can be reduced to the form

Z(&,) = %/de;:—wgs (4.35)

where the argument
w

L= 4.36
Kjjvin., (4:36)

and the integral is performed over the Landau contour from —oco to +00 below the pole at &, in the complex plane.

Perpendicular Velocity Integrals: Modified Bessel Functions

In performing the integrations over v, from 0 to +oco, we make use of several integrals derived here.

1. The first integral that arises is

Iy / 2o g (’fﬂu) oL (4.37)
0 Uth 0
Using (4.16) this becomes
To(B) = Io(B)e™” (4.38)
where
5= ’%”2 (4.39)

and the gyroradius is defined by p = vy, /€.

2. The second integral that arises is given by

oo [ 2owdvy 208 Jo (Bgt) T (Bgt) s, (4.40)
1= 52 N € '
0 th th Q
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Denoting p = ki p = k v /Q and 2 = v, /v, we note that

dLo (px) = —/ 2xdw2x]0(px)J1(pac)e_m2 (4.41)
dp 0
using (A.16). Thus, we find
10 Ty _
M=——-—=—-—=[(B) -1 s 4.42
AT [1o(B) — 1 (B)]e (4.42)

where we have used the relation for derivatives of the modified Bessel function (4.13).

3. To solve the third important derivative

) 4 kiv 2
I‘2 _ / 2’UJ_d/UJ- 4‘,U_L lM} e_vi/vt?h (4'43)
0

2 4 kivi
Uth Uth Q

we note that

[oo (e l[[on ()]

Thus, performing the integration within the brackets on the right hand side of (4.44) using (4.16), we find

d ] 20°/(4a?) p?
M=~ [z—ip n(4=) (1)

Doing the derivative and evaluating the result at a = 1 produces the result

Ty = 215(8) — [i(B)|e? = 2T, (4.46)

4.1.5 Gyrokinetic and Maxwell’s Equations
Quasineutrality

1. We begin with the gyrokinetic quasineutrality condition (4.2); in the velocity integral, we write the ring average at

constant position r as a multiplication by a Bessel function as in (4.21). Thus, the integral becomes

o o kivi\ ¢*Fo kivy WAH
271'/ dv / vidv J ( ) Ji +
— o0 I 0 0 Q T 0 Q k”C
N ki .
w Jo (/@_UJ_> (;AS—WAH +J1]5 LQL)mUi 53“
w — ’UHIC” Q k”C J—é”— q Bo

2. Using (1.39) for the equilibrium distribution function Fy and performing the integrations over v and v, and using

(A.1) the first term becomes

} elker (4.47)

Cnp @A

—To( e (4.48)
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Writing the parallel velocity integral in terms of the plasma dispersion function by (4.35) and performing the

perpendicular velocity integration in the same way as above, the second term becomes

q2n ~ wle
— T To()EZ(9) <<z>— k”c) . (4.49)

The third term, after employing (4.40) for the perpendicular integral and the plasma dispersion function (4.35) for

the parallel integral, becomes

¢*n :
—TFl(ﬁ)ﬁz(i) (;E) : (4.50)

Using (4.20) for the potential in the Boltzmann term (the first term in the sum in (4.2)), dropping the factor

exp(ik - r), and summing over species, the quasineutrality condition becomes

XS: qun {[1 +T0:6:2(8)] <03 - L%”) + (1 —Tos) ( 1;'4”> I8 2(8) <T 5]1?) } ! 450

Parallel Ampere’s Law

1.

To perform the velocity integrals for the parallel component of Ampere’s Law, we use the linearized gyrokinetic
equation (4.1) to find an expression for .J; by multiplying the equation for both species by the charge, integrating

over velocity, summing over species, and taking the ring average at constant position r.

dg 0 0
<Zsj/d3v [a_i + o5, — 7B %‘2“} > —0 (4.52)

The first term of (4.52) simply becomes, using the condition ) n.qs =0,

8 s 8 qgns
3 [ ava e =5 S L (1.53)

The second term of (4.52), using (1.32), becomes
0 3 0
Z/d Vqsv” 8 &E/d VsV (gs)r = &JH (4.54)
The third term of (4.52) becomes

quS R quS
Z/d3 TO T”_ atZ/d3 ERE (4.55)

The parallel term in the definition of x (1.49) integrates to zero, leaving only the ¢ and perpendicular term.
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10.

Combining terms yields the relation

20
gJM = —% { quS (@ = (@) + {{vi - A¢>>s)} (4.56)

z

where the double brackets denote the integration

S

({a(r,v,t)))s = /000 vidvy %e—msvi/(ﬂs)«a(r’ ) (4.57)

The parallel component of Ampere’s Law demands that
kJ_A” _JH (4.58)

so first we use (4.56) to find jH assuming it to vary as exp —i(k - r — wt).

First we show that

R e R (159)

Then, using (A.1), the first and second terms on right hand side of (4.56) combine to give

iw) q{gz“ns [1 = To(B)]ge ™ tern (4.60)

. Evaluating the double bracket in the third term on the right hand side of (4.56) with the help of (A.17) gives

Jl( ) va_ 5B|| z(k R—uwt) JO(kL(;U_ )Jl(kj_éu-) mvi 6BH i(k-r—wt)
<<Vl . AL>>5 < W q BO > = — kLS;JL q B—Oe (461)
With this result and (4.40), this term becomes
or TS 3By |
—iw Z qsn _B_O”ez(kd‘fwt) (462)
Thus, putting these results together into (4.58) and cancelling the exponentials, we obtain the result
4w @*n, N T, (5BH
k2 A s 1-T —T1(Bs) = —+ 4.63
T = Z { (A6 ~T1(8) > 5 (4.63)

Using the result from the quasineutrality condition (4.51), we can eliminate the ¢E term to obtain

kikﬁcz WAH B q>ns AH T, 5BH
Tr? (W) = —ZS: T {FOS[H&Z(SS)] ( R ) + Dyl + & Z (&) <q—s?>} (4.64)
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Perpendicular Ampere’s Law

1. We begin with (4.4) and noting that

zZ X vy = v, (sinféy + cosbé;), (4.65)
so that
(7 x v )gR,E b)) = §(E, u,t)eik'"% ]( df(sin B&; + cos h&; )e?(kLvs /) cost (4.66)
T
The first term integrates to zero, leaving
. " kiv ik A
(2 % V1 )g(R, €, i) = —i(E, 1, )01 Ty < LQL) e, (4.67)

using the definition of n = 1 Bessel functions (A.17).

2. Focusing on the €; component, the velocity integral becomes

. ° e kLvL q2F0 kL'UL (UA”
271'1/ dv / vdv, Jp < ) Jo — +
— o0 I 0 + Q T Q k”C

w kioc\ (o wAp S (55) med 0B || e
J 3 | i(kor—w 4.68
w — vk [ 0< & ) <¢ Re ) B g By |f° (4.68)
3. Using (4.40), the first term in this integral is
% ko q n wle
. 4.69

Employing the plasma dispersion function (4.35) for the parallel integral and (4.40) for the perpendicular integral,
the second term reduces to

2 2 A
w2kl ¢*n . WAy
——t==—T Z -—— . 4.70
BRI ()7 (c) <¢ e ) (4.70)
Again using same approach for the parallel integral, but using (4.43) for the perpendicular integral, the third term
becomes
%k ¢*n T 6BH
2 ==_T Z —— . 4.71
L T, () <s><q - (a.71)

4. Summing over terms and using the relations (1.4) and (1.5)to simplify, we find the perpendicular Ampere’s Law

produces

B (0B, n o (420 1y AN T.05)
< ) qu S lrls< H ) F5€5Z(§5)< k|C> FS€SZ(§S)<qS B)
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4.1.6 Solving for the Dispersion Relation

1.

We assume a hydrogen plasma so that n; = n. and ¢; = —¢. = e. Using this simplification we can factor out n;,

¢i, and T; from the sums over species s.

First, we note that
2 2,2
Fikic® 1, k3 p3 kjvi
5

drw? @ng 2w

Dividing (4.51) and (4.64) by ¢?n;/T; and collecting like terms yields

A

S

and

T; o wAp\ K2 kR (wh s T;
ZS:EFOS[1+§SZ(§S)] <¢— k|c>+3 el +ZS:EF15[1+§SZ(§S)] ”

. Second, we note

Similarly, we can divide (4.72) by ¢;n; to get

gs wA G [wA
Z ST162(6) <¢ ')—zsjarls (chl>+

We can write the coefficients for this set of equations more clearly by denoting the following sums as

A= Z [1+ Tosbs Z(€5)]
B= Z (1—"Ts)
C= Z %nsgsZ(&s)
D= Z %FQS@Z(@

E— Z%rls

kLps
Qg = B)

48

Z %[1 + FOS&SZ(SS)] <¢; - U;CHC ) + Z 1 - FOs ( k”C ) Z 4s Flsgs gs <T 6B|>

(4.73)

(4.74)

(4.75)

(4.76)

(4.77)

(4.78)

(4.79)

(4.80)

(4.81)

(4.82)

(4.83)



and

W= 4.84
kjva 450
5. Using these definitions, our system of equations can be written in matrix form as
n _ LJAH
A B C ¢ ke
A-B o) C+E el =0 (4.85)
ne
C -FE D-2/5 7,98
g B
6. Setting the determinant of the matrix equal to zero yields the dispersion relation
a; B2 [2 c? BCY\?
——-B+—||>-—-D+—|—-|E+—| =0 4.86
5o 3G Tl (40

The physical interpretation of this dispersion relation, to be described in Section (5.1), is simple: the first term in
(4.135) contains two terms, the first corresponding to the Alfvén wave solution and the second to the slow wave
solution; the second term represents a coupling between the Alfvén and slow waves that occurs as k| p; approaches
unity.

4.2 Krook Collision Operator (Incorrect)

Beginning with the gyrokinetic equation

Ohs _ dhs ¢ Ohs _qs O(R.
o g mand = () ) =g SRR e

we drop the nonlinear term (the Poisson Bracket) and choose a simple Krook collision operator of the form
C(fj) ==Y _vir(fi — Fosr) (4.88)
k

where the term Fj;; represents a Maxwellian equilibrium. We consider only like-particle collisions and so reduce this

collision operator to
C(f3) = —vi(fj — Foy) (4.89)

where we have defined v; = v;;. The gyrokinetic distribution function is given by

so(r,t
fs = Fos(v,t) — %Fas(v, £) + hy (R, 0,01, 1) + 6 fos + - . (4.90)
Os

Dropping second order terms, the zeroth order term of the collision operator cancels, leaving us with the first order term

C(fs) = Vs (hs - MFOS) . (491)
TOS
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Plugging this operator into the gyrokinetic equation, we find

Ohs  Ohs, (hs 0 (D)g, Fos) _ 4 OR. (4.92)

o e T T T, o

Os

4.2.1 Solving for the Distribution Function

Decomposing the gyrokinetic distribution function into solutions of the form hy(R,v,t) = hy(v)expli(k - R — wt)], we

can solve for the distribution function
quOs < >R+ZVS<¢>R

he = 4.93
Ty W+ g — kH’UH ( )
Plugging in the expression
. kivy v A () med 5B | nerwn
(x) [Jo( a ) )t koo g By ¢ ' (4.94)
and
o kiv o
(O)r = Jo(=5 )9 (4.95)
the final solution for the distribution function is
5 qsFos kivy WAH W+ v kivy - WAH
hs J Ji - 4.96
T, { 0 ( Q, ) k”C w1 — k”’l}” 0 Q, ¢ kHC ( )
5 (42 st 58
+ u RIVA LN (4.97)
w+ivg — kHv” kiv, q Bo ' '

Qg

4.2.2 Results
L @Ay T; wA as T, 6B\
ZS: E[l + Toss Z(1s)] ( Fe ) + Z i(l —Tos) < he ) Z Flsgs (1hs) <T?> -0 (4.98)
: v\ (5 @A i [wA s 6B
ZS: %m[l + 626 (1+i=2) <¢— k”c> + & < k”c> Z TTu(L 4 Y2 ()] <Z—?> = (4.99)

ds A qs WA” T; 5B|| _
Z Flsws (77[]5) <¢_ k||C> - - Zl—‘ls ( k||0> + (E?) =0 (4100)

We can write the coefficients for this set of equations more clearly by denoting the following sums as

- + Z 1—‘2555 (%)

A= Z %[1 + FOsd}sZ(ws)] (4101)

S
S
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B=Y_ E(1 —Tos) (4.102)

Ts
=Y %Fls&Z(%) (4.103)
=3 %Fls%z(%) (4.104)
T,
A
b= Z T; T2s8s2(vs) (4.105)
as
E=) T 4.106
>, h (4.106)
Timi 1/2
F= ; (Tsms> Los[1 + s Z ()]s (4.107)
2 2
o, = Sl (4.108)
2
w
W= 4.109
v k”’UA ( )
and
w
s = 4.110
kyves (4.110)
w ~+ g
s = 4.111
v kyvts (4.111)

Using these definitions, our system of equations can be written in matrix form as

o wA

A B o ¢- e
F\Bi|z o)z C'+E ) =0 (4.112)
ne
O// _E/ D/ _ 2/6Z gﬂ
¢ B
Finally, the dispersion relation can be found
. A7 ) / .
{0524 - \/_EBF] {% —A'D' + C”C”} — [A'E + BC" {A’C” +A'E — @C’F =0 (4.113)
w w A w
4.3 Krook Collision Operator (Correct)
This time we’ll take the Krook collision operator to be
C(fs) = —vshs (4.114)
Ohs Ohs s 8<X>Rs
ot + ) 92 + vshs = To. ot Fos. (4.115)
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4.3.1 Solving for the Distribution Function

Decomposing the gyrokinetic distribution function into solutions of the form hy(R,v,t) = hs(v)expli(k - R — wt)], w

can solve for the distribution function

qSFOS w<>A(>R

he =
T, w+ivs — kH’UH

Plugging in the expression

kivy

<>€>R=ljo( Q ) (¢ —

. - .
v||A||)+J1( g) mv? 0B

ei(k»R—wt)
TR B

the final solution for the distribution function is

5 qsFos WA|| w + s kivy 5 w/iu
hs = 1- . Jo ¢——
T, w+ v — kHUH kHC W+ 1w — k”UH Q, kHC
w /ﬁ_’lu_ ( ) mUJ_ 5B||
w+ v — kHUH Jo Q, k

qg Do
4.3.2 Results

T; . WA A s 9B _
Z ?[1 + FOsd}sZ(ws)] <¢ - W) + Z T 1 - FOs (W) ; arlsgsz(d)s) <q_?> =0

S
S

T; v\ (2 wA) Q; WAH s T, 0B, _

+ Z T FZS&S (wS)

qs 5 WAH s WAII
; arlsﬁlszws) <¢ - W) - ; arls (W) +

We can write the coefficients for this set of equations more clearly by denoting the following sums as

T;
A = Z ?[1 + FOsd}sZ(ws)]

S
S

B= Z —Tos)
= Z %Flsfsz(u%)

- Z %Flsd)sz(ws)
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(4.116)

(4.117)

(4.118)

(4.119)

(4.120)

(4.121)

(4.122)

(4.123)

(4.124)

(4.125)

(4.126)



T,
D'=>" T D26 Z ()

E= Z%Fu

Tim; \ /2
F=3 (7)) ralt+ w2,

Temg
o = Kt
s =
2
_ w
w =
k”vA
and
L w
* ks
w+ v,
ws = A -
||vts

Using these definitions, our system of equations can be written in matrix form as

(Z/;— LUAH
A’ B c’ e
FVBi/w «;/w* C'"+FE UZAH =0
e
O// _E/ D/ _ 2/6Z gé_BH
qi B

Finally, the dispersion relation can be found

- - _A/D/+O/C// —[AIE—l-BC”] AIC”—l-A/E—
w w %

o ]2

53

oy
w

=0

(4.127)

(4.128)

(4.129)

(4.130)

(4.131)

(4.132)

(4.133)

(4.134)

(4.135)



4.4 Lenard-Bernstein Collision Operator

One possible simplified model of the full Fokker-Planck equation is the one-dimensional Lenard-Bernstein equation (p.309,

Stix, Waves in Plasmas)

of + ——) = —%E(z,t)g (4.136)

ot Yo Vo v

of of 0
ot 0z v

where v is the collision frequency. (Note here that, as is the usual convention, Boltzmann’s constant x has been absorbed
to give temperature T in units of energy.) This model was used for one-dimensional plasma oscillations in a Maxwellian
plasma. Collisions in this model induce f to relax toward a stationary Maxwellian with an average particle energy

(mv?)2) =T/2.

Linearizing and taking the Laplace-Fourier transform leads to

o T 92 0
[—iw +ikv —v <1 + Voo + EW)] filw, k,v) = —%E(w,k){;—v(v) + fit =0,k,v) (4.137)

This equation may be solved for f; by splitting into two regions: an inner region near v = w/k where 9fo(v)/0v may
be approximated as a constant, and an outer region |w — kv| > v where the collision terms may be, to lowest order,

neglected.

4.5 Linear Dispersion Relation with Hyperviscosity

We begin with the linearized, collisionless gyrokinetic equation with a hyperviscosity term of the form +vg V4 hg

Ohs
ot

9s R, o - (4.138)

. Ohg
tuz gr- T raVihe = 5o =g

OR

Decomposing the gyrokinetic distribution function into solutions of the form hy(R,v,t) = hy(v)expli(k - R — wt)],

we can solve for the distribution function

hs = quios — Z.:j:?‘_ g (4.139)
Plugging in the expression
Dm = [Jo(m;ﬂ(é B vnfn )4+ gﬂ m;fi %i” pilk R—wt) (4.140)
and using the manipulation
w ( . kv ) _w [w +ivpk? - (w+ivgkd — k”v”)] _w ( w +ivgkt B 1) (4.141)
Ry \w+ivakl =k )k w vkl — kv Ry \w + vkl — Ky
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the final solution for the distribution function is

5 qsFos kivy WAH W+ s kivy - WAH
hs = Ji - J, — 4.142
T, { 0 ( Qg ) k”C + w1 — k”v” 0 Qg ¢ kHC ( )
kv ~
+ u g (o) 2 ( 55) mv? 9B (4.143)
wtive— ko) 7\ Qs B a B | '

NOTE: There may be something wrong with the formula above.

4.5.1 Stupid and Wrong Moves

This is precisely the same as the solution without hyperviscosity if we replace w with @ = w +ivyk?. Hence, we can use
the existing solution, needing only to include the hyperviscous dissipation in the final frequency so that w = © — iz/ijl_

where w is the usual solution of the dispersion relation.
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Chapter 5

Limits of the Gyrokinetic Linear
Dispersion Relation

5.1 Analytical Limits of the Dispersion Relation

The complex eigenvalue solution @ to (4.135) depends on three dimensionless parameters, the perpendicular scale com-
pared to the ion gyroradius k, p;, the ion plasma beta (;, and the ion to electron temperature ratio T;/T,. The linear,
collisionless gyrokinetic dispersion relation can be simplified and solved analytically in certain limits of these parameters;
the integrals of the Bessel functions over velocity space Igs, I'15, and I'as and the plasma dispersion function Z(&;) can
be approximated by simple analytical series for large and small arguments. The arguments of the integrals for ions and
electrons are o; = (k1 p;)?/2 and o = (me/m;)(Te/T;)(kLp;i)?/2; for the plasma dispersion function they are & = ©/v/B;
and & = (me/m;)"/*(T;/T.)"/?T/+/B;. Natural parameters for expansion of these functions are o; and /F;. Below we
explore the limits of large scale a;; < 1, weak magnetization v/3; > 1 and strong magnetization v/3; < 1.

As we shall see in Section (5.1.1), the gyrokinetic dispersion relation separates into an Alfvén wave and a slow wave
branch (the fast wave is ordered out by the gyrokinetic approximation). The slow waves are damped in this limit;
based on this fact, we expect a nonlinear cascade of turbulent energy to smaller scales that reaches the scale of the ion
gyroradius to be comprised primarily of Alfvén waves. Hence, the limits of weak and strong magnetization around the
ion gyroradius scale, describe in Sections (5.1.2) and (5.1.3), will focus on the Alfvén wave solution to the dispersion

relation.

5.1.1 Large Scale Limit, k2 p? < 1

In the large-scale limit of kipf < 1, or a; < 1, we can expand the functions I'gs, I'15, and I'ss using an ascending series
formula for the modified Bessel functions I,, (4.15). The resulting approximations for species s are Tg(as) ~ 1 — as,

I(as) ~ 1 —3as/2, and T'a(as) ~ 2 — 3as. The dispersion relation in this large scale limit simplifies to

[%—1} [%—Lu%z}zo (5.1)
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The first factor leads to the familiar Alfvén wave dispersion relation for

w = k”’UA. (52)

The second factor represents the slow wave solution of the dispersion relation. This solution depends on the ion
plasma beta (;, so we can further simplify the slow wave solution for collisionless gyrokinetics at large scale in limits of

Vi
In the strongly magnetized limit, v/8; < 1, the argument of the plasma dispersion function for the ion terms is large
& > 1; however, unless the temperature ratio (T;/T.)"? > /Bi(mi/me)"/?, the argument of the electron terms is not

large. Taking the limit (m./m;)"/?(T;/T.)"/? < \/B; < 1, we drop the electron terms of the plasma dispersion function.
The plasma dispersion function can be expanded by (5.14) for &; > 1 so that

fZZ(fl) =~ Z'\/Egide_gf -1+ 2i§2 (53)

Under this ordering, the first term in the slow wave portion of (5.1) is dominant leading to

w2

} k202 —
I _ Ejh e e =0 (5.4)

T8 w2 k”vthi

Assuming weak damping, to be checked later, we can solve for the real frequency and damping rate by expanding this
equation about the the real frequency (Krall and Trivelpiece, Sec 8.6.2). The dispersion relation D(w) is expanded about

w = w, assuming the complex frequency w = w, + iy

0D (w,)
ow,

D(w) = D(w,) + i (5.5)

Separating the dispersion relation into its real and imaginary parts D(w) = D,(w) + iD;(w) and substituting, we find

Setting the imaginary part to zero and solving for the damping rate yields

V= —% (5.7)
Owr
where w, solves the real part of the dispersion relation D, (w,) = 0. The real part of the dispersion relation yields
w = kjcs (5.8)
where ¢2 = T,/m;; this is the familiar ion acoustic wave. Solving for the damping gives
3/2
7o z (%) 1% (5.9)

This agrees with the solution for ion acoustic waves in Krall and Trivelpiece (Sec 8.6.3) in the limit k%)%, < 1.
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5.1.2 Weakly Magnetized Limit, /3; > 1

In the weakly magnetized limit, we simplify the gyrokinetic dispersion relation for v/3; > 1 allowing for «; ~ 1. Here we
focus on the Alfvén wave solution to the dispersion relation since slow waves are heavily damped before reaching the scale
of the ion gyroradius. For T; /T, > (me/m;)a;, ae < 1 and the electron contribution to the velocity integrals of the Bessel

functions can be simplified as in Section (5.1.1). For v/3; > 1, the plasma dispersion function for both ions and electrons
can be expanded in the limit of small argument to give £, Z(&,) ~ i/ms; in the limit that (T;/T,)"/? < (m;/me)'/?, the

electron terms are negligible compared to the ion terms and may be dropped

With these approximations, the terms of (4.135) of order O(8; ! and higher can be dropped, resulting in the equation

T; _ B T; T;
52 {FQZ(l — FOZ) |:? — FOi +1-— F11:| — Fol(l — FM)Q} —+ 1w E(l “+ ?)(1 — FM)Q _ O[Z'FQ»L'(l —+ T) =0 (510)
e ™ e e

Solving this quadratic equation yields the solution

Y. B+ (1 =T)? + \/—%(1 + )21 = Tu)* + 4 Do (1 + £)G 511
Y= 2G (5:11)

where

T;
G =Ty (1 —Ty) {? — T +1— Fh—] —Tgi(1 —T'y)? (5.12)

5.1.3 Strongly Magnetized Limit, /5; < 1
5.1.4 Limits of the Plasma Dispersion Function
These limits can be found on page 30 of the NRL Plasma Formulary
1. A power series representation of the plasma dispersion relation for a small argument €| < 1 is

5 2 4 6
Z(€) = iy/me¢ —2§<1—%+%—f—§5+-~> (5.13)

2. An asymptotic series representation of the plasma dispersion relation for a large argument || > 1 is

e 1 1 3 15
Z(&) = i/moe —g(1+2—§2+4—§4+@+'“ (5.14)
where
0 y> |zt
o=<¢ 1 |yl <|z|7?! (5.15)
2 y<|z|™!
and £ =z + 1y.
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5.2 Gamma Function Definitions

Integrations over v, involve pairs of Bessel functions and can be written as modified Bessel functions. Three such
integrals arise in the calculation of the linear gyrokinetic dispersion relation; we label them I'g(«), T'1 (@), and T'z(a).

These integrals are

2v,d k
Fo(a) _ / CARCONE JQ ( LUL) e*”i/”?h, _ Io(oz)e*a,
0 v, Q
% o dvy 202 Jo (B gy (B
I‘l(a) _ / UJ_2 U1 ZL 0( Q k)'u 1 ( Q )e—vi/vfh _ [Io(a) o Il(a)]e_a,
0 Vth Vi et
OOZ’ULd’UL41)4 Jl(kJ‘ J‘) ? 2 /.2
Ly(a) = / —— |7 e” VLV = 2T (a), (5.16)
0 Vih Vs 5
where Iy and I; are the modified Bessel functions, the argument is o = k%’) 2.

In the large-scale limit k2 p? < 1, or a; < 1, we can expand the functions I'o(a), T'1(as), and Ta(a) as follows:
To(as) ~ 1 —ag, T1(as) =1 —3as/2, and Ty(as) ~ 2 — 3as.

5.3 High (§ Expansion

In the high beta limit, we make two asymptotic expansions: one for k p; ~ O(8; 1/ 4) and another for & p; ~ O(1). For

both of these expansions, the plasma dispersion functions can be expanded for small arguments since y/3; > 1 and we
assume (To;/Toe)'/? < (mi/me)'/?/B;.

5.3.1 kipi~ O(ﬂ %) Expansion

For k, p; ~ (’)(5-71/4), we will find that @ ~ O(1). In this limit, we can use the small argument limit of the perpendicular

velocity integrals (A.1) to find the order of the dispersion relation coefficients B ~ O(3, 1/2) and £ ~ O(ﬂ_l/ ). Keeping

only terms of order O(8; 1), the dispersion relation simplifies to

;D@ —1) = %w%ﬁ. (5.17)

3

We can write D = iﬁGl%, where Gy = 2[T'1; 4 (me/m;)"/?(Toe/To:)*/?]. Solving for @ yields

90&1 61 81/81
8G1 V m V 647TG2 ’ (5.18)

Let us consider the limits of this solution. The first limit occurs when

647 G2

€l
H

(5.19)
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The a; < 1 limit gives G7 ~ 2 and substituting «; = kipf /2 we find this limit is equivalent to

87'('1/4

3611

kipi < (5.20)

or more simply k1 p; < 8; /% Tn this limit, we can expand the square root to obtain

_ 9a; [y _ lp1 Bi
w==1- 8G1“ =+1- 16 5 V?T' (5.21)

This solution reproduces the large-wavelength limit of the Alfvén wave with weak damping and verifies our assumption
that @ ~ O(1).

The second limit is just the opposite, occurring for

871'1/4

381/

kipi> (5.22)

or more simply k| p; > 3, 14 1n this limit, the solution is

_j4G [ m
@ = dai V B (5.23)
9a; Bl
e

Here, we find that the Alfvén waves solution become purely imaginary, with a weakly (upper) and strongly (lower)

damped solution.

5.3.2 k,p; > 1 Expansion
In the limit k1 p; > 1, we will find that @ ~ 0(6;1/2). Keeping only terms of order O(1), the dispersion relation reduces

to
W BE® + ;3D — 20 = 0. (5.24)

Solving for the frequency produces the result

_ oG [m 2cu; OAZZG%TF
w=—i 2E21/Ei GEE 4Bl (5.25)

This solution confirms our assumption that @ ~ O(f; 1 2).

The lower limit of this solution occurs for

a?Gin 204
i B 5.26
1515, BiEY (5:26)
equivalent to
2
kj_pi < ﬁ7 (527)

3
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or more simply k) p; < 1. In this case, we find the solutions become

it
— { V7 Bi
w = 4G1

=\ —ide \/ﬁz (5.28)

The lower solution matches the weakly damped (upper) root above in the overlap region 3, V'« k 1pi < 1. The upper

solution corresponds to the slow wave root.

The upper limit of this solution, which we expect to correspond to kinetic Alfvén waves, is k| p; < % In this case,
we find

o=+ 2041' _Z,OéiGl 1
OV Ers 2E%

(5.29)
Assuming a; > 1 and «, < 1, we expand
1/2
Gy =2 [m + <Z—§‘;> 1 (5.30)
and E = —1. Substituting these values and simplifying finds the solution
w_ﬂ/@_@,(ﬁp%)\/j[ 1 +<%T08)“2] (5.31)
Bi 2 Bi | Vr(kLpi)? m; To;

Hence, in this limit the solution becomes the F; > 1 limit of kinetic Alfvén waves.

62



Chapter 6

Analysis in Linear GGyrokinetics

6.1 Density Fluctuations in Gyrokinetics

The results for pertubations electric fields, magnetic fields, velocity, and density are summarized below

where we have used the definitions

ﬂ:

—iX
ky

El, k1
=—i—(X+4Y)
ky Ky

EJ_y_ w 2

ky  kipi B
no8
q; Bo
EtSBL _kipi \/E'Y
q; Bo w 2
T; 60 qs_
2% _ _Bag1Ay — BYX + (Cy + By Z]
qi VA qi
T; 0015 . qs i
Ti00ss _ zq—/ﬁpiﬁ [EY — CsX + D, Z]
gi VA qs 2
n AS S
Tidhs 051y x4 By +0.2)
qi Ms q;

X — ¢E wA”
kHC
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- wA)

Y = e (6.10)
T; 53“
J=——. 6.11
q; Bo (6.11)
and also the definitions
T;
As = ?[1 + FOsgsZ(gs)]a (612)
T;
B, = i(l —Tos), (6.13)
Os - %Flsgsz(fs)a (614)
T
Ds = Tl—‘ngsZ(gs)u (615)
B, =%, (6.16)

S

6.1.1 Electric and Magnetic Field Fluctuations in Gyrokinetics

Given the definitions above, we can solve for the magnitudes of the x, y, and || components of the fields. This can be

used to compare to the in situ field measurements from solar wind satellite data. The results are

|ELax| pi = k1pi| X + Y] (6.17)
E i = — | |Z|~0 6.18
Bud o= 2 (L) 12 (6.18)
| Ei| pi = kypil X | (6.19)
Ti | B Lok ( ki )
——=|—)1Z|~0 6.20
¢ Bo ki | | ( )
T; |Bryk|  kipi VB
Li|Biykl _ kipi VBiy, 6.21
g Bo w2 ¥l (6.21)
T; | By
—=\Z 6.22
q; BO | | ( )
Note also that we can rewrite
T; Pi Vti
= -— 6.23
By 2 ¢ (6.23)
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6.2 Eigenfunction Construction in Linear, Collisionless Gyrokinetics

The dispersion relation is given by

A B C ¢ - ke
A—B o;)z® C+E “d) =0 (6.24)
@ B
6.2.1 Alfven Solution
We choose Y = 1 and solve for X and Z to obtain
~ CE—-B(2/8;— D)
X = CQ+A(2/ﬁi—D)Y (6.25)
7 _—UAE+BCO) (6.26)

- C?+ A(2/B; — D)
Solving it in a more illuminating way gives the alternative version

C (A/w* — AB + B?) — B(AE + BC)

X= A(AE + BC) Y (6:27)
6.2.2 Slow Wave Solution
For the slow wave you can either choose Z = 1 and solve for X and Y to obtain
x = e 628
/-t
Alternatively, you can choose X = 1 and solve for Y and Z to obtain
Z = OE_EA;(QJ;;C_)D)X (6.31)
Y = C* + A(2/5: — D) X (6.32)

- CE-B(2/p; - D)
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6.3 Derivation of the Ion and Electron Heating in Linear, Collisionless
Gyrokinetics

We specify a real forcing by an antenna in vector potential

o0

A = Z (Aantj il T—w;t) + Azntjefi(kj-rfwjt)) . (6.33)

Jj=0

Note that in the GS2 code, the forcing is done in A only, so we will specify here to the case that Aun = Agpne 2. The

Fourier transformed vector potential, specified in the terms of /1” and 5BH, is given by

. 6B
:AHZ—ik—LHA (6.34)
Including the antenna forcing in the Fourier transformed Ampere’s Law yields
9 (& - o . A4m
ki (AH + Aant”) Z + Zk(SBH X Z = ?6.] (6.35)
The gyrokinetic potential then becomes
R kivi [~ v (A + Ay ) Jy (L) me? 6B S Bw
(VR = [Jo( a) <¢ e ,E“fj ) | e, (6.36)
Q
The linearized gyrokinetic equation (keeping collisions) is given by
dg . Og q 900R
—= == — F ——=—"—=F=0 6.37
2t + vz IR (Cr(g, Fo))m T o 10 (6.37)
We model the collisions as a small damping term (Cr(g, Fo))g = —€gs; collisions are included to get the causality right,

but we will take e — 0 to recover the collisionless result. Fourier tranforming the gyrokinetic equation, assuming all
quantities vary as e “®R-9) e can solve for the distribution function
~ QSFOS w

9s = Ty w— kHv” + i€ <X>R (638)

Substituting in the gyrokinetic potential (6.36), and representing the parallel component of vector potential by Atot” =

} (6.39)

kLvL
- 4
% =g, (6.40)

AH + /AlantH, gives the result

. qsFos w/itot” w ~ (wH+ ie)AtotH Ji(vs) msvt 53”
s = Jo (Vs Jo(7s — 1
g TS { O(PY ) kHC + w — kHUH O(PY ) ¢ k”C + Vs qds BQ

where

66



and we have used the relation

( w ) < w > wtie w
— )y = -z
w = vk + e w=vky /) Ry ky
We have shown that the heating in collisionless gyrokinetics is given by

3 8T5 dr &1 nos 2 PR
o 52 e (s am) - 2] 5B [

The term in brackets on the left-hand side produces no heating over the medium time average, so to calculate the heating

to simplify the result.

(6.41)

we want to use the term on the right-hand side. After the medium time average

1 t+AT/2
a(t) = — t")dt' 42
"0 =57 [ ) (6.42)

where we average over a period AT long compared to the fluctuation timescale but short compared to the heating
timescale, 1/w < AT < 1/(we?), we find

Tos HAT/2 gy g3
§n058—0:/ / R/ g DR (6.43)
2" 97 " Jiarys AT 815

We represent the gyrokinetic potential by a Fourier series

(X)r = Z (<>A<>RJ ik R—w;t) 4 <X>E‘j€*i(kj'wajt)) (6.44)

Z ( i(k; R—w;t) _i_g:jefi(kj.wajt)) . (6.45)
Using (6.44) and (6.45) to substitute into (6.43) gives

3 OTos at’ d3R
5”08—7_ = ZQSZZ/ (6.46)

Jj=035'=0

[ (om0 Ry (g e R (g i R g i R

The integration over space gives delta functions d(k; —k;/) multiplying ({)r, 95, + (X)R&, s, and d(k; +k;/) multiplying
(X)r,9s, + (X)R,9s ,- The first delta function eliminates one of the sums since the delta function is only non-zero when
J

j = j'; the second delta function is always zero (except for j = 0, which we will see later does not contribute) and

eliminates these terms. The time integration can then be performed trivially because the condition j = j' removes the
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exponential time dependence. After time and space integrations, and using (6.38) to express J, in terms of (X)r,, we

obtain

3 aT‘Os 3 Wi Wi
= d*vEFos |(V)r, _ : 6.48
2" g7 Z / vro J‘ (wj—k|v| i€ wj— ko —ie (649

The integration over v) can be done by contour integration under the pole at v = w;/kj £ ie/k). For small values of

€, the contour integration yields the result

/C dv|FoS|<>z>Rj|2( @ ) (6.49)

wj — k”’l)” + 1€ wj — kHUH — 1€

00 2 00 2
- / dv IM_/ dv”M—m (ij05|<>Z>Rj‘2) (6.50)

gl .
wj — kH’U” + 1€ wj — kHUH — 1€ v =w; /k—ic/k

As we take the damping due to collisionality to zero, e — 0, the principal values cancel leaving only the residue at the
pole. Hence, we can express the result of this contour integration as a delta function in v by —imd(v) —w;/k). Therefore

we are left with only the perpendicular velocity integrals to perform

3 6T05 qs “ 2 Wj
5”08 = Zw /dSVFOs }<X>RJ’ 1) (’U| — k—r) (651)

Note the j = 0 term corresponds to k = 0, and since w(k = 0) = 0, this term does not contribute to the sum so we may

drop it. Simplifying the relation above, we have

2

w2
30Tos 272 o= o ~imb— / 2
= = 2 E wie "1%rs [ widvuie e ()R, (6.52)
2 Or U?hSTS = J ‘

Using (6.36) with v = w;/k|, the perpendicular velocity integral becomes

e - Zi s U Tsq; T.q; 2
/ vidvie " [(X)R,| = tT Los| X|? + T L1s(X 27+ X7Z) + ( - ) T Z|? (6.53)
0 iqs Tz s
where we have used the definitions
- W'Atotﬂ
X=¢p-—2 6.54
6 (6:54)
and
T, 6B
= ——. 6.55
gi Bo (6.35)
Our final result for the heating of species s is
_ 2
30Tos q s [T 9 T 2
- = = ilvens —Ts|X D (XZ*+ X*Z)+ —=T2|Z|7| . 6.56
D0 YEE S T [roixt + Lrxz s x4 i 030
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Figure 6.1: Comparison of Hot Plasma Dispersion Relation and Gyrokinetic Dispersion relation results for P;/P..

w

In terms of @ = Ton the ratio of ion to electron power is given by

=2

P, (Temi)1/2 e P [Too| X2+ T15(X 2% + X*Z) + Tay| Z]2]

(6.57)

P

Time

U? Time '
e~ Tom; {%FOS|X|2 T (XZ* + X*Z) + %F2S|Z|2}

69



6.4 Laplace-Fourier Solutions to Linear, Collisionless Systems

6.4.1 Driven Linearized Electrostatic Vlasov Equation

To begin, we consider the electrostatic Vlasov System given by the Vlasov Equation

%J’_V.st_F&E.%:
m

5 B 520, (6.58)

Poisson’s Equation,
VE =473 g /d3vfs (6.59)
and the electrostatic approximation of Faraday’s Law,
V xE=0. (6.60)
Expanding the distribution function and the electric field into equilibrium and small fluctuating components using
fs = Fos(v) + 0 fs(r,v,1) (6.61)

E =E; +0E (6.62)

where we assume a field-free plasma with a uniform Maxwellian equilibrium

Ey=0 (6.63)
Fou(v) = —2 v 6.64
Os(U)—meXP —v—tgs ) (6.64)
using Faraday’s Law to write the electrostatic field as a gradient of a potential dE = —V ¢, and assuming charge neutrality

of the equilibrium ) gsnos = 0, we obtain the linearized electrostatic Vlasov system

94 fs qsFos _
pr +v-Vofs+ T v-Vo=0 (6.65)
—V2%¢p = 47r2q5/d3v<5f5. (6.66)

Now, we must choose how to drive this system by adding an antenna term. Without knowing the correct way to

drive this system, let us consider adding two possible terms:
1. Adding a term —qsFps/Tsv - V@, to the right-hand side of equation (6.65).

2. Adding a term —V?2¢, to the left-hand side of equation (6.66).
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We can consider three cases: case (1) first term only, case (2) second term only, or case (3) both terms. In order to
determine the solution for all of these cases together, we add in accounting factors o7 and oy to keep track of which
source terms yield which terms in the final Laplace-Fourier solution. Thus, our system is defined by the equations

agfs tv- VS + %v Vo = —o qSJiOSv Véa (6.67)
V04 a0,) = 4n Y a. [ Vil (6.68)

Taking the Fourier transform in all spatial coordinates produces
8?;‘“ 4k VO fies + quios ik Vo = —o1 quios ik - Voéira (6.69)
K> (¢x + 026ka) = 47 > _ s / A*V6 fics. (6.70)

Now let us choose a driving term of the form
Pra = Proe” " (6.71)
which has a Laplace transform

Pra = %. (6.72)

Taking the Laplace transform of the Fourier transformed equations above yields the Laplace-Fourier solution for the

distribution function
_Ofis(t=0)  gsFos ik-v

2 2 Pxo
0fks = 6.73
Ji p+ik-v T, p+ik~v{¢k+alp+iwo ( )
We can then plug this solution into the Laplace transformed Poisson’s equation
2 ¢k0 / 3 R
k? =4 s | A3V fis 6.74
(¢k+02p—|—iwo) qu v fx (6.74)

and solve for qgk.

Before doing so, however, we specify the initial condition § fis(t = 0) = 0 to simplify the results. We need to find the

zeroth velocity moment of the distribution function,

2 3 . 2
A q;nos [ + Pxo d°v ik-v -
s | d3 g =—-=2 + Vis .
4 / vofi T (¢k Ulp—l—iwo) / 71'3/21),538]9—|—z'k-ve (6.75)

Vz
Vts

Without loss of generality, we choose k = kz. Dividing the top and bottom of the integrand by —ikv.s, defining z =

and &5 = #ﬂts, the v, component of the integral can be cast into the form
+oo
dr —x 2
/_ AR =1resE) (6.76)
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where Z(&) is the plasma dispersion function; the v, and v, components simply give unity. The zeroth velocity moment

of the distribution function becomes

2
¢ dsMos ¢
QS/d?)V(kas = - TO (¢ +o ) [ + §s (55)] (677)
s WO
Therefore, Poisson’s equation, after using the definitions w = 47n0sq? /ms and vZ, = 2Ts/ms, becomes
bt (G 10 Z 1+ 6.2(60)] (6.78)
P+ iwg 'p —i— 1w k2
The solution for qgk is
o X, 5 R
~ kO s 162—2 s s
Sre(p) = —o2—— ¢“0 — o —— (6.79)
(p+iwo) {1+ 2, mi1+ 62} (+iwo) {1+ 5, 1 +62(6)]}
If we define the plasma susceptibility for species s as
2
Xs = 3 1+ &Z(6)] (6.80)
Uis
and the dispersion relation as
—1+Zk2 [14&:2(¢s)] —1+Z><57 (6.81)
the solution can be written more simply as
Su(p) = —og — 2K gy W02 Xe (6.82)

(p + iwo)D(p) (p + iwo)D(p)

Now let us invesigate the consquences for each of the cases for driving discussed above. Let’s write dispersion relation
in terms of two solutions +w — v giving D(p) = (p + iw + ) (p — iw + ) /p? where we assume that real frequency w > 0
and damping rate v > 0.

Case(3): Both Terms

In this case, 01 = 09 = 1, so we have

2 Pxo
=\ 6.83
Pup) (p + iwp) (68%)
The inverse Laplace transform, using the Residue Theorem, gives the solution
Pr(t) = —proe 0! (6.84)
so the distribution function becomes
6 fis = 0. (6.85)

Hence, the antenna potential is directly opposed and there is no plasma response. This is clearly a lousy choice for an
antenna.
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Case(1): First term

In this case, 01 = 1 and o2 = 0, so we have

Coon L ko xs(p) . dko Pxo
o) = D)~ tiwe) T i) DD) (6.86)

where the second form was obtained using D(p) = 1+, xs. The inverse Laplace transform, using the Residue Theorem,

gives the solution

. (bkoe_iwot (:l:w _ Z',y)2¢koe—i(iw—i'y)t
t) = — twot .
D) = =0 Dy~ i) T 2l — (o — ) (057
Plugging the solution for @i (p) back into the distribution function yields
; gsFos kv Pxo
0fks = — - - 6.88
fi T, p+ik-v (p+iwy)D(p) (6.88)
Case(2): Second term
In this case, 01 = 0 and 02 = 1, so we have
5 Pxo
o) =—F— - 6.89
(®) (p + iwo)D(p) ( )
The inverse Laplace transform, using the Residue Theorem, gives the solution
—iwot 4+ —i~)? —i(tw—iy)t
bu(t) = — ¢kof S (fw — i) o€ . (6.90)
D(p = —iwp) 2wlwy — (fw — )]
Plugging the solution for ¢?k (p) back into the distribution function yields
. Fos  ik-
O iy = L2 27 Pho (6.91)

Ts p+ik-v (p+iwy)D(p)

Conclusion

Overall, these Cases (1) and (2) give the same set of equations if you plug the solutions into (6.67) and (6.68), different
only by an overall negative sign. Thus, these cases are completely equivalent. Note, however, that when plugging the
solutions back into the equations, the resulting equations look like Case (2), suggesting this is the more natural way of
writing the driven system of equations. I guess the equivalence of these systems is somewhat obvious, as can be seen by

a simple transformation of the variable ¢ to transform from one set of equations to the other.
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6.4.2 Driven Linear Collisionless Gyrokinetics with 6B =0

We derive the Laplace solution for driven linear collisionless gyrokinetics with the simplification that we constrain 6 B = 0.

The system of equations we solve is

695 +o ags + qSFOSU a<¢>RS _ _qSFOSﬂ6<A”>RS
ot YI 0z T, I3z T, ¢ ot

2
ZQSTT:S((ﬁ_ ZQS/dVgsr

_4—VJ_ AH —I—AHa ZqS/d v gs>r
where we choose the antenna driving term to be
i(ko-r—wot
Ajla = Ajge’*eTmen

Fourier transforming these equations in space yields

9gics
o T kIvgKs + ik %

qzns
} (1 — FOS) ¢k = ZQS/dBVJOSgks

ckf_
E(Aﬂk + Ajka) = Zs:qs /dgvv” Jos ks

Next we must Laplace transform in time. Note that the driving term is transformed by

A > iwot ,—pt Ajko
Alrea = / Ajoe ™0l = —=
0 D+ iwo
Performing the Laplace transform in time gives
qSFOS

. qsFos v N
Piks — gks(0) + ikjv) Js + zk||v|| U|\JOs¢k %Jos [pAHk - A||k(0)}

S

q2ns " 3
S (- To) b= Y 0 [ dviueg
Cki ~ AHkO 3 R
- (Allk D+ iwn Z%/d V| JosJks

We can now solve for the Laplace-Fourier transformed distribution function

N gks(o) _ qSFOSJ

_ kv v pAx vy Ax(0)
p—i—ik”v” TS

p+ ik|\UH cp—+ ik||’l)|| cp+ ik|\UH
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(6.93)

(6.94)

(6.95)

(6.96)

(6.97)

(6.98)

(6.99)

(6.100)

(6.101)

(6.102)

(6.103)



Since this is a driven system, we can choose zero initial conditions to simplify the solution as much as possible,
9ks(0) = 0 and A (0) = 0. This simplifies the distribution function solution to

(6.104)

. Fos ikop [~ ipA
i = 01 191 l Ak

T Osp—l— ’LkH’UH

Performing the integrals over velocity, using (A.27) and (A.28) for the parallel velocity integrals and (A.1) for the

perpendicular velocity integrals, and plugging into Maxwell’s equations gives

2 ; inA
q5ns - ipA|K ipAjx
= | (1 4+ Tos&sZs - 1—Tos =0 6.105
XS:TS (1+Tosé )(¢k e + ( O)kHc ( )
ki kie® [ipA ip Ao/ (kyic) - ipA 2
I PAIk | P4 ko/\F) € A qsms
— — Tos(1+&5Z5) = 0. 6.106
47Tp2 kHC + p+ in + ¢k kHC ; TS 0 ( +£ ) ( )
Assuming a hydrogenic plasma, n; = n, and ¢; = —¢., this can be put into a more recognizable form
u ipA”k T; z'pAHk T;
- — — (14 T9s&sZs —_— —(1—=Tps) =0 6.107
<¢k k||0>zs:Ts( +T0sésZs) + e ;Ts( 0s) ( )
. ipAp T; a; (ipAp a; ipAjko/ (kyjc)
_ “Tos(1 s il == =17 6.108
<¢k k”C );TS 0s(1+¢ )+w2 kHC w2 P+ o ( )
where we have defined
p
s = ; 6.109
5 _'LkH'Uts ( )
2 2
-y (6.110)
2
and
—_ ip
= 6.111
“ = Fea (G410
The following definitions simplify the final result:
~ ~ ipA”k
E|=¢x — 6.112
1= 9" e (6.112)
- ip/AlHk
I (6.113)
k”C
- A k
5 — Ao/ (k) (6.114)
D+ two
A=Y 2(1 +Tosés Zs) (6.115)
T
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B:Z%(l—FoS). (6.116)

S

Hence, the final set of equation is given by

(425w )(5) = (ales) o7

Solutions for le and EH are given by

~ —aiA/52§
A= 6.118
I~ 2A/o? — AB + B2 (6.118)
~ aiB/w25'
E) = 6.119
I~ @A/ — AB + B? (6.119)
and the solution for the distribution function is given by
. qsFos ikjvy =
s = = J s . E 6.120
Gk TS 0 p+ ’LkH’UH | ( )
Now we will focus on the solution for Aj(t). The Laplace-Fourier solution is
N OziAk2’L)2 AHkO
Ape = 1412 6.121
I p%(p + iwo)D(p) ( )
where we have defined the dispersion relation as
WA
D(p) = 22 — AB + B2. (6.122)
w
To put this into a more useful form, we can define
) oziAkﬁvi 6123
W =g5—5 (6.123)
where we note that A = A(p). The Laplace-Fourier solution may then be written
" —-Q%A
@ Ao (6.124)

Ak = TN + w0)

Now the expression p? + Q? is just an alternate form of the dispersion relation; the solutions to p? + @2 = 0 are the
eigenfrequencies of the system. The system with 6B = 0 has two solutions, the Alfven waves. We can rewrite the
expression p? + Q% = (p + iw1)(p + iwz), where w; and wy are the eigenfrequencies; we know for this system these

solutions typically have the form w; = w, — iy and wy = —w, — iy. Now we can write the system so the inverse Laplace
transform is easily found by application of the residue theorem,

_ —Q*Ajxo
A = . . —.
(p + iwo) (p + iw1) (p + iws)

(6.125)
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The solution is

2(p = —jwp)e ot 2(p — i )e—twit 200 — _jwo)e—iwat
Ape(t) = Ao Q" p 0) Q*(p 1) Q*(p 2)

6.126

(w1 —wo)(w2 —wo)  (wo—wi)(w2 —w1)  (wo—w2)(w1 —w2) ( )

Note that since wi; = w, — iy and we = —w, — iy, the second and third terms will decay with time. Also, because w; and
wy are the solutions to p? + Q2 = 0, we can replace Q%(p = —iw1) = w? and Q*(p = —iws) = w3 if we desire.

The solution above is as accurate as the replacement p? + Q% = (p + iw1)(p + iws). For long times, we can get rid of

this inaccuracy by putting p? + Q? back into the solution for the first term to give an alternative version

2(p = —jwp)e ot 2(p — i )e—twit 200 — —jwo)e—iwat
Ax(t) = Ajxo Qv 0) Q(p 1) Q(p 2)

wd —Q%(p=—iwy) (wo—wi)(w2—w1)  (wo—wa)(wr —w2) (6.127)

Comparison of this solution with the results of GS2 is given in Figure 6.2.

i



Drlivel,-n IGsllrolkipelticls yvitih .65:::=.0 .

40 I 1 1 1

30 -

A
[4Y]
o

I
I

1 p,=0.01, T,/T,=0.01, k,p,=0.4 7
10 it A,=10, ©,=3.6 n
I — GS2 Results .
Laplace—Fourier Solution .

lap7c2 Time, t/(kyv,)

Figure 6.2: For a linear system driven by an antenna of amplitude Ajp = 10 and driving frequency wo = 3.6 with
parameters 3; = 0.01, T;/T. = 0.01, and k, p; = 0.4, the comparison of the analytical Laplace-Fourier solution with GS2
results is shown. Note that the eigenfrequnecies are given by £3.0705 — i0.0074885 (normalized to kjjva).

6.5 Turbulent Cascade Models using Linear Gyrokinetics
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Chapter 7

Conserved Quantities in Gyrokinetics

7.1 Conserved Quantities in Gyrokinetics

First, we multiply the gyrokinetic equation by Toshs/Fos and integrate over all guiding-center space R and velocity

/d R, v TOS /d3R /d3 TOS /d3R
o hav 5, a

d°R; o

_/T/d?)vqshs X R

The second term is odd in v and disappears when integrating over velocity. The third term disappears because

d*Rg
\%

g/cﬁRs vy Los 2 /d3R /d3
ot | vV Fos 2

hs [(X)R., hs] = 0

leaving us with

d3

TOs C
FOs

[<X>Rs7h3]

Now, we sum over species and split gyrokinetic potential x = ¢ — v - A/c on the right-hand side to get

d3R5 3 8<X>Rs - dBRS 3 8<¢>Rs
;/—V /d VQShs n —;/ % /d VQShs ot -

and we will treat each term on the right-hand side individually.

d3r By
z/ = [ dvan -

2
qsnos , E 3
s TOS d) B s /d Vi <h >

The first term can be written

d®*Rg
5O [ 2

Using the quasineutrality condition
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ot ot
dr 00

—zﬁ:/dqudh e

)
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this term can be written

d3 o 2 s ] d3 2 s 2
Crios~gnos, 0 / %70 (7.7)
Voot Tos ot Tos 2
The second term can be written
v OA
_ 43 hg——C 17— dS S . i}
ST [ange =S [ [t
dSI' 1 6AH 3
= 72—615 g/d V4s <h (7'8)
Using the parallel Ampere’s Law
c
_EviAH = Z/d3vqs’l}”<h >r (79)
we obtain
d°r1 (9A|| C 9 1 d3r aAH
pialbeuinlal | = A 7.10
/V08t4ﬂ' I VJ‘H(?t ( )
Integrating by parts once in space gives
0A 1 d’r OV, A 9 [ dr|VLA?
1 [droy 04 1 [dr L4y _ Vo4
/ Vi ot 471'/ v T o 8t/ 87 (7.11)
The third term can be written
VJ_ AJ_ d HYLAL AJ.
I‘ 1 6AL 3
= _— d’vgsvy (h A2
LEL Z/ va.v. (hy) (712)
The perpendicular Ampere’s Law is (is this correct?)
4
ViéB =Y —qs | d*v(z hs)y. 7.13
105 ECQ/ V(2z X v hg) ( )
Crossing this equation with z gives
[CN
— 2 V.ié6B = zsj/d3vqs<vms>r. (7.14)
Substituting in using this form of Ampere’s law gives
d3r 1 8AL C 1 d31‘ 8AL
— | ——12 V5B): — | —z2x V1 0B - —— 7.15
V¢ ot (MZXL I Jram/vzxl L™ (7.15)
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Now, we note that
dsB) 9By
—_—y - —X.

Z X VL(SBH = or Yy ay

Therefore, we can integrate by parts in space to find

47 dy Ot
- 1 d3r5B 85BH . 8 /dSI‘ |5BH|2
4 1% ot — ot 81
after noting that
o _0AL, 0AL,
5BH—Z VXxA= ay — Oz

Putting all of these pieces together, we find

1 d31‘ 85BH 8AJ_U 85BH 8AJ_$ 1 d31‘ 0 6AJ—U
+ /V <8x oL ) Yo ) v 6t< 0z

aAJ_w

dy

Z/ &R, /d3 ToS_s _ 2 /d3 ginos ¢ [VLA?  [6B)?
8t FOs (9 14 A TQS 2 8 '

This can be written alternatively as

OIS ([ [ Bt [ Eriin gty [ B
FOs 2 Vv TQS 2 14 8

7.1.1 Question

Is this true?
dgr qznOS ¢2 _ ngs QETLOS <¢>%{
V Tos 2 Vo Tos 2

S

7.1.2 Demonstrating Equivalence to Power Balance Form

It is important to note here that

d3I‘ 3 TOS QSFOS FO25 3 d3I‘ 3 quOS 2
2[5 [ evge (et - NADYEIEE WE R

But note from quasineutrality that
d3 qg I Os , d3 h
ES v Tos ¢ = §S VQS< >

so we obtain

d3I' q2F0 d3r q2F0
— BvE2g — — [ BvE2? =0,
/V¢Z:/VTOS¢ZS:/V/VTOS¢ ’
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(7.17)

(7.18)

(7.19)

(7.20)

(7.21)

(7.22)
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Therefore, we can subtract this to the expression from before to give

0 ng TO h2 d3I‘ TO q2F0 q2F0 ¢2
= 2 [ B s _ - | & 2 —qsplhs 25708 p2  As” DS ¥
o lZ/ v / Vs 2 Z/ V/ "FOS( A R 2)

&r [§B|?
+/7r| 87T| } =0 (7.25)

Therefore, we arrive at the same conserved quantity, the energy, as appears in the Power Balance Equation

0 ng To h,2 ng' To q2F0 ¢2 ng' |5B|2
_ 5 d3 28 - d3 - s hs r st Eva = 2
atzsj[/ v / wy /) VFOs<q¢< o, 2>+ v 8w} ’ (720
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7.2 Moments of the Gyrokinetic Equation

First, we multiply the gyrokinetic equation by Toshs/Fos and integrate over all guiding-center space R and velocity

d°R Ty R, Ty PR, To,,
dvp=h div = hy / Ay h s
/ FoS 8t / / Fos Sl -y 3 FoS [<X>Rsa ]
PR,
_/ v / dvash, P =0 (7.27)

The second term is odd in v and disappears when integrating over velocity. The third term disappears because

PR,
v s [0R. hs] =0 (7.28)
leaving us with
o [ dBR Tos h? PR ()R
— Sl By s [ 20 By — B = 2
6t/ v Vs 2 /V / vashs =5 =0 (7.29)

Next, we multiply the gyrokinetic equation by ¢s{x)r, and integrate over all guiding-center space R and velocity

B3R, PR PR
/T/dgVQS<X> / /d Vq.s RSUH a / /d3VQS [<X>R57h5]

a3 FS
/ R, /d3 5 Fo R53>(§>tm _o (7.30)

The third term disappears when integrating over all space, leaving

PR 3R PR 2Fhs (X)%
/ /d3vqs X)R.: o 315 / /d Vqs Rsv” 3 / /d3 dst'o Rs =0 (7,31)

Next, we subtract eq (7.31) from eq (7.29) to obtain

d R 3 TOS s FOS X R, d3R
8t/ /d (FOS_ qshs(X)Rr. +4 To. ) / /d Vs (X)R. UH 3 (7.32)

7.3 The Gyrokinetic V-J =0

We can find a gyrokinetic form of V - J = 0 the zeroth moment of the gyrokinetic equation multiplied by g5, summed

over species, integrated over velocity, and ring-averaged at constant position r,

> </d3"qs {aaf; “H% + Bio I F038<8>tR5]>1r =0. (7.33)

S
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Rearranging and taking the ring average into the integrand, we find

Y [ atvaan 2eke mz [tvactha, =3 [@vEE (m ),

s 0
0 3 quOS
+§zsj/d Voo ()R )y (7.34)

The first term on the right-hand side can be replaced by the quasineutrality condition

QETLOS 3
Tq& => | d*vas(hi)s (7.35)

giving

(9<h5> 8 q Nnos qS
3 r s 3
Z/ Ve Ty T T T, O Z/ g, Hoomshisby
0 3 ngOs
+5;/d Voo ((X)R. )y (7.36)

To connect with eq (7.32) of the previous section, we must multiply by x and integrate over all positions r to get

S a5t = S [ G -5 [ [ v awmn,

&Pr [ 5 @2Fos 9 {(X)R.),
+Zs:/7/dv To. ¥\ ot T

Os

The first term on the right-hand side can be rewritten by expanding the gyrokinetic potential x = ¢ — v - A/c
d? s O d? s 0 Ao A, 0
—Z/ ragnos 00 _ Z/ rggnos (06 vA 06 vi - AL D9 (7.38)
B 14 TQS at Vv TOs 8t C ot C ot

We can eliminate the second term on the right-hand side by noting that

3I. 3 <
[ ctbomnd, = [ =m0 =0 (7.39)

and a similar trick on the third term gives

’r 9 ((X)r.) d°R O)r, _ 0 [ d*Rs 000R
- L= L= = =3 7.40
v o R = at/ v 2 (7.40)
To connect with the right-hand side of eq (7.32) we perform the same trick yet again on the left-hand side here
d®r 3 0 (hs) d®*R 3 Ohs
;/V/d VsV X ro_ ;/ % /d Vs <X>RS 5 (7.41)
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Thus, the equation that we use to connect to eq (7.32) is

PR, Ohg dPr g2 qsnos 8¢ PR q2F05 >
>[5 [avanon, e =- 3 [ TG+ o [ [y R, (7.42)
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Chapter 8

Connection of Gyrokinetics to Reduced
MHD

8.1 Summary

The key points made in this paper are:

1. When a hyperviscosity term of the form vy V%h, is added to the gyrokinetic equation, the resulting vorticity
equation is the reduced MHD limit is given by

o, o, Toi
EVL(I) —’UA&VLA” + <1 + T—Oe

2
—vpVi® =0. (8.1)

K3

This does not agree with the form we expect for hyperviscosity in reduced MHD.
2. If, on the other hand, a hyperviscosity term of the form v V4g, is used, the reduced MHD limit gives

QViQ —vA

)
5 —ZviA” +vyVivV2ie =0, (8.2)

0

precisely the form one desires. Hence, it appears one needs to use g5 in the hyperviscous term to correctly model
hyperviscous damping.

3. The magnetic flux equation, in the reduced MHD limit, resulting from the use of a hyperviscosity term of the form

UHV4gS, is
ov o0 0 [ c?
— —va—+ = V3V vt V3iv ) =o. 8.3
ot 1o + ot <w§e + ) tvH (wge + (8.3)
Hence, the hyperdiffusive term on W is of order
2 2 2
2 € k1 pi me
= —“ <. 8.4
+ wge 51 m; < ( )

Thus, the hyperviscous term gives only weak hyperresisitivity.
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4. To achieve a magnetic flux equation with hyperresistivity of the form

ov 0P

4
o pa— U =0 8.5
ot va 0z v ’ (8.5)
one should add the right-hand side of the gyrokinetic equation the term
G oa /U4
——nuV ( — Fos. 8.6
pen vt (M) R (5.6)

5. Unfortunately, when the hyperviscous term of the form vz Vg, is used, the hyperviscous heating is expressed in a
non-positive definite form.

6. Finally, numerical tests with GS2 show that when vy V*h, is the hyperviscous term, the effective damping is of
order (m;/me)vpk?, a mass ratio higher than expected. When the term is v V4gs, the damping rate is consistent

with predictions.

8.2 Gyrokinetic Connection to Reduced MHD with Diffusive terms

Here I will describe how to derive the RMHD equations as a limit of the Gyrokinetic equations including hyperdiffusive
terms.

8.2.1 The Vorticity Equation

We begin with the gyrokinetic equation including the hyperviscous term vy V*h,

Ohs Ohs Ohs s O
4oy 22 4 [(0R. he) — << > > oy, = 2o QR s.7)
coll/ Ry

ot 9z ' Bo ot Tos Ot
To derive the vorticity equation, we want to use the form of the equation as implemented in the GS2 using gs where

s(o) qs(vi-Ay)
Fos
T, oo T,

gs=hy — 1 Fos (8.8)

We define two quantities to simplify this calculation (for the Fourier components of the gyrokinetic potential)

]CLUL A
~ kivyg - J1 ( Q5 ) msvi 5BH
o= J o+ — 8.9
0( QS ) kjﬂzj‘ qs 0 ( )
and
kLUL ’U”AH
A= Jy(——)— 8.10
()L (5.10)
so that we have
(X)=9—-4A (8.11)
The gyrokinetic equation written as a function of g (except for the collision operator) then becomes
0g9s . 9gs 45 . 09 ¢ E ] 4 AsVH L oa_ ds, OA
5 + 9% + iUHFOSE + B ¢ — A, hs| — (C(hs)) +vaVigs + T, FosVig = _iFOSE (8.12)
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Sum Velocity Integrated Gyrokinetic Equations

To derive the vorticity equation, the first step is to multiply the gyrokinetic equation by ¢g, ring average at constant

position r, integrate the equation over velocity, and sum over species. We will consider each term in turn.

To simplify the first term, we use the quasineutrality condition in terms of g,

B

2 2 2
45M0s 7 E _ § : E : ds 27 § : qsMsV7 JoJ1
TOs ¢ - - QS‘/V<hs>r - - q.s/v<gs>r + . ‘/VFSJO(]SFOS + g ‘/VTTFOS?O (813)
Performing the integration over velocity for the potential terms and solving for the integral of g, gives

5B||

2
_ ds nOs
}S qs /v<gs>r = : TOs FOS ¢ § anOSFIS (8'14)
The first term in the gyrokinetic equation then becomes
0 q*nos 8(;5 *nos o (T, 5BH
a. s\Ys/r 2 1 =T s 2 F 8.15
ot ; [/ 1 <g Z 0 ) ot s TOS 6t qs BO ( )

For the second term, we will use the Parallel Ampere’s Law in terms of g5 given by

2
c g5 vy AL
_EViA” = gs /d3quU” (he)r = gs /d3vqsvll (gs)r + Es /d3vT—%FOSU|| <<¢ — 7>RS> (8.16)

The last term on the right had side is zero after velocity integration because it is odd in v. Hence, the second term

becomes

9 o
9z Z/QSU|| gs r = 471'(9 ==V A|| (817)

The third term is

822/qu08 << %>Rs> _0 (8.18)

because the entire term is odd in |-

We will skip the fourth and fifth terms for the moment, since the nonlinearity and collisionality are not essential to

understanding the manifestation of hyperdiffusivity in the reduced MHD equations.

The sixth term can be treated in much the same way as the the first, using quasineutrality to simplify the term The

first term in the gyrokinetic equation then becomes

2nos 2ngs T, 6B
VHV4Z/QS<QS>I' = Zq}oo ( FOs)I/HV4 Zq 10 Fls HV4 (q—ﬁ) (8.19)
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The seventh term of the left-hand side just becomes

s s s Ts 53
VHV4Z/ ;{; Fos(d)r = qu % LosvnV ¢+Z (il vt <——”> (8.20)

qs BO

The term on the right hand side is

Er Z/ i- Fos— ” A|\>Rs>r =0 (8.21)

Putting all of these terms together, we see that the seventh term cancels the terms in the sixth term that have I';,
leaving us with

2 n ;3 2
qsMos 6¢ 0 TS 5B|| c 0 2 qdsNMos 47
= = |1(1-Tps)=— —Tis— | —— - ——V7A = = 8.22
o, |11 ~Teg (qs By 195t |\+XS: T, V9 (822)
Take k) p; < 1 Limit
In the MHD limit £k, p; < 1, we can expand I'g; ~ ~1-— 3]““ , Toe = 1, and I'1e ~ 1. We will also drop

the 5B|| terms because we know that in the MHD limit there is not parallel magnetic field perturbation due to Alfven

waves. This leaves us the result

¢;noi k3 p} 6_(;3 c

9 2 4 qs 0s 47
T i 1 ||+Z vV =0 (8.23)

Rearranging the equation and multiplying by ¢/By gives

y CO 22Ty, 0 o Toi\ 2 4 ch
= — 14 1 =0 8.24
ot lBO 47 BogZno;p? 8zv I+ + Toe pf vV By ( )
Noting that
2¢%Ty; B
el B (8.25)
drBog;noip;  4mneim;
and using the definition of the reduced MHD stream and flux functions
co
d=— 8.26
= (5.20)
A
U= I (8.27)

vV 47rn0imi

and converting back from Fourier to real space produces

8 8 2 TOi 2
v g L
atv /UAaZVJ_ ||+< +TO€> p2

%

vgVi® =0 (8.28)

THIS IS WRONG! The diffusive term is down by two factors of k£, , so the hyperviscosity implemented in this way is
simply wrong.
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Correcting the Problem

The key is to implement hyperviscosity in the gyrokinetic equation using a hyperviscous term of the form vy V*g, instead
of vy V4h,. In this case, the seventh term in equation (8.12) is missing and so does not cancel with parts of the sixth

term. If we follow this path, then the result of the ring average at constant position r, integrate the equation over

d¢ o (T,0B
l(l - FOs)E - F1s§ <EB—O

2 6B
[(1 —Tos)vg Vi — T1vy V2 <E _||>

velocity, and sum over species gives
S

2
qS nOS
+
2T,

c 0
5. Vi (8:29)

2
qsMos
TOS

=0 (8.30)

qs BO

Now, taking the MHD limit k£, p; < 1 and dropping the 5BH terms gives, after the same manipulations as above

d d
EVi@ - UAEViA” +vgVivie =0 (8.31)

8.2.2 The Magnetic Flux Equation

We begin with the gyrokinetic equation including the hyperviscous term vy V*g,

Ohs Ohs Oh s 0
S ) 52+ o [0R Ba] — +onVig =~ 593 Fos. (8.32)
0z By coll/ R,

ot ot  Tys Ot

We'll drop the nonlinear and collision terms to simplify matters (since the hyperdiffusive term is unaffected by the

presence of these terms).

Sum Velocity Integrated Gyrokinetic Equations

To derive the magnetic flux equation, the first step is to mulitply the gyrokinetic equation by gsv), ring average at

constant position r, integrate the equation over velocity, and sum over species. We will consider each term in turn.

For the first term, we use the parallel Ampere’s Law to obtain,

0 c 0 _,
E ;/vqsv|<hs>r = _EEVLA” (8.33)

For the second term, we will define the pressure as a moment of the full distribution function given by

2
P, = / m;” £ (8.34)

2
We can similarly define the parallel pressure P, as the moment using % Expanding the distribution function into

its consituent pieces.

qs®
TOs

fs = Fos (1 - ) + (hs)r (8.35)
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Noting that

ST S
/vﬁFos — D0s20s (8.36)
v mS
we find that the parallel pressure is given by
1 1
P||s = EnOsTOS - 5‘]5@5”05 + 513”5 (837)

where we have defined the non-adiabatic part of the parallel pressure by

msvﬁ

In terms of this definition, the second term becomes

d ) 0 20:0P,
5;[“' (hs)e = azsj o~ (8.39)

The third term is the hyperviscous term vy V4gs. First, we note that when multiplied by v|| and integrated velocity,

the difference between the vy Vg, and vy V*h, goes away.

/VUMgs}r =/vv||<hs>r (8.40)

So, using parallel Ampere’s Law, we find,
c
VHV4Z/ qsv)(gs)r = —Equ‘lv‘jAH (8.41)

Finally, the term on the right-hand side gives

9 4 v A vi-Ay
azs:/vT—OsFoSw<<¢>— e e (8.42)

The first and third terms are odd in v and so yield zero upon integration over velocity. Manipulating what remains

gives

0~ dnginos [ msFos 9 bs [ msFos
_iaz Tqsno mgky ”ﬁ<<AII>RS> :_igzwp msto 2<<AH>RS> (8.43)

v
B m562 v nOSTOS r B 02 v nOSTOS ” r

Eliminate 6P,

To eliminate the parallel pressure term, we use the fact that in the limit &k, ps < 1, the lowest order solution hgo) admits
solutions in which the velocity dependence can be separated from the space and time dependence,
h = H (R, t)Fos(v). (8.44)
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This is examined in detail in Alex’s paper on gyrokinetics and Reduced MHD. Substituting this solution into the

quasineutrality condition

Zs:qszsns qu (—QS”OS /d3v<hs>r)_0

gives the solution

ZQSnOS R t ZQSTLOS (6ns gf(f) =0

(8.45)

(8.46)

We can then find the solution [NOTE: Can we really remove this from the sum? I am not happy about this step, but

perhaps there is an unstated ordering assumption in Alex’s paper allowing him to take this step.]

hgo) _ (6n8 QS¢) FOS(U)

Nos Tos

which gives solution for the total distribution function

and the solution for the parallel pressure is then

1 1
P||s - nOsTOs - §6nsT05-

Hence, using equation (8.37), we find

+

1 0N s
6‘P”S = nOsTOs (no %)

Now, we can rewrite the second term in terms of ¢ and dng as

ds Nos

0 2¢56P)s ¢ Wi, Tos O
Eg ms E; 2 0z o+

Putting everything together

Putting all of these terms together and multiplying by L oives

) w2, 9 Tos Ons o W2, [ myFys
6th‘A” +CZ CZ; E <¢+ 0 ) _VHV4V1AH = —EZ P o ’Uﬁ<<A”>RS>r

s Mos c? v NosLos
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(8.48)

(8.49)

(8.50)
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Take k) p; < 1 Limit

We know that by Fourier analyzing in space will give us the result

/R/v (i), = /vzkjfow‘ilv (8.53)

so we will put in the Tgs (with a sign change for the Fourier transform) to account for the double ring average even though

we are being a bit sloppy with notation. In the limit &k, p; < 1, T'os =~ 1, and we can take ) wgs = wf)e (1 + "Wt—j) = wge.

We also neglect the density perturbation dng in the MHD limit since Alfven waves are incompressible. Hence, we find

04 99 0 &

2
2 4 € o2
be pe

—1/2

Multiplying by (4mno;m;) and using the definitions of the stream and flux functions equations (8.26)—(9.5), we find

VA——

ov_ 00 o
ot dz Ot

02 62
—QVilll) +vgV* <w—2vi\1/> =0 (8.55)

wpe pe

If we order the damping rate due to hyperdiffusivity O(vgk?}) = O(w), as is appropriate at the of the cascade where

we want the damping to be strong, then the hyperdiffusive term, compared to the %—\f term, is of order
2 2 2
c k5 psm
B = e g (8.56)
Wpe Bi m;

Me
my

Therefore, except for at very low 3; ~ O(

), the diffusive effect (hyperresistivity) of the hyperviscosity term on A
from the hyperviscosity term is negligible.

Discussion of Hyperresistivity

To achieve an effective hyperresistivity, we would like a term that produces a Reduced MHD flux equation of the form

o o .
S~ vag. TarVIE=0 (8.57)

To achieve such an effect in the magnetic flux equation, we can put in a term on the right-hand side of the form

ds
TOS

naV*(X)r. Fos (8.58)
In this case, only the A part of the gyrokinetic potential will affect the final form of the magnetic flux equation because

the ¢ and 6B) terms are odd when multiplied by v|. Whether to include these terms or not, it is necessary to view

how this addition affects the vorticity equation. With only the A} term, the vorticity equation is unchanged because the
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extra term goes away when integrated over velocity. It seems most likely that you want only to add the terms necessary
to achieve this hyperresistivity, so the desired term to add to the right-hand side of the gyrokinetic equation would be

4 oa /U4
TOS”HV <—C >R Fos (8.59)

s

One could also add a term to the left-hand side, much like the hyperviscosity, of the form

2

w e
5 Vg5 (8.60)

This will also produce the desired term in the magnetic flux equation, but it will also have an effect of normal viscosity,

2
with a huge coefficient out front because of the % factor. Hence, it will likely create a large Laplacian viscosity, and

undesired effect.
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8.3 Corrected Hyperviscous Heating

In this section we will derive the form of the hyperviscous heating for the case when the hyperviscous term is vy V4g,
instead of vy V*hs.

8.3.1 Entropy Equation with Hyperviscosity

We begin with the gyrokinetic equation including ther hyperviscous term

Ohs | Ohs ¢ Ohs s _ 4 O00R.
o e+ g (oom k= () ) +onvia - 2R, (8.61)

We multiply the gyrokinetic equation by Tyshs/Fos and integrate over space and velocity to obtain the entropy equation

’R 3 (9<X> &’r 3 Tos 3 Tos
[ syt g [T [dvggaie [ [ iy oo,

d*r Tos
/ / v Fg irhoV4 . = 0 (8.62)

where we have applied the gyrokinetic approximation k| < k1 to the hyperviscous operator AVAEN V‘j_. We need to
manipulate the last term into a suitable form for calculating the energy.

Relation between g, and h,

First, note that the definition of g5 in terms of hy is

s S : A
4s(P)R. Foo + & (vi-Al)r
TOS TOSC

gs = hy — = s (8.63)

When Fourier decomposed, note that we can write each of these pieces as

gs= 3 o™ R (8.64)

k
he =3 R (8.65)

k

kivi\ » xR,
(Ohr, = 30 o (EEVL) yeiem: (8.66)
k S
kivg =

vioAL\ 3 Ji ( Q. ) msvi 6Berik-Rs (8.67)
C R, k kbiu_ s BO |

Therefore, the Fourier components are related by

~ 2 quOS(Z;k Jls msvi 5B||k
gSk = hSk - 7FOS —"_ - T 7 FOS 8'68
Tos Vs Tos By ( )
where we have used the notation v, = % and Jps = Jp (7s)-
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Manipulating the Hyperviscous Heating Term

Noting here that
o o o

4
Vi= g0 T 25 o (8.69)
we can perform an integration by parts in space twice on each term to obtain
a3 Tos
/ R, /d3 0 VHh V4 g, (8.70)
_ /ng / p TOsVHh vt ( _ <¢>R5F ! gs(vi - AR, F05>
TOSC
B /d?’RS /dg Tosvr | (0%hs\ Lo (Phs ? L (Phs ?
N \% 0s 0%x Oxdy 0%y
/d R, / 3 0%(p) 0%hs 0%(p) 0%hs  0*(p) O*hs
d°vqsvy +2
0%2x 0%z 0z0y Oxdy 0%y 0%y
/d Rs/d3vqsl/H 8 <VJ_'AJ_> (92]7,5 262<VJ_'AJ_> 82h5 62<VJ_'AJ_> (92]7,5
\% 0%z 0%z Oxdy  Oxdy 0%y 0%y

Fourier Decomposition of Heating Term

Here we will show how this heating term is expressed in the Fourier decomposition. Using the Fourier series expansions
of h% and ¢, as given by equations (8.65)—(8.66), for one of the terms we find

2 27, %
/d R /d3 qsv Ha >8 h /d3 /—QSVHZk JOSd)kesz Zk/Qh 7zk’~R5
3 2 Rs pi(k—k') R,
= [ &> > quklk Josdihi (8.71)

k k’

Noting that
/ Pre’K)T — 5k — K, (8.72)

we can use the delta function to eliminate one of the sums to find

1 -
v > / Pvasvakt Josdh’y. (8.73)
k

Putting all of the terms together gives

PR, Tosv
/ /d3 07H w4 g, (8.74)

FOS
Z/dgv 0
k

Jls mSvJ_ 5B||k
Vs TOS BO

h’*kFOS
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Normalization

2
We multiply each term of the equation by 2& " (Z—g) m The first term gives
t0

ao ( ao 3 4y
%o (% d v—l/ K 2
lvto (Po) UtoFooTo Z / LI
Uts FOS Ts VHAo 4 4 hsk ao 2
E — — | = (k7 po) —
v \wvo ) Foo To \ pavro Fos po

Z/CP’ e nST Dkt b2 . (8.75)

The second term yields
ap < ap ) 2 1
vio \po /) viFooTo
Uts 8 FOS qs VHGQ 4 4 QOQBk aop hsk aop
- Z = (=— ) (k1p5) = =
w3 \ v/ Fooqo \ plo To po Fos po

~2
. € O
-5 :/d3vsmnsqskajl_Jos¢khsk. (8.76)
k

By k4qus¢khs Fo,
;/ FOSVH 0 Ts kL0

The third term produces
ap (a())
V0 \ Po vtOFOOTO
_Z/ (Uts) Fos (VH(IO) (k4p4)2TS msv? Jis 5B||k@ (%@)
vi, \ o Pavto LRy 2T, . By po Fos po

2

—Z / 039, S i T 71,208 5B, (8.77)

J1s msv? 6Bk -
3 4 Jls 1 I
Z/d FOS ki Bo hsicFos

S S

Pulling everything together we find

-0, . . . ..
3 / d%s‘;wﬁ,{kimﬂ (h — Jos q;? Lok, o — JlszﬁissB”khsk) (8.78)
k

S
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8.3.2 Numerical Tests

Let us consider a generalized equation for the energy evolution

dE
—=—27E - vk E+ P, (8.79)
where 7 is the natural collisionless damping rate, v, k? is the effective hyperviscous damping rate, and P, is the antenna

power driving the simulation.

When driven at a constant frequency and amplitude, the system eventually reaches a steady state in which % =0.

In this case, the amplitude of the energy in steady-state is given by

P,
S — 8.80
2v + vpkd (8.80)
The total heating due to collisionless damping is then given by
2vP,
P=2vyF= ———— 8.81
and that due to hyperviscous damping is
I/hkjl_Pa
P, =2vF=—+— 8.82
n =Y 2y + vk (8.82)

Taking the ratio of the hyperviscous to the total heating, the unknown antenna power drops out, leaving the theoretical
value
P,/h - thjl_
Pt 2v+ vkt

(8.83)

Figure 8.1 plots P./(P; + P.), roughly the ratio llj:’lt (since electron heating is primarily hyperviscous and ion heating

is primarily due to collisionless damping), against the theoretical relation given by equation (8.83) above. When the
hyperviscous term used is of the form vj,k? hs, the effective hyperviscous damping rate is increased by a factor of the

mass ratio m;/m. compared to equation (8.83); to match the results, the formula must be amended to

P, (mi/me)uhki
Ptot B 27 + (mi/me)yhki .

(8.84)

When the hyperviscous term used is of the form vj,k? g;, the results agree fairly well with equation (8.83).

Here are some additional notes and considerations:

e Note that the antenna power is unknown because, although the amplitude of the antenna is known, the power trans-
mitted into the plasma depends on the plasma response which is not a straightforward function of the impedance
matching.

e Since the linear modes are damped by collisionles damping frequency -, should the energy effectively be damped
by 27
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Figure 8.1: Plot of P./(P; + P.) vs. the theoretical relation given by equation (8.83). For a hyperviscosity term of
the form vpk? hs (squares), the hyperviscous heating rate must be increased by the mass ratio m;/m. matches the
numerical results. For a hyperviscosity term of the form v,k% gs (triangles), the results agree much more closely with
equation (8.83).

e Check the ion hyperviscosity to see if it improves the fit.
2
e If the antenna power is written P, = kLA—At””, how do we determine this timescale for power input? More generally,

knowing the linear damping rates and antenna amplitude, can we predict the steady state amplitude of the energy?
This is complicated by the fact that there are more than one energy in the system, and so perhaps it is not so

100



simple.
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Chapter 9

Hyperdiffusivity in Gyrokinetics

9.1 The Need for Non-Physical Damping in Nonlinear Runs

Nonlinear simulations of the cascade of turbulent energy in collisionless magnetized plasmas require the addition of a
non-physical damping term to dissipated at the smallest scales in the system, thereby avoiding a build-up of energy,
or bottleneck, in the smallest scale modes in the simulation domain. This is clear even in runs at high (3;, where the
damping on ions is very strong at ki p; ~ 1, as shown in Figure 9.1. Note here that the hyperdiffusive damping was

much too strong in run trans3.

Therefore, we need to implement some non-physical damping mechanism to remove energy rapidly at the smallest

scales in the box. There appear to be two avenues to accomplish this:

1. Hyperdiffusivity: Adding a hyperdiffusive term to the gyrokinetic equation. A successful choice for the hyperdiffu-
sive operator will have two properties: it must reduce, in the MHD limit, to some form recognizable as hyperviscosity

or hyperresistivity; and, heating by this term must be positive definite.

2. Hypercollisionality: Adding a hypercollisional term where the coefficient is wavenumber dependent.

These two possibities are explored in the remainder of this document.

9.2 Hyperdiffusivity

In this section, we look at the possibility of adding some hyperdiffusive operator H to the gyrokinetic equation to achieve

a wavenumber dependent damping.

9.2.1 Early Attempts at Hyperdiffusivity

Early attempts at including hyperdiffusivity terms tried adding a term of the form H = vpsV?4 to the gyrokinetic

equation for each species s. I summarize here the attempts to use this approach:

103



. When a hyperviscosity term of the form vy V*h, is added to the gyrokinetic equation, the resulting vorticity
equation is the reduced MHD limit is given by

2Vi‘1> —

) To; \ 2
5 V3A)+ <1 + —0> —vpVi® =0. (9.1)

v & TOe

K3

This does not agree with the form we expect for hyperviscosity in reduced MHD.

. If, on the other hand, a hyperviscosity term of the form vy V4g, is used, the reduced MHD limit gives

0 0
&vié - UA$V1A” +vgVivie =0, (9.2)

precisely the form one desires. Hence, it appears one needs to use g5 in the hyperviscous term to correctly model

hyperviscous damping.

. The magnetic flux equation, in the reduced MHD limit, resulting from the use of a hyperviscosity term of the form

VHV4gS, is
ov o 9 [ c? c?
— —va—+ = | 5 ViU Vi —-Viv | =0. 9.3
ot 4oz + ot <w§e + ) tn (wge L (93)
Hence, the hyperdiffusive term on W is of order
2 2 2
2 € k1 pi me
— = — < 1. 9.4
LW;?)e ﬁl m; < ( )
Thus, the hyperviscous term gives only weak hyperresisitivity.
. To achieve a magnetic flux equation with hyperresistivity of the form
ov 0P
— —uy— VAU =0, 9.5
ot va 0z +H (9.5)

one should add the right-hand side of the gyrokinetic equation the term

4 a4y
TOS77HV <—C >R Fos. (9.6)

s

. Unfortunately, when the hyperviscous term of the form vy V*g, is used, the hyperviscous heating is expressed in a

non-positive definite form.

. Finally, numerical tests with GS2 show that when vy V*h, is the hyperviscous term, the effective damping is of
order (m;/me)vp kjl_, a mass ratio higher than expected. When the term is v V*4gs, the damping rate is consistent

with predictions.
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9.2.2 More Recent Thoughts on Hyperdiffusivity

In considering the above information, Bill noticed that if you write the gyrokinetic equation in this form,

8 quOS 8h5 C _
5 (1= B0 ) + 0y G+ - (e = Gl (0.)

and then multiply by Tshs/Fos and integrate over all space and velocity, the second and third terms on the left-hand

side integrate to zero over all space, leaving

/d3 /ds i (h _quos ) /d3 /d3 Lo e, ©8)

The general form of this seems to be

0
8t5 Cg (9.9)

where Cg is the collisional heating rate.

This inspires us to try to add a hyperdiffusive term to the right-hand side of the gyrokinetic equation in this manner

5 (e = 200 ) oy G2 o [ ] = )+ (1 = 2720 (9.10)

Doing this, the resulting entropy balance equation is given by

d3 3 qSFOS
/ /d FOs (h B Ts <X>)
d? T, d3 T, s Fos
:/7r/d3VFO (hsC(hs))g. +/7r/d3vF0 heH (hs — qTO <x>> (9.11)

The limits of this operator in reduced MHD should give equations like (9.2) and (9.5), but I have not gone through
this in detail.

9.2.3 Positive-Definite Properties of this approach

Here we investigate whether the hyperdiffusive heating term,

e o

is positive definite. We go through this examination term by term below

(= 2 0, ) (912

S

Integrating by parts twice shows that the first term is positive definite for each species

3
/dR/d3 hVHV4h_/dR/d3

2 h|? > 0. (9.13)
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Using the property of ring averages that, when integrated over all space, one can interchange averages,

PR, d3
[ SRR, = [ FE R, (9.14)
we can write the second as
PR, a3
/T/d3vqshsuHV‘i<¢>Rs = /%/d3vqs<hs>rszv‘j¢ (9.15)

To demonstrate positive-definiteness, we must now sum over species, and use the quasineutrality condition to obtain

/—VHVM (Z/d3vqs< \ ) /—VHV ¢ZQS”S (9.16)

Finally integration by parts in space twice gives the final result

d*r 4 qﬁns qﬁns d3r 9 12
/7quL¢zs: T ¢:szS: T /7|Vl¢| >0. (9.17)

Similar manipulations, also requiring a sum over species but using the parallel component of Ampere’s Law, give for

the third term
R v A dr v A
s [ By vt (AN / /d3 . 4 YA
ES / v / vq I/HVJ_< . ES v vqs(hs)rva Vi -

d*r 4 AH —C_, vy [ d&°r 2
= —Vi4 ) =-—= [ —=|V3i4] >o. 9.18
VYL (g VA 471'/ 7 Ivianl 2 (9.18)
The fourth term requires use of the identity
d*R, <A d3 A
/—R/d?’vqshsuHle_<vL7L> :/—r/d?’vqs<vlhs>r~uHVi—L. (9.19)
\% c R. \% c

Summing over species once more, using the perpendicualr component of Ampere’s law, and integrating by parts once,

we find
dSI' 3 4 AL ng‘ —C 9o 4 AL
[ (Z/ ! Vqs<”hs>“> i B = [ (e vt s
3

d’r 2
v [N aL P20 (9.20)

Collecting all of the terms, we obtain the final result

Z/ R /d3 (hs - qsﬁos <X>Rs) (9.21)

:VHZ/dR/d3 h| W/dVI‘

(Z 4;) (V26l” + [V 4y +[ViAL

S
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This form is positive definite, but only when summed over species. Since the entropy balance should hold for each
species individually, entropy production from each species should be positive-definite. But we see that this operator only
becomes positive definite after summing over species; there may exist non-physical transfer of energy between species
(mediated by the field). Hence, although this approach may suffice, it may experience severe problems, particularly in

determining the heating for each species.

9.3 Hypercollisionality

Steve prefers using a hypercollisionality, basically using our present collision operator but with a wavenumber dependent

coefficient. Using the pitch-angle scattering component of the collision operator as an example, the operator has the form

(9.22)

where the coefficient has the form

Ve(E) = Ve; (%)3 [Zeff + Hee (viﬂ (9.23)

te

and

4
Vi = 4mnee* log A (9.24)
(2Te)3/2mé/2

In this case, the gyrokinetic equation would become

8 quOS 8h5 C _
E <hs - T, <X>) + || 92 + B_O [<X>R57hs] - C(hs) + Cn(hs)v (925)

where the hypercollisional term C,, is given by

Cn(fe) = ve(E)(kLp:)"

92 Ofe ] . (9.26)

1
2 0¢ [(1 - &%) D€

This form has the advantage that the heating is certainly positive definite. As well, the collisionality coefficient for
each species can differ, presumably providing the freedom of adjusting the effective magnetic Prandtl number of the

simulation.

9.4 Hyperdiffusive Formulation using G

In this section, we investigate the use of a new generalized hyperdiffusive formulation.
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9.4.1 Gyrokinetic Equation

We begin with the gyrokinetic equation

ohy, = Oh, ¢ 4s O)r
—_— 4+ = hs] —C(hs) = —=—= Fs. 9.27
o TV, T ()R, hs] = C(hs) To. ot Lo (9.27)
Now, let us define a new distribution function G4 defined by
SF S
Gy = hy — L7953 (9.28)
Ts
Writing the gyrokinetic equation in terms of G gives
oG, oG, qsFos O(x) c B
ot TV, TUTE g, T g IR, Gl = C(hs) = 0. (9.29)
We define a new linear hyperdiffusive operator,
H=vyV* (9.30)
and operate on G, adding it to the gyrokinetic equation to give
0G, 0G, qsFos O(x) c B
ot TUS YUt o, T B [(X)Rr.,Gs] = (C(hs))gr, + H(Gs) =0. (9.31)

9.4.2 Deriving the Entropy-Balance Equation

Now we multiply (9.31) by TsGs/Fps and integrate over all space and velocity. Then second and fourth terms contribute

nothing upon integration over all space, leaving us with

d [dc [, T, , [dER [ 4 9 (X)g, dr [, T,
E 7/d V2FOSGS+/7/d VU”GSQST—/v/d VFOS <GSC(1’L5)>RS

d®r 5 Ty
+ / = / AV GaH(G) =0 (9.32)

To eliminate the problematic second term in this equation, we now multiply (9.31) by gs (x)g_ and integrate over all

space and velocity. The third and fourth terms integrate over space to zero, and we integrate by parts in space on the

d3r 3 8Gs dgr 3
/ N / Ve (w5 ‘/ 7/ PV (axClhs)m,

d3r 5 Ts
[5G @y pta b0, MG =0 (9.33)

second term to obtain
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Adding (9.32) and (9.33) results in

d [ dr T d’r oG d?r T, qsFo
- il 43 S 2 /_/d3 . s —/—/d3 s . sL'0s h,
dt V/ Vo Gt | v vas Wr, 5 % Vi, \\ Gt T x ) Clhe) .

d31‘ 3 Ts quOS _—
+/7/d Vi (GS+ - <X>Rs> H(Gs) = 0 (9.34)

9.5 A Few Additional Remarks on Hyperviscosity

1. If the reduced MHD hyperviscosity limits are wrong, does this mean the hyperviscosity as usually framed in reduced
MHD is a bad model?

2. Does hyperdiffusivity in the vy V4G, have zero mean even if the vy J hsV4({x) piece goes less than zero?

109



0.1 T T E

B \\ B

> 0.01 & —_ -
QD - K =
— - 7
[} = i
c L i
~0.001 & E
= N e 3

C AN .

i '\“'i""" i
0.0001 =  T7T7 T~ -
E \ T~ E

- A e e ]

— '\' ~.." -

10-° & RN \ S =

= N\, \ s 3

- he \ ]

B \\\ N i
0T T
10—7 E_ \.\.\,\.\ _E
10—8 | | | | | | | | | | |

1
trans2 vs. trans3  k p, t= 1553921795

Figure 9.1: Plot of two energy spectra vs. wavenumber for two runs with 3; = 100, trans2 (blue, without hyperdiffu-
sivity) and trans3 (red, with hyperdiffusivity). Different components of the fluctuating energy dW are ploteed: total
energy (solid), df; (dotted), E4, (short-dashed), Esp, (long-dashed), and ¢ f, (dash-dotted). The thin black line denotes

(kL pi)_f’/ 3. At the highest wavenumbers in the box, there is still significant energy in the cascade for trans2, even for a
run in which the ion damping at kj p; ~ 1.
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Chapter 10

Collisions in (Gyrokinetics

10.1 Collisional Theory

From Schekochihin et al. (2006), the gyroaveraged form of the collision operator is given by

N kR sy J 1O 5 0l 0214 E7) 5 o v J1(as)UlL (his) + vy Jo(as)Uj (his)
(Curha)e = o) { 3~ e — S i +2 for
(10.1)
where
LR (10.2)
o = Q. .

This form arises from taking a% instead of a% .
R r

Question: Is there a non-zero boundary term on the second term? I don’t think so.

10.1.1 Properties of the Collision Operator

Conservation of number, momentum, energy.
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10.2 Conservative Krook Collision Operator

We begin with the Vlasov Equation for an electromagnetic plasma species s

dfs  Ofs s vxB\ 0dfs
o o +v st—i_ﬁs E + . v =0. (10.3)

Adding collisions to the right-hand side turn this into the Fokker-Planck equation

dfs
“r=C(fo). (10.4)

This collision operator C should satisfy three constraints:
1. Conservation of number by species

/d3vC(fS) =0 (10.5)

2. Conservation of total momentum

Z/d?’vmst(fs) =0 (10.6)

3. Conservation of total energy

Z/d%%cgs) =0 (10.7)

Can we construct a simple operator that satisfies these properties?

A general Maxwellian fluid can be described uniquely by three parameters: the number density n,, mean flow velocity

U,, and energy Ts. The form of Maxellian for a species s is given by

NsMs mS(V_US)Q
Fys = ——+ - 10.8
Ms = o, )32 P { oT, ] (108)
We see that these three parameters are related simply to the velocity moments of the distribution function
ne = /d?’vst, (10.9)
nsUs = /d3vvst, (10.10)
and
3T
ns ( +U§) = /d3vv2st. (10.11)
ms
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10.2.1 Construction of the Krook Collision Operator

We propose a simple Krook collision operator that, by construction, satisfies the conservation of number, momentum,
and energy. We propose to use

C(fs) ==Y valfs —Fy) (10.12)

where we have defined

_ 3/2 T7 \2
— Ny My mr(v - Ur)
r = T = o € EE— 10.13
@2nT, )32 P [ 9T, } (10.13)
such that
Ty = /d3va, (10.14)
7, U, = /d3vva, (10.15)
and
_ 3T7« + mTUi /d3 merf (10 16)
(s = v e .
2 2 2

Let us now check that this operator satisfies the conservation properties (10.5)—(10.7).

Beginning with the conservation of number (10.5), we find

S [ty ==X S ([ avr - [ o) (10.17)

The first integral is simply [ d®vfs = 7. Noting that

1 dv; U...)2/v2
¢ (vi i) Vi — 1 10.18
\/_‘/ ‘ ( )

Vtr

the second integral simplifies to [ d*vF, =7,. Thus, we obtain

Z/d3VC(fS) = ZZUST (ﬁs - ﬁr)- (1019)

Specializing to a plasma of ions ¢ and electrons e, we find that the sum
D Ve (s =) = (Vei — Vie) (T — 7o) =0, (10.20)

since it must true that v.; = vje.

Next, we check the conservation of momentum (10.6),

> [ dvmave(s) = =3 v < [vmovr- | d%msm) (10.21)
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Again the first integral is just [ d3vm,vf, = ms7isUs. Using the integral,

L[ dv -
_/UZ. Vi =T v _ T (10.22)
\/E Utr
the second integral gives [ d3vm,vF, = m,n,U,. Our result is then

Z/dgvaVC(fs) =— Z Z Vsr (msﬁsﬁs — mSﬁTUT) ) (10.23)

Taking an ion-electron plasma and using the fact that v; = v, the sum becomes

_ Z Z Vep (msﬁsﬁs — mSﬁTUT) = l/ie[(mi — me)ﬁeUe + (me - mz)ﬁzﬁl] (1024)

Unless the two species have the same particle mass, the collision operator (10.25) does not conserve total momentum
over interspecies collisions. In fact, this form of the operator conserves velocity, not momentum. We need to adjust the
form of the operator to find a form that does conserve total momentum.

The literature suggests a slightly different form

Hence, we find that, in order for this operator to be conservative, the following properties must be true:

1. Vep = Upg
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10.2.2 BGK Collision Operator

It is stated in the literature (for example [Snyder et al., 1997]) that mass, momentum and density are conserved by a

simple BGK operator of the form
C(fs) == ver(fs — Far) (10.25)

where we have defined

_ 3/2 T7 \2
NsMs ms(v - UT) :|
sr — T — oo - = 5 10.26
@2nT,)32 P { o7, (10.26)
s = /d3vfs, (10.27)
7, U, = / Bvvf,, (10.28)
and

_ 375 + msvi /d3 mstf (10 29)

N = v P .

2 2 2

I do not see how this form conserves total momentum.

We can go ahead and integrate the conservation of momentum equation (10.6) over velocity space,

S [ dvmect) == X v ([ avmovs - [ @it ) (10.30)

The first integral is just [ d3vmgvfs = msn,U,. Using the integral

1 dv; T —
NG [o&eemri ~ (10.31)

Vts

the second integral gives [ d3vm,vF, = mgn U,. Our result is then

Z/d3vmsv(}(fs) = — Z Z Ver (msﬁsﬁs — mSﬁSUT) . (10.32)
S
Specializing to an ion-electron plasma and using the property that n.ve; = n;v4e, this sum simplifies to

- Z Z Ver (msﬁsﬁs - msﬁsﬁr) = Telei(mi —me)(Ue — Uy) (10.33)

This is the expression for the total change of momentum, and in general it is not zero. Perhaps I am missing some
approximation whereby this sum is almost always nearly zero for some conditions.

In the original paper [Gross and Krook, 1956], the form of the operator is slightly different, using instead

_ 3/2 7 \2
— NsMg ms(V - Urs)
P [ ) .
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where the flow velocity U,, and temperature T}, are not yet specified for interspecies collisions. The final form of the
total momentum conservation, if this operator is used, becomes

= mi(Uei - U’L) + me(Uie - Ue) (1035)

where the quantities U,; and U;. are chosen such that this expression equals zero. I do not know if there is a more simple

way to implement this to achieve momentum conservation between species.
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10.2.3 Like-Particle Only Krook Collision Operator

Let us consider the gyrokinetic equation using a Krook collision operator and including only like-particles collisions.
Thus, the collision operator has the form

C(fs) = —ves(fs — Fs) (10.36)
where we have defined
= (;;1;2/2 exp [—MVQ;TU)Q] , (10.37)
Ty = /d3vfs, (10.38)
MsU,s = /d?’vvfs, (10.39)

The form presented here conserves density and momentum for like-particle collisions.

Linearized, Gyroaveraged Krook Collision Operator

Given the form of the distribution function

fs = Fo, (1 - q}¢) + ha, (10.40)

we substitute into (10.38) and (10.39) to find

Ts = Nos <1 - ‘{T“b) + /d3vhs (10.41)

and

— 1
U, = — /d3vvhs. (10.42)

Ns

[NOTE: Should these integrals over velocity space of hs be done at constant position r? In this case, I may need to add

another Bessel function, but maybe I've already done this right.]

We can now linearize the collision operator by expanding the exponential in F

exp {—@} ~ exp [—”—j} (1 + 'Qﬁs) (10.43)

Uts Vts Vts

where we have used the definition of thermal velocity vZ, = 2T /m,. Our linearization has used the approximations

/ d*vhs < nos (10.44)

and

/ d3vvhg < v. (10.45)
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The first inequality is the same as the gyrokinetic approximation; the second, although not true over the entire range of
v, will be true for the case that values of v ~ v:s. Defining the quantities,

ong = / d*vh (10.46)
and
1
§U, = / d*vvhy, (10.47)
Nos
the linearized collision operator reduces to
2v - §U, ong
C(fs) = —Vss (hs - vigFOS - t FOS) . (1048)
Vts Nos

Next we need to gyroaverage the linearized collision operator. Writing the gyrokinetic distribution function as a

Fourier series,

he(Ro,v,00) = > ™ Rehy (v,v,) (10.49)
k

The integral over velocity space at constant position r of hg is given by

. kiv
3 ik- 1V

/d \% . hs = ;e r/27T’UJ_dUJ_dU”JO ( QS ) hks(v,vj_). (1050)

Now taking the gyroaverage of this quantity gives

ik kivy kv
</d3V hs>R :ZekRsJO( o )/27‘r’(}id’l}ld’l}|’|c]0 (Q—SL hks(’Ul,Ul)' (10.51)
r S k
Likewise,
3 ikor kivy . 2 kivi .

d°v| vhs = Z e 27v dvy vydo)Jo q hys(v,v1 )z +1i | 2mv] dvydoyJy ) hxs(v,v)x| (10.52)

r k

and

<V./d3v

ik kivy kv
th/5>RS = ;e k-R; |:J0 < QS )’U| /27T’l)j_d’()ﬁ_1)|/|d’u|/“]0 ( Qsl) h’ks(’l}/,vi)

J kivi 12 9.0 3.1 kJ-Uj_ root
{5 vi [ 2muEdv’y dv|Jy o hxs (v, 0") (10.53)

S S

where we have taken, without loss of generality, k = kz + k1 x.

We can define the quantities

k /
6TLkS = /27T’Uj_d’Uﬁ_d’U|/‘ JO (5—“) hks(’U/”Uﬁ_), (1054)

118



1
kLvl

1
OU|ks = E/%wldvﬁ_v"‘dv'" Jo <Q—> hs (v, 0')), (10.55)

0U ks =

kLv’
o~ / 27vadvj_dv|’|J1< QSL) s (V' V), (10.56)

and write the linearized, gyroaveraged Krook collision operator as

2’[)||J05U||ks
— 72F

S

(C(f))p, = —vss D R (hks

201 J16U 1 ks JoOncs
. y L e - 00T F05>. (10.57)
k ts

Uts Nos

Solving for the Distribution Function

Fourier transforming the gyrokinetic equation using exp[i(k - Rs — wt)], we can solve for the distribution function

s Fos + ivg,C*
By — TR, (10.58)

W+ Vgs — kH’UH

where we have defined
_ 200U)sJo — 2’UL5ULksJ1F n 5nksJ0F

C*(v,vL, hks) = s s 10.59
(v,v1, hxs) o 0 — 0 ( )
Note that we can write this alternatively as
v OU) ks J1 202 8U | s 0N,
C* (vt ) = 2Jo—L gy p AL T ke Tl g (10.60)
Vts Uts Vs Vis Uts Nos

where v, = kv /Qs. In solving for hys, we treat the local perturbations of density dnks, parallel fluid velocity dU, ks>
and perpendicular fluid velocity 60U ks as independet of hyg; this is consistent with the approximations (10.44) and

(10.45) used in the linearization.

Using the gyroaveraged gyrokinetic potential

kivy v Ape, A (BgH) 208 (T4 0B
= Jo(—— — — 10.61
(wr. = 0(Zg=) 0= 2+ =0 =27 (4, 5, (o.61
we find the expression for the distribution function is

qsFos [ . WAk w wA|x Jy 203 (Ts 6Bk
hxs = J Ji — — — 10.62
k T, { 0 kHC + W+ s — kH’U” o { P k”C + Vs Utzs qs Bo ( )

W WAHk Z.Vssc*

_ J 10.63
(w + Vs — k|’l)||) 0 k”C } + W+ s — k”’l)” ( )

where the argument of the Bessel functions is v = %
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Solving for the Perturbed Quantities

To solve for the local perturbations of density dns, parallel fluid velocity 6Uy,, and perpendicular fluid velocity 6U | ks,

we can drop the collisional term C* in the solution for the distribution function and perform the integrations. Establishing
the following definitions,

w
s = ; 10.64
kjven, (1064
Wgs
s = ; 10.65
Ry, (10.65)
W+ 1lVgg
s =0, 10.66
(2 From, (10.66)
and
Zs = Z(¢s) (10.67)
we obtain the following relations,
ONiks s wA | wA | T, 0B
— = — |Tos(1 + (s Zs —T0sésZs —— )| =T Zs——— |, 10.68
i e [Dun(1+ 205 T, (00— S0 ) Tz (10.68)
5U||ks qds wA”k wA”k TS 5B||k
—:_Fssl sZs _Fss1 sZs - _Fssl SZS_—7 10.
ot = T 1 0 Z) S — T (14 02) (o= S ) — T+ 0,20 2 (10.69)
and
0Uiks  qs kips WAk WAk Ts 6Bk
= — (142 —Ts&sZs — — o5& Zs— . 10.70
™ T. o 15(1 + (s Zs) e 15€ Px he 2s€ <. Do ( )

Final Dispersion Relation

The form of the dispersion relation including the Krook collision operator is analagous to the collisionless dispersion

relation
wA
A B C ¢ = AkHCH
A-B a C+E %‘u =0 (10.71)
C —F D T, 6By
qi B
where the definitions of the symbols above are:
T;
A=) T [(1+ Tos&sZs) — (T, — TT,008)Ce66 22 — 2T5,Css (1 + s Zs)?] (10.72)
T;
B=Y" T [(1 = Tos = TosCsZs) + (05, = T1,06)Cs Zs (1 + € Zs) + 205, (1 + s Zs)?) (10.73)
c=> Z— [T16€sZ(6) = (TosTis = T1sTas06) (€ 23 — 2005 T16Css (1 + 105 Zs )] (10.74)
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=——+Xj [Posba () — (T2, — T2,0,)CoEs 22 —

qs
E = Z a [Fls(l + CSZS) — (Fosrls — Flersas)Cs

a = ai/w2 - Z T |:1—‘05§ (1 + ws S) - (ng - F%sas)gs (1 + CS
g = kLps
2

Solving for this dispersion relation, we get

(Ao — AB + B?) (—AD + C?)

121

S)(l + ws

ZS(l + CSZS) -

Zs)

217, ¢l (14 0 Z5)°]

20, L1aC2 (1 + uZa)?]

(s
212, 2
0 gs

— (AE + BC)® =

Coths (L + 95

Z)?

(10.75)

(10.76)

(10.77)

(10.78)

(10.79)



10.3 GS2’s Implementation of Collisions

Let us be specific about the implementation of collisions and hypercollisionality in GS2. This is well described in a note
by Greg Hammett dated June 26, 2003; this note also includes insightful discussion that is not included here. I will
summarize his results here and update them to include the classical diffusion operator that arises from taking pitch angle
derivative with at constant guiding center R rather than constant position r.

The electron collision operator includes both electron-electron and electron-ion collisions with the equilibrium Maxwellian
distribution,

<Ce(h8)>Re = <Cee(h67 FOe) + Cei(h67 F‘Oi»Rc (1080)

while the ion collision operator includes only ion-ion collisions with the equilibrium Maxwellian distribution,
(Ci(hi))r; = (Cii(hi, Foi))R,- (10.81)
Question: What happens to the adiabatic piece of the distribution function in the collision operator?

10.3.1 Electron Collision Operator

The electron collision operator is given by

2 2 2
(Celhe))r, = Zeik'Rel/e(v)% {a% [(1 - 52)622‘6} - %(1 +§2)%hke} (10.82)
k e

where the coefficient, dependent only on the magnitude of velocity, is given by

3

Ve(v) = Ves (”L) [Zf +H,, <i)] (10.83)
v Ute

(NOTE here that in the GS2code, the factor of 1/2 in (19.3) is actually absorbed into the constant v.(v) and so actually

appears only in (19.4)) with the like-particle collision coefficient is given by

1 e

Hyy(z) = (1 - %) \% /Ox dte™"" + N (10.84)

and with

Ametno
Vei = —rp . (10.85)
me' ~(2T,)3/2

Here A denotes the Coulomb logarithm A = In(Ace) ~ In(Ae;), the pitch angle coordinate is defined by £ = v /v, and
the thermal velocity is defined by v, = 2T./m.. The first term in (19.3) is the standard pitch-angle collision operator

and the second term is a classical-diffusion correction due to the fact that the derivatives 9/9¢ are evaluated at constant
guiding center R, rather than at constant position r. At the moment the second term is included when cfac=1.0 in
the collisions namelist; this is the default behavior (a change from earlier versions of the code). This correction term is
motivated and derived in Schekochihin et al. (2006).

Figure 19.1 plots the variation of the functions Hs(v/ves) and ve(v/vee) with energy, or magnitude of velocity.
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10.3.2 TIon Collision Operator

Analogous to the electron collision operator, but neglecting ion-electron collisions, the ion collision operator is given by

"y — aeRrs L[ o O] 0? N
<Cz(hz)>ni—zk:e vi)g 17 |1~ €) 3¢ vtgi(1+§)—2 hici (10.86)
where
AN v
I/z(v) = Vi; ( . ) Hss (Uti> (1087)
and
4,4,
m;" " (2T;)3/2

Figure 19.1 plots the variation of the function v;(v/vy;) with energy, or magnitude of velocity.

10.3.3 Collisional Coefficients

In the GS2 input file, the collisional coefficients vnewk, are used as the values of v.; and v;; in the electron and ion collision
operators above. If we denote these user supplied values as vnewk, = U.. and vnewk; = I;, then the normalization is
given by

VesQo

ﬁcs = . 10.89
- (10.89)

10.3.4 Collisional Heating

To estimate the collisional heating, we take the gyrokinetic equation,

Oh Oh c _gs O(X)R.

a9t + ) M + Bo [(XOR., hs] = (C(hs))r, = To. Ot

Fos, (10.90)

multiply by Tshs/Fps and integrate over all space and velocity to give the entropy-balance equation. (In fact, to be
more precise, in complex space we must actually take [ [, TshiGK/Fos + [ [, TshsGK"/Fy,, where GK denotes the
gyrokinetic equation; but we will be somewhat loose with notation here.) The second and third terms on the left-hand

side give nothing when integrated over all space for periodic boundary conditions, leaving the result

BR 0 (X\)r d [ PR T, PR To
| dvg, p,— 2 s [ @By =0 p2 / S/d?’ S (haC(hs))e —= 10.91
/ % / Vs 5 at ] v / Vor. st v Vi, (PsCho)im, =0 (10.91)

Let us now take a closer look at the heating from the collisional term. Writing the gyrokinetic distribution function

as a Fourier series
he(Ro, v, 1) = Y s (k, v, )™ e (10.92)
k
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Figure 10.1: Plot of the functions Hs(v/vis), Ve(v/Vte)/Vei, and v;(v/vy;) /vy to demonstrate how these coefficients vary
with energy (magnitude of velocity).

and using a generalization of (19.3) and (19.7), we find

/d R, /d3 fj; (hs)), (10.93)
d’R., eik+k)Rs 3. Vs(v) . {2 [ 2 ahks} _ 2 J_ps }
;kz/ 7. [ avine { g |0 - ) vts<1+5> e
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Using the property
/ PR EHDRe — 5k 1 1), (10.94)

the reality condition that
h_xs = his, (10.95)

and transforming to velocity v, pitch angle £ = v /v, and gyrophase angle 6 coordinates

00 1 27
/d3v:/0 v2dv/ld§/0 de, (10.96)

this simplifies to

/d R, /d3 fj; C(h))g. (10.97)

e vs(v ! 0 Ohys k2 p2 1
> [ «ﬂdvFO((U)) {/1d§h;zsa—§ [(1—52) aﬂ‘ﬁ Lo /1d§<1+£2>|hk5|2}.
k s - -

S

We may now perform an integration by parts in pitch angle on the pitch angle scattering term to obtain the final,
sign-definite result

d’R, Tos
/ BV (hClhe))g (10.98)
FOS °
_ OO 2y (v) 8hks v? kﬂ’s 2
= —ZWTS/O v vFOSU {/ dé(1 — &2 D¢ 25 5 7d§(1+§)|hk5|
k
10.3.5 Normalization of Collisional Heating
2
ag
We begin with (19.19) and multiply by ;¢ (po) UtoFooT to find
IR G,
V/(pgao) vis \vo) To Foo \\ Fos po/) vo \ Fos po '

5 ()|
35 Fos po

Z / v2dv (’Uts>3 Fos (V5a0> / (1
= _ ﬂ- —_— —
v, \vw/) Foo \ vo

v (kipo)? (ps)2 /1 2) | P ag|?
+ | — dg(1 +
vZ, 2 Po _1 S 465 Fos po
Note here that the variable £ is already dimensionless
== (10.100)
v
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and the collision frequency v(v) is normalized by
Vsag

Vg =
(%70]

We also write the
&7%&7 (2T5)1/2 msc qOBO (m)l/Q (E)l/Q (ms)l/2@
po s v Mg gsBo moc \ 21y To mo qs

Writing all of this in normalized, dimensionless variables yields

~ 2
Ohxs

o€

1 R o0 . 1 N .
= —ZWﬁSTS/ 02dige " iy /d§(1—§2)
T 0 -1
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10.4 Hypercollisionality

The hypercollisionality operator for a species s is defined by

2 2 2
Conttlm, = S Fvm(hip)s { e [0 - %] - S+ e} (10.104)
k

65 Uts

where vgs is a constant coefficient, independent of velocity.

10.4.1 Goal of Hypercollisionality

The aim of any hyperdamping term is to model the transfer of energy from the smallest resolved scales in the box to
smaller, unresolved scales. Without such a mechanism, energy builds up at the smallest scales because there are no
smaller scale modes with which to couple nonlinearly. Hence, a bottleneck in the energy spectrum results.

One task to be completed is to estimate the nonlinear energy transfer rate (as a function of amplitude) and determine
the minimum necessary hyperdamping to remove that energy. Although, at the moment the magnitude of linear hyper-
collisional damping is not well understood (in relation to the coefficient supplied in the input file), in principle we can
at least connect the required effective hyperdamping to the nonlinear energy transfer rate. Due to critical balance, the
nonlinear transfer rate should simply be of order the linear wave frequency, kyv, ~ kjva. Hence, the requirement for
hyperdamping is to achieve v/w > 1 at the end of the cascade, meaning that the energy will be damped out in roughly
one wave period.

A more elegant technique, rather than to just choose some constant coefficient for the hypercollisional damping in
any given run, is to allow the coefficient for the hypercollisional damping to vary as a function of simulation quantities
(such as |x|?), so that the effective damping supplies just the right amount of energy transfer for a given amplitude
at the smallest resolves scales in the box. Hence, rather than specifying two parameters, the driving amplitude and
hyperdamping amplitude, we simply specify the driving amplitude and allow the hyperdamping to vary in such a way as
to always provide at least the minimum required damping rate.

10.4.2 Hypercollisionality in the Reduced MHD Limit

To find the what form a hypercollisional term takes in the Reduced MHD Limit will shed light on the effect of hypercol-
lisionality.

We begin with the gyronkinetic equation written in terms of gs,

ags 895 qs 895 C 7
— v Fos=— + = |¢ — A, hs| — (C(hs)) — (Cr(hs)) = Fos— 10.105
S TG B G g |8 A = (C(ha) — (Calha)) =~ Fou (10.105)
where we have used following definitions
qs(9) gs(vi-Al)

o= he — Fos Fos, 10.106
g R ( )

kJ_'UJ_ A

T kJ_'UJ_ ~ Jl ( Qg ) TI”LSU2L 53“
¢ = Jo( o )+ —5 By’ (10.107)

s

127



and
kJ_'UJ_ ’U”AH

AEjo(Q ) -

(10.108)

To derive the vorticity equation, the first step is to multiply the gyrokinetic equation by ¢, ring average at constant
position r, integrate the equation over velocity, and sum over species. We will consider each term in turn. Using the
quasineutrality condition in terms of g5, integrating over velocity for the potential terms, and solving for the integral of
gs gives us a form for the first term

0 @>nos 8@7) @*nos 0 T 5B||
ar s\Gs/r — = 1-T s) ™= — 5 I s 10.1
i 2 [ avtode =30 G Lo - 3 g (10.109)

The second term, after using the Parallel Ampere’s Law in terms of g, becomes
Z/ qsv) {gs)r = 9y 4. (10.110)
0z 47r 0z

The third term integrates to zero because it is odd in v).
The fourth term, the nonlinear term, we neglect because it does not affect the form of the hypercollisional term.

The fifth term is the physical collisional term. Since we are generally interested in collisionless problems for which
w > v, we neglect this term as well.

The term on the right-hand side is also odd in v| and so contributes nothing after integration over velocity.

The sixth term on the left-hand side is the hypercollisional term. The ring average at constant position r of the
hypercollisional operator becomes

<<Cns(h )) r = Zelk rJQ as)st(kJ_pl) 1 { 9 ahks:|

Il _ 2
35[@ &

where a, = k) v) /Qs Summing over species and integrating over velocity gives

Z/ qs{(Crns(hs))R. ) (10.112)

) O] 0? k2 p?
Z/qsze“‘% (as)vars(kips)" = {ag [(1 —£2) 82 ] - ;’—?S(1+§ ety L } (10.113)

_v_(1+§ ) lpsh } (10.111)

ts

10.4.3 Nonlinear Cascade of Energy and Hypercollisionality

10.4.4 Eliot’s Questions

—_

. What is the vy f hsV*hs heating? How does it depend on the parameters? What happens if vy # vg;?
2. Can we put in a simple momentum conserving Krook collision operator to see what happens?

3. How does collision operator look in the entropy balance? What would be the heating for regular /hypercollisionality?

4. Why is Pge > Py;?
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10.4.5 A Few Additional Thoughts on Hypercollisionality

Is hypercollisionality really the correct approach to achieve hyperdamping at the end of a cascade?

1.

As demonstrated by Figure 10.2, the effective total damping as the hypercollisionality coefficient vp; is increased
actually decreases substantially before finally increasing, only reaching a value of «v/w > 1 for a ratio of vg; /v; ~ 107.

The initial decrease is expected since, as the collisions increase, the linear damping rate decreases.

Is it not true that, as the collisionality is increased, damping should decrease as you approach the fluid limit in
which there is no damping?

In terms of the mean free path A, ¢p, the collision frequency is given by v, ~ v;/An fp and the parallel viscosity is
given by v|jyisc ~ Amyppvs. Thus, as the mean free path decreases, the collision frequency increases and the parallel

viscosity decreases. Therefore, a more collisional plasma will have lower viscosity and therefore less damping of
waves, not more.

. The viscosity is related to the ion-ion collisions and the resistivity to the electron-ion collisions. But do increasing

collision rates actually mean that you will achieve damping of waves in the MHD limit? Using a momentum-
conserving collision operator, wouldn’t the infinitely collisional limit be a fluid without any viscous damping?

Is the damping at very large vg; seen in Figure 10.2 a result of perpendicular viscosity (since the Larmour radius

is important here), or is it an effect of the collision operator not conserving momentum?

Is the increase of the mode frequency w as vy; increases, as seen in Figure 10.3, a sign that the dynamics are being
corrupted, most likely because the collision operator is not conserving momentum?

10.5 Thoughts on Collisions and Velocity Space

These thoughts arise from discussions with Bill.

1.

I think of Landau damping as the opposite of the bump-on-tail instability. When any part of the distribution
function has 0f/dv| > 0, the instability kicks in driving waves that dissipate the free energy in the bump of the
distribution at w = k)v|. Landau damping is the same process operating in reverse: Landau damping extracts wave

energy, forming structure, or a bump, in the distribution function at v = w/kj. If that bump increases enough

that 9f/ 8v||| > 0, then the instability will drive more unstable waves, opposing the Landau damping and

vj=w/k|

leading to a saturation of the damping process, probably with the 0f/dvj ’UH:‘*’/kH =

Bill pointed out that the term responsible for driving the bump-on-tail instability, § £\ 0 f/dv, is ordered out of

the equations in the gyrokinetic ordering. So what process, then, can saturate the Landau damping?

For this reason, we must have collisions ordered v > O(ew) so that collisions can serve to smooth out the growing
bump on the tail and saturate the damping. Without these collisions, the problem is ill-defined; we see this in poor
performance of GS2 if collisions are turned off. Collisions must be present to smooth out growing structure in the
distribution function, increasing the entropy by driving the distribution function towards a Maxwellian, and thus
capturing the dynamics of the collisionless damping correctly.
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Figure 10.2: Plot of the total damping rate (relative to the wave frequency) as the hypercollisionality coefficient is
increased. NOTE: In this figure, the hypercollisional damping coefficient is normalized by the largest k, p; in the box;
since these are linear simulations, effectively &k p; = 1 for the determination of the hypercollisional coefficient vg; (kL pi)4.

4. We would like to plot f(v)) as a function of time to see the rise of structure in velocity space; we expect the
wavenumber of the velocity space structure to be inversely related to the damping rate (similar behavior to the

shape of a Lorentzian in frequency sweep runs).

5. Bill suggested that the collisions cause an inverse cascade in velocity wavenumber space. Weak damping implies
driving in velocity space at high wavenumber, strong damping at low wavenumber. Collisions take energy at high
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Figure 10.3: Plot of the mode frequency w and the total damping rate + as the hypercollisionality coefficient is increased;
this are the same runs as in Figure 10.2.

wavenumber and inverse cascade it to low wavenumber, smoothing out the velocity space structure driven by

Landau damping.

6. If we have a run with strong ion damping dominating the heating, we should be able to do two things that should
not destroy the damping rate:

(a) We can turn up the electron collisionality. Although it will should then underestimate damping from electrons
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correctly, that damping is negligible and so it will not matter much.

(b) We can turn down the ion collisionality. Since the ions are strongly damping, the bump in velocity space is

large, so less collisionality may still work. Or maybe not. See next item.

7. For a given converged linear run with collisionless damping, the actual rate of entropy production by the collisional
term must be the same, regardless of the collision frequency or the velocity space resolution (I believe this is correct).
If that is so, what happens when we reduce the collision frequency. With fewer collisions, the amplitude of bumps
in velocity space raises to higher amplitudes, thus meaning that dh/0v| becomes larger. It should increase until
the product of the collisional frequency with the pitch angle derivatives reaches the same value as before. But, if
there is not enough resolution in velocity space, then numerical diffusion can limit the amplitude of 9h/0v| and this
product can never achieve the same value as before; the behavior becomes unpredicatable, as numerical diffusion
does not behave as a real physical process, and you are underresolved in velocity space.
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Chapter 11

Highly Collisional Limit of Gyrokinetics

11.1 Strong Electron Collision Limit

Consider the linearized electron gyrokinetic equation

Ohe Ohe geFoe O(X)R.
2 TU5, — (Clhe)r, = Teo <>(§>tR (11.1)
where
. kv, R
) kiv N v A Jl(T)QUQT(SBk
_ N kR, | ( L L) _ o 1 T. 9B 119
(R Xk:e o\ o, Px . Evl v gqe By (11.2)
and
kR Vee(v) [ O Ohxke k2 p? v?
Clhm, = S ettt {2 [ - Pee] L 1y gy ). (11.3)

k

The pitch angle is defined by £ = v||/v and the coefficient v.. is given by the formula

ﬁwnqu InAce [Vte\3 1 vfe 2 v/vee a2 1 vge —0? 2
I/ee(’U) = W (T) 1-— 5? ﬁ‘/o dxe + ﬁ?e € (114)

Note that here we are considering only electron-electron collisions and are not including electron-ion collisions. As
shorthand, we denote J,,s = J,,(7s) where v, = % Also, we take Ve = Ve (v) to be simply a constant of our choice,

independent of v. The Fourier-transformed electron gyrokinetic equation then becomes

e O Ohxe ive k2 p? v? Loe
7&[(1—5) aéf] WeELPE Y (14 )y = w1

AR e 207 Te 0Bk
2 2 vk T.

JoePx — Joe———
|: 0 ¢k 0 c Ve Ut%e Ge BO
(11.5)

whke — kH'UHhke —

We are interested in the limit that k) pe ~ €. In this large-wavelength limit (compared to the electron Larmor radius

Pe), we can take the small argument limits of the Bessel functions,

. o . Jl(Z) 71
lim Jofe) =1, lim = = 5
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The following subsidiary ordering, in addition to the usual gyrokinetic ordering, is imposed:

kipe ~ €

w ~ 61/2
kjvee
L

w

The balance of terms, as we shall see, occurs in this ordering for

2
Ve (Fjvee
w w

The order of each term in the gyrokinetic equation thus becomes

e O 8hk i, k2 p2 1)2 qFO 1)||A||k
hie — kyojhke — —— |(1 — ) ==8 | + 220 — (1 4+ ) hgee = w2 [ — ——
Whie = F)| V) M 235{( “ag] SR Utge( + &) v [Px -
1 6—1/2 1 ¢ 1 6—1/2

Expanding the electron gyrokinetic distribution function hy, in terms powers of '/2,

hie = W) + /2!

€

) + ehf

€

4

€

we can solve for the distribution function order by order

11.1.1 Order ¢!

At this order, only the pitch-angle scattering term appears,

ive O 9 8hf(oe) B
> o l(l—f )8—5 =0.

Simple integration yields the solution

A
0
hiy) Z/dﬁl_—gz,

which is infinite unless the constant of integration A = 0. Thus, at this order we discover that hf(

dependence,

I = Iy (v)

11.1.2 Order ¢ /2

At this order, we find

. (1)
(0 , e 0 2Ol | _ teFboe, WA
Fioihe + 5 ¢ l(l—ﬁ ) =ae | =T M e
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(11.6)

(11.7)

(11.8)

(11.9)

(11.10)

(11.11)

has no pitch angle

(11.12)

(11.13)



1)

We want to solve for hfw , S0 we obtain

o 2 0D 2k (g FoewAp (o)
3_5[(1_5) o | T T T ke M)t e

Defining a variable

— ’LQkHU quOB (.«JA”k (0)
A=— —h 11.15
Ve [ Te kHC ke | ( )
we can solve for hl((le) in two ways: by direct integration of the equation
d onV]
— [(1-¢)—Ke| =4 11.16
5 l( € | = (11.16)
or by noticing that the solutions of this equation are the Legendre Polynomials. The solution is hf(le) = —A¢/2, or
kv F wA |k
h(l) — R|IY| | geLoe I _ h(o) ) 11.17
ke Ve Te k”C ke ( )
11.1.3 Order 1
At this order, we find
ive O on® qeF v2 (T, 6Bk
RO _ o p) = e L1 g2y Dlke |, 9eT0e 2L (20 11.18
e —hhe =5 e (U | = | e B (11.18)

We integrate this equation over f_ll d€ to annihilate the hl((2e) term, leaving us, after substituting for hf(le) from the Order

€1/ solution, with

o z/ivz {qejlj“eoe (kajik) - hfﬁ?} :wqc%()e [¢k+ %% (%%)] (11.19)
Factoring, we find
w{hl@ _ geFoe [¢k+ 2% <2 5B||k)] } _ ik [quOe (wA|k> _ hm)} —0 (11.20)
e T. 3v2, \g¢e Bo 3, T. ke ke
Solving for hfi), we obtain the final result
WO — R, 1 |:<Qe¢k> L2 <5B||k)] N PZ”Z (wAnk) (11.21)
T e N T 3\ B 14 202\ Ry

135



11.1.4 Summary

We define a new set of dimensionless basis functions

o de (4 @Ak
EH o T8 ((bk k”C )

~ q6 wAHk
B, =
L= T kHC
~ 5B|‘k
By = .
1= "5,

We also express the solution in terms of normalized velocity

v
T=—
Ute
and pitch angle
= ﬂ
E=—.
v
We normalize the electron collisional coefficient using
N Ve
Ve = .
T ke

and define the dimensionless parameter y which measures the strength of the collisionality

—13VeWw

—5
kHUte

Yy =

The solution is given by

6

o= (1) 20+

with

I S .
z_zFOe (E” + §$2B|> + Foe B

Y

11.1.5 Simple Limit Comparing v./w to k‘”vte/w

From (11.20) we can discern two simple limits: semi-collisionality and high collisionality.

In the semi-collisional limit of v, /w < k:2v2 " /w?, the solution is simply

B _ deFoe (WA|1<>
ke T8 k”C
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(11.25)

(11.26)

(11.27)

(11.28)

(11.29)
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The perturbed distribution function is given by

BF e
5f, = _qTO o + b + nl), (11.32)
so we find in this limit
qeFoe WAk
5f, = — Y i L3 11.33
fo = =2 |- (4L (1133)

Hence, using the definitions (11.22)—(11.24), this becomes

Oe _ -E|. (11.34)

The distribution function is driven by Ej.

In the highly collisional limit of v, /w > kijv, /w?, the solution becomes

F 2 1)2 T. 5B k
h() = deZ0e 2D (e 11.35
ke T, O+ 3v3 \¢e Bo ( )
Hence, the perturbed distribution function becomes
0 fe ik ~ ikjvp\ 2 v? -
— =———F 1-——— ) -—By. 11.36
Foe Ve I+ Ve 3vd I ( )

The perturbed distribution function damps E, effectively providing a resistance to the parallel current. Hence, we expect
strong damping in this limit of high collisionality.

Note, however, that the necessary collision rate to be in the highly collisional regime is very high. For kinetic Alfvén
waves, the frequency is given by

_2 20&1'

w- = 7"_ (11.37)
ﬁi + 12?

where the bar denotes normalization to kjva; so we have

, i/ 4+ 2o
pBi /M—HT (11.38)

Ve > —
‘ wT \/ioz;/27'

For 8; ~1 and 7 ~ 1 and k, p; ~ 10, this means 7, > 260, or 7. = O(m;/me).
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11.2 Define the Collisional Dispersion Function

Here we define the Collisional Dispersion Function by

Xn(y) = = 11.39
W=, FiiE (11.30)
for a complex argument y. This function has poles at
0 0
z = |y|'/? ($sin§ :l:icos§), (11.40)
where the complex argument is given by
y =y, +iyi = |yle” (11.41)
and
0 =tan—t 2. (11.42)

Yr

These poles fall along the real axis, on the path of integration, at 2 = 4|y|"/? when y; = 0 and ¥, < 0 (or § = =+7).
In the course of solving for the dispersion relation, we will need x,, for values n = 2,4,6. Contour plots of the real and

imaginary components of x,(y) over complex y-space for values n = 2,4, 6 are presented in Figure 11.1.

11.2.1 Small Argument Limit of the Collisional Dispersion Function

For |y| < z or |y| < 1,

e dx n—92 —gz2
Xn(y) = y/ ﬁx Zem (11.43)
0
For values n = 2,4, 6, this limit gives
xa(y) = %
Xa(y) ~ 3% (11.44)
xe(y) =~ ?y

11.2.2 Large Argument Limit of the Collisional Dispersion Function

For |y| > z or |y| > 1,

> dx 2 Yr . n+2 Yi —z2
Xn(Y) :/ — (:v" — "t +iz" e " (11.45)
0o VT ly[? ly[?
For values n = 2,4, 6, this limit gives
xe(y) ~ 3(1-3
xa(y) t1-3) - (11.46)
vly) ~ B(1-%)
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Figure 11.1: Contour plots of the real and imaginary components of x,(y) over complex y-space for values n = 2,4, 6.
Positive values have red contours, negative have blue contours, and zero is a black contour.
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11.3 Dispersion Relation for Strong Electron Collision Limit

To determine the dispersion relation for the strong electron collision limit of gyrokinetics, we must substitute the solution
for the distribution function given by (11.29) and (11.30) into Maxwells equations and determine the solubility condition.

We will solve for the dispersion relation in the kinetic Alfven wave limit given by the ordering

Qe ~ €
Q;

2
2

w2 (11.47)
kv
b -1
Lo~
In this limit,
J1i J1e 1
Joi =0, Jee=1, =0, L= _,
Vi Ve 2

In this limit, the ion response is strictly Boltzmann, so hy; = 0.

Velocity integration is done over dimensionless variables 2 = v /v and § = v /v,

00 1
/ v = 2mvd, / x2dx / d€. (11.48)
0 -1

11.3.1 Poisson’s Equation, or the Quasineutrality Condition

The quasineutrality condition is given by

> qQT"(b — qu/d3v<hs>r =0. (11.49)

Fourier transforming and noting that hy; = 0, this becomes

(tine g

T. T > d)k - qe/d3VJOehke =0. (1150)

Noting that the terms proportional to £ in (11.29) are odd in £ and so contribute nothing, substituting Jo. = 1, and

using Fo. = —%= exp(—v?/vz.), the integral becomes
te

2mqevd ne [ 22dx ! 1 - 2 = - 2
e | dPvhye = 2k / d Ey+ =2*B Bi|e™® 11.51
q / Vhk WU?e y VT ) 3 1t %2 |+ 317 || +Db1|e ( )
Noting fil d¢ = 2 and simplifying, we end up with
L[ dy a2e 2. [P dx zle ™ * dx 2
=4qen. | E ——+-B — 5+ BJ_/ — e 11.52
: VT 1+ % 371 )y VEi+ % o VT ( )
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Using the definition of the Collisional Dispersion Function x,, given by (11.39), we find the quasineutrality condition
becomes

1 - - - 8 . -
QeNe (; + 1) (EH + BJ_) — QeMe [4X2E” + §X4B” +B,| =0 (11.53)

where we have used the shorthand for the temperature ratio 7 = T /T,. Simplifying and collecting terms, this results in

1 - 1 -~ 8 -
(1 + - - 4X2) Ej+-B.—sxaB)=0 (11.54)
T T 3

11.3.2 Parallel Ampere’s Law

The parallel component of Ampere’s Law is given by
2 Z 4m 3
—VLA” = c ds d V’UH <h5>r (1155)

Fourier transforming, noting that hyx; = 0, and simplifying, this becomes

ck?
4—7?4”1( =q /d?’vv” Joehice (11.56)

Noting that the terms even in £ in (11.29) are odd in £ in this integral and so contribute nothing, substituting Jo. = 1,

and using Fy, = MT(Z? exp(—v?/v2,), the integral becomes
Le

rgoving [ a2dx (1 2,2 2,2 _
qe/d3vv”hke - ”‘fm:};e” /0 xﬁx € [(—z{; >h1(i)(:c)—|—i§A—xBL} e (11.57)
te — e e

where the collision frequency has been normalized to the electron thermal velocity 7. = v./(kjva). Noting that the B,

terms cancel, using fil dég? = 2/3, and simplifying, the integral becomes

) _ [P dx zte™™ 2. [ dz 2%~
= —QeNeVie— | —F —— — =B —_—— 11.58
BN T VR T3y VRlaZ (11.58)
Putting everything together, we find
T. Czkikn e wAHk 4 ) ~ 2 -
—eZ A de PR _ 2 onevie— | —xaB) — =x6B 11.59
0 dmw T, Fpe  3mevieq, { Xak) = 3Xe ||} (11.59)

Further simplification yields

T. chiue ~ 4 - 8 -
———=-B| = —=v4FE) — =xgB 11.60
! de 47TQeneUt26w - 3X4 | 9X6 | ( )

The constants on the left-hand side simplify to

27.2
iTe ckive iue o;
Lz ==
de 47TQGneUtew w Bip

(11.61)
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where the mass ratio is given by u = m;/m. and «o; = kipf /2. Thus, our final result is

4 - Ve O = 8
—x4F) —i——B —xgB) = 0. 11.62
gub - iy L+ gxeB) =0 (11.62)

11.3.3 Perpendicular Ampere’s Law

The perpendicular component of Ampere’s Law is given by
Vié6B| = 4—7qu d*v{(z x v hg)r. (11.63)
c

Fourier transforming, noting that hyx; = 0, and simplifying, this becomes

C de 3 Jle 2
——dBx==— [ d Pke 11.64
47 Ik Q. / v kva RARL S ( )

e

Noting that the terms proportional to £ in (11.29) are odd in £ and so contribute nothing, substituting {ylf = %, replacing
v} = 2*(1 —€?), and using Fye = —75= exp(—v?/v7,), the integral becomes
e /d3 e o, - 2Mlvine /OO Pdr [ e - g2 (E + 228 ) +By| e (11.65)
— v V] he = (1 — —x 1le .
Q. Epo 7L 2 Jo JE ) 1+ 2 3=
Using fil dé(1 — €2) = 4/3, and simplifying, the integral becomes
dgenevd, | = [ dx zle=® 2. [ dr z8e~* - /OO de 4 _.2
— e |\BE il ZB - _+B — x 11.66
0. | o vEIxZ T3V Vmiez TN VE S (11-66)
Putting everything together, we find
CQeBO ~ 4 ~ 8 ~ 1~
—— B = -x4F —x6B -B 11.67
Argenevz, | gXaEl T gXe byt 5 B ( )
The constants on the left-hand side simplify to
Q.B
_0702 - (11.68)
AT genev;, Bi
so we end up with
8 = ~ 2 16 ~
§X4EH + B, + (ET + 3)(6) By =0 (11.69)
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11.3.4 Solving for the Dispersion Relation

Defining the quantities

1
A=1+4+—-—4x (11.70)
T
4
B = 3Xa (11.71)
8
C= gXe: (11.72)
we obtain the matrix equation
A 1 —2B E)
B —iteay C By | =0 (11.73)
2B 1 T +20 By
This yields the dispersion relation
. e 2 1 A 2B
ez (—T+2BQ+AC)+—+232+AC:O (11.74)
w pBi \ Bi Bi

11.4 Limits of the Strong Electron Collision Dispersion Relation

Analytical solutions of the dispersion relation can be derived in the limits |y| < 1 and |y| > 1. Here we describe the

assumed ordering in detail and derive the solutions for both of these limits.

11.4.1 Semi-collisional Limit, |y| < 1

For the semi-collisional limit, we assume the following ordering of parameters:

pooo~ e
T ~ 1
io~1 (11.75)
(o7 ~ €
Velw ~ € /2

In this semi-collisional limit, we expect to reproduce the basic dynamics of the kinetic Alfvén wave, so we can use this

formula to estimate the ordering of the frequency. The ordering imposed above gives the following order for secondary
parameters:

1/2
— a; —1/2
W= (4ﬁi/2+2r/<1+r>) ~ el

w  __wri/? 1/2
Fivee — p1/28172 ~ooeT (11.76)
&
Qe = #—;_ . ~ €
_ qive @T N 1/2
y=-3 w pBi €
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In this limit, the coefficients in the dispersion relation simplify to

1+1/7—2y
y/3 . (11.77)

A
B
C y/3

1R

Hence, the order of the terms in the dispersion relation is given by

g | 7 T AC |+ 2B AC =0 11.78
(e1/2,¢€) e3/2 (e,€3/2) /2 . (e1/2,¢)

Keeping all terms to order € except for the order e part of the first term and simplifying produces the result

— 1 ﬁl iVe _ 27’_
a; — @ <E+5> +_u_w (aiwz—l—z(.«fl) =0. (11.79)

where we have used A’ =1+ 1/7.

Assuming |y| < |wy|, we can expand about w = w,, where D, (w,) = 0, and solve for the damping rate using

Y= T aD(wn) (11.80)
Ow,
The resulting solution is
204
I S (11.81)
61’ + 17
e |3 (=t 9)]
5 =— B 5 (11.82)
i T Bi
(m T 7)
Comparison of this limit with the numerical solution to (11.74) is shown in Figure 11.2.
11.4.2 Highly Collisional Limit, |y| > 1
For the highly collisional limit, we assume the following ordering of parameters:
poo~ €
T ~ 1
Bi o~ 1 . (11.83)
(o7 ~ e !
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Figure 11.2: Semi-collisional, |y| < 1, limit of the highly collisional gyrokinetic dispersion relation. Values of parameters

not plotted are 8; =1, T;/T. = 1, and k, p; = 10.

Using once again the kinetic Alfvén wave solution to estimate the ordering of the frequency, the secondary parameters

assume the following ordering:

1/2
O=-—% ~
(Bi/2+27—/(1+7))

w _ w‘rl/z

e ~
kjvee 26

Qe = ,U,_;' . ~

_ __QilVe WT ~
y=-3 w pBi
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In this limit, the coefficients in the dispersion relation simplify to

~ 1., 3
A~ 143
B ~ l_ﬁ

- 2 4 .
C ~ 5_ 3%

= 5 12y

Hence, the order of the terms in the dispersion relation is given by

Ve 200 A 2B
We20i | 2T 4 9p2 4 A0 |+ 2 4+ 2B + AC =0
w pbi Bi Bi

(e-1/21) (e7/21)  (e71/21) (1,e1/2)  (1,€1/2) (1,€1/2)

Keeping all terms to order 1, we obtain

. 3t _ 5 _ 35

1, Weoi _ o (Qﬁi 1 127)

2 T T s (a1 sy
HiZi (E+§+6—T)

The solution is
1/2
_ 3r _ 5 _ 35 _ 2
_ VeQi; 20&1' (Qﬁi 4 127’) VeQl;
e I S A N O]
27873 (E +5+ §) 27873

Comparison of this limit with the numerical solution to (11.74) is shown in Figure 11.3.
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11.5 Strong Electron Collision Dispersion Relation for a; ~ 1

The previous dispersion relation assumed the kinetic Alfvén wave regime was appropriate, which requires a; > 1, severely
restricting the applicability of the result. Here we combine the standard gyrokinetic distribution function for ions with
the strong electron collisional distribution function for electrons to find a dispersion relation valid for finite ;.

Note that although this dispersion relation is valid for a much greater range of k| p;, it still assumes collisions dominate
the evolution of the electron distribution function, so it can never recover the correct collisionless damping by electrons,

although it does recover the ion collisionless damping.

11.5.1 Solving for the Dispersion Relation

We define a slightly different set of dimensionless basis functions (normalized to ion quantities)

~ o q; wAHk
E,= = - 11.89
=7 (¢k e ) ( )
Ao G WA

B, =—~——— 11.90
+ Ti kHC ( )

- 5BHk
| = Bo (11.91)

Defining the quantities
B=1-Ty (11.93)
C=T1&2(&%) (11.94)
D =T9¢&7(&) (11.95)
E=Ty; (11.96)
F=1— 47y (11.97)
4
G= X4 (11.98)
- 3xs (11.99)
97

iw Bip
- 11.100
Ve W2 ( )

we obtain the matrix equation
A+ F B C+2G E”i
A-B+QG «;/w* C+E—-QH By | =0 (11.101)
C+2G 1-F D—%—zH By
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This yields the dispersion relation

0i(A + ) _B(A_BH)@] [(D‘é‘M) (A+F) — (C +26)?

w i

A+ F)C+E-QH)—(A—B+QG)(C +2G)][(A+ F)(1-E)—B(C+2G)| =0  (11.102)
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Part 11

AstroGK Code Description
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Chapter 12

General Overview of the Code

12.1 Equations Advanced by AstroGK

The system for driven gyrokinetics is given by the gyrokinetic equation

ohy . Oh, ¢ Oh s O(X)r
s . — hs| — = ——=—=Fos
En +v)z IR, + Bo (R, hs] <( ot >0011>R5 To. ot 0

and Maxwell’s equations, which in the gyrokinetic limit become the quasineutrality condition

——v2 (¢ + da) + qu - =qs/d3V<hs>r,
the parallel component of Ampere’s law,
——VL (A + 40) qu/d vy (hs)r,
and the perpendicular component of Ampere’s law,
iVL((SBH +0B),) = Zq/ (z % v1)he)r,

where ¢q, Ajq, and 0B, are antenna driving terms. The gyrokinetic potential is

v-A

c

X=¢—

(12.1)

(12.2)

(12.3)

(12.4)

(12.5)

Note that in the undriven case, the first term of (12.2) is dropped; I am not certain if it is consistent to retain it when

attempting to drive the gyrokinetic system electrostatically. To drive electrostatically, it may be necessary to add the

driving term to the right-hand side of the gyrokinetic equation as a source of the form ¢sFys/Ts0{¢o)R.
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The gyroaveraged gyrokinetic potential can be written, following the procedure in Chapter (4), as

il Tos 201 Ji(as) OBk acr
= Jo(as — Jo(as)—A — =t " 12.6
(m, %[ ()0 = o) Loty + 2 2l IO T (12:6)
We can each Fourier mode in the slightly less cumbersome notation
l Tos 203 (0B))R.x
= - —(A —_——— 12.7
MRk = (G)rk — — (AR + e 02 B (12.7)
using the definitions
(P)r.x = Jo(s) i (12.8)
(APr.x = Jo(as) Ak (12.9)
J1 (o
6By = 2 )6B|\k (12.10)
Now, we define two terms to simplify notation
~ T s 2’02 0B R.k
(3) = (rose + Do 201 OB Rk (12.11)
s VUtg BO
and
~ v
(A) = %<A||>Rsk (12.12)
so that we have
(X)r.x = (&) — (4) (12.13)
In AstroGK, the distribution function used is g, and is related to the distribution function in the gyrokinetic equation
above by
7s(P)R.x 207 (6B))r.k
sk = hsx — ————Fps — —— ——F———Fs, 12.14
9sk k Tos 0 ) By 0 ( )
or in the more simplified notation
ok = ok — q;é@ Fos. (12.15)
Thus, the gyrokinetic equation becomes
agsk 8gsk 8<¢;> c |: 7 T Ohs qs 8<A>
= [(d) = (&), hy) - =L AR, 12.16
ot Uz U T [0 o )on)  Tow 0t (12.16)

In terms of g5k , the Maxwell’s equations become

—iv2<¢+¢>+2q3"05<¢+<<¢>>>: /d3v< ) (12.17)
47T 1 a - TOs s ds gsk)r .
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the parallel component of Ampere’s law,
——Vl AH +A||a qu/d VUH (gsk)r (12.18)
and the perpendicular component of Ampere’s law,

C
VLB +0B)a) = qu/ (2 % V1)hs)r, (12.19)

where ¢4, Ajq, and 6B, are antenna driving terms. The gyrokinetic potential is

v-A
p

X=0¢-

(12.20)

12.1.1 OLD

Dropping the species subscript s and equilibrium subscripts 0, using C(h) to denote the collision operator, and substituting

for (x), we get

oh Oh ¢ [- q (g —A)
AL —Ah}—Ch =129 Fp 12.21
7 Ui T 9 A - e =775 (12.21)
Next, we define an alternative version of the gyrokinetic collision operator,
99
=h——=F 12.22
g T (12.22)
Thus, the relation between g and h is
_ ., 4e) ,  moi (6B
g=h T F T By F (12.23)
Writing the gyrokinetic equation in terms of g gives
dg 89 oo q 0A
% rZe [ An| = (e = ~EF= 12.24
o Tlig, T UH 5. Tl (Ch) = —FF >, (12.24)
12.2 Variables
12.2.1 General Variables
The dimensions of the variables in the code are:
Space x, y, and z
Energy E =mg?/2
Pitch Angle X =2 /(v?By)
Time t
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The variables in the code are:

Distribution Function g(z,y,z, E, A\ t)
Scalar Potential o(xz,y, 2, 1)
Parallel Vector Potential A (x,y,2,t)

Parallel Magnetic Field Perturbation  dBj(x,y, z,t)

The treatment of each of the dimensions of these variables are:

> e 8

Fourier Spectral

Fourier Spectral

Compact Finite Difference

Spectral Integration by quadrature

Finite difference and spectral integration

Linear terms are implicit, nonlinear terms are 3rd order Adams-Bashforth
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12.3 General Flow of the Code

1. Initialization

2. Main Timestep Loop (advance_implicit in fields_implicit.£90)

(a) Antenna Amplitudes

(b) E x B shear

(¢) Advance Distribution Function (Initial)
i. Nonlinear Terms (3rd order Adams-Bashforth)
ii. Invert Matrix

iii. Collisions

Add antenna driving term to fields

Advance Fields (Implicit)

)
)
f) Advance Distribution Function (Final—same as above)
) Save for restart if necessary

)

Loop Diagnostics
i. Heating
ii. Density and Velocity fluctuations

iii. External Current
iv. Movie
v. Field magnitudes by mode

vi. Fluxes
vii. Polar spectra (Raw and log-averaged)

viii. Antenna frequency sweep

ix. Nonlinear heat fluxes
x. Linear output

(i) Check timestep Courant condition

(j) Check for stop
3. Final Diagnostics
(a) Output Distribution Function (Linear)
(b) Final Fields
(c) Ej
(d

(e
(f) Finish NetCDF

)
)
) Final moments
)

Save for restart

(g) kj-field line following spectra

4. End
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12.4 Main Algorithm

The code is designed under a basis of the Beam-Warming algorithm which discretizes the finite difference in z and ¢.
Other component of the code is, in some sense, attached to the main frame in a consistent way. In this section, we will
describe the basic flow of the linear algorithm on the basis of Beam-Warming scheme. This corresponds to a part of the

steps 2 (c), (e), (f) in the flow of the code. Other details are described separately in the following chapters.
In AstroGK the GK eqn and the coupled field eqns (we call this system coupled GK eqns) are written in the semi-

Fourier space k;-k,-z and real space in E and A. Since the linear terms in the coupled GK eqns do not include any
differentiation except for z and ¢, the following procedure may be carried out independently for %k, k,, A and F, which

enables an efficient parallelization.

Here we consider an electrostatic case for simplicity since the electromagnetic case is merely an extension to a largeer
matrix and fields. We discretize the GK eqn at the middle of the z and ¢ grid points, namely at ¢ +1/2 for z and n+1/2
for ¢. For example, dg/0t term yields

+1
<89>”+”2 e 9t g e =gl — o

ot At 2At ’ (12.25)

i+1/2

where we have approximated g;1 /2 by the arithmetic mean of neighboring grid points. In the same way, we may write

N e N e k)
== ~ ~ . (12.26)
0z it1/2 Az 2Az
Thus we may symbolically write the GK eqn (12.16) as
Crg} + Cagly + D1gl ™ + Dagl't = F1d) + Fagly ) + G1o! T + Ga¢l] + other terms, (12.27)

where ‘other terms’ include nonlinear and various source terms. In fact nonlinear term is treated by an independent
scheme (3rd order Adams-Bashforth scheme) and added on the right hand side as one of the source terms as is explained
later. This implicit scheme is described by Beam-Warming and it is a second order scheme both in space and time.
Notice that the scheme is only applied to linear terms and by this we become free from the Courant condition due to the
convection along background field direction.

In order for the implicit scheme to work, we have to obtain the field at the future time step. For this we use a response
matrix scheme developed by Kotschenreuther [Kotschenreuther et al., 1995]. The scheme first starts from splitting the

distribution function into homogeneous and inhomogeneous parts:
gt =gttt gt (12.28)

where giny, is the solution of GK eqn with setting ¢"t! = 0 and gy, is that with ¢" = ¢™ = 0. The gﬁ]tl is readily obtained
as soon as all quantities at time step n is known [Step 2(c)]. Here we assumed that the edge value is know from the
boundary conditions. It is subtle for periodic conditions, but we may make two sweeps with specified values at the edge

as is explained later.
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The next step is to write g{f“ in terms of ¢"*! using the response matrix. In the initialization, the GK eqn is solved

for each j with
¢t =0y (i€ Ny),
" =0, g"=0, (12.29)

where ¢;; denotes Kornecker’s delta and we write the solution dg;/d¢;. For this step we have to solve GK eqn N, x Nj

times for each j € N, and each species. Since the general ¢"*! may be written by the sum of these Kronecker’s delta
and both the response of the distribution function and the quasi-neutrality condition are linear, we may write

69‘
n+1 ? o n+1
gh,z 5i; J ( )

in the symbolic form of the quasi-neutrality condition (12.2):

Qp¢" ™ = Qal(g"*). (12.31)
This will yield
09i \ .n n
Qo™ — Qu (52) ¢ = Qulgltl), (12.32)
J

where the left hand side is merely a matrix of size N, X N, (only for one dimension along the background field line) which
may be inverted at each time step [Step 2(e)]. If there is a source term in the quasi-neutrality condition, it is added on
the right hand side.

Finally, the GK eqn is solved again with proper future fields and we obtain the distribution function at the future
time step [Step 2(f)].

12.5 Velocity space grids

We basically use Legendre polynomials for both energy and pitch angle grid points, so we first review how the Legendre
zeros and weights are obtained here, and then describe about the details for each grids in separate subsections.

The zeros and weights of Legendre polynomials are obtained from the routine gauleg in Numerical Recipes [Press et al., 1992].

It obtains the zeros by the Newton scheme from the definition of the Legendre polynomial

nP,(z) = (2n — 1)zPy_1(x) — (n — 1) Pp_2(x) (12.33)
d 1
@P"(w) =5 1[:6Pn(:1c) — Py (2)]. (12.34)

Weights are obtained from the formula

(i=1,2,...,N), (12.35)

where z; are the zeros of Py (x).
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12.5.1 Energy grids

This is the documentation of the module egrid.

We define a function

2 /E o
r=— dE' e VE'
VT Jo

:lp EE :Ei Ek+3/2ﬁ; (12.36)
Vo2 Vs j:0j+3/2 ’

and convert energy integral with Jacobian v/E and weight e ¥ corresponding to Maxwellian into the one for z, where
I" denotes the incomplete gamma function and the summation is taken £ < 100 in the code. This function yields a

monotonic transform from F € [0, 00) to x € [0, 1).

The maximum value of the energy ecut corresponds to the value x0 in x:
2 ecut ,
X0 = —/ dE' e P VE'. (12.37)
VT Jo

Legendre zeros and weights of (negrid — 1)-th order polynomial are used in x € (0, x0).
The last weight representing the integral for higher energy than ecut is obtained by
Wnegrid = 1—x0 (1238)

as is suggested by Candy and Waltz [Candy and Waltz, 2003].
Therefore, the energy grids are the negrid — 1 zeros of the Legendre polynomial Ppegria—1[z(E)], {Ei(z)|i =

1,...,negrid — 1}, which are obtained from gauleg, plus ecut. Legendre zeros are concentrated to both edges in
x, but in most reasonable cases, it is not in E-space. In other words, you should choose ecut and negrid in such a way
that the grid doesn’t concentrate on the edge in F. gs2 gives a warning message if this is not fulfilled.

The advantage of this scheme is that we can take the weights of the energy integral unity by putting the square root

in the variable transformation (12.36). Thus, the exponential accuracy of the quadrature is kept.

12.5.2 Pitch angle grids

This algorithm appears in the module le_grids.
By defining
E=V1-) (12.39)

the pitch angle integration for the untrapped particle is converted into

1 1 1
/ d\ — = 2/ dg. (12.40)
0 11— 0

Legendre zeros and weights are used again to evaluate the integral in €. The factor multiplied to the quadrature

weights are, thus, 2. In the same way as before, numerical values of Legendre zeros and weights are obtained by gauleg
in the code.
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12.5.3 Michael’s Advanced Velocity Space Grids

This implementation uses nesub and nesuper as variables for the energy grid (with negrid=nesub-+nesuper), where
nesub is the number of points up to the maximum velocity vcut (instead of ecut in the old implementation). To use

this improved implementation, choose vgrid=T.

You may choose to only specify negrid, and the code will choose default values using
nesuper = (negrid/16) + 1

up to a maximum value of either 3 or 5 (CHECK), and nesub=negrid—nesuper.

12.6 Tomo’s Variable Description

scalars
name type default value description
nx int 0 number of grid points in x real space
ny int 0 number of grid points in y real space
nakx int  2x((nx-1)/3)+1 number of valid modes in x
naky int (ny-1)/3+1 half number of valid modes in y
ntheta int 24 number of grid points in z
ntgrid int ntheta/2 half number of grid points in z
negrid int 16  total number of energy grid
ngauss int 8  half number of A grid points
ng2 int ngauss * 2
nlambda int ng2 number of grid points in A = p/F
x0 real 10.0  box length in = by multiple of 27
yO real 10.0 box length in y by multiple of 27
z0 real 1.0 box length in z by multiple of 27
ecut real 6.0 cutoff of energy grid
igomega int 0 1ig to output in 2d

1d arrays
name type dim description
akx real nakx k, wavenumbers in z (reversed in the middle)
aky real naky /%U wavenumbers in y
al real nlambda pitch-angle grid A = u/F
wl real nlambda }i)iﬁch—angle weights (= fol 117)\ - d))
vperp2 real glo AE =92
ajo real glo Bessel function Jy(a)
aji real glo Bessel function Ji(a)/a

where a = k v, /Q.
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2d arrays

name type dim description

e real negrid X nspec energy grid

W real negrid x nspec energy weights ( = ﬁ foecm Ee~F. dE)
anon real negrid X nspec equals unity unless slowing down_species
vpa real 2 x glo )

vpar real 2 x glo \/%Ai O = %%@”

gamtot  real nakx X naky q%%[l —To(as)]

gamtotl real
gamtot2 real

nakx X naky
nakx X naky

where ntg = —ntgrid : ntgrid.

S

Zs QSnOSFI (as)
% ZS quOSFQ (as)

3d arrays
name type dim description
phi complex ntg x nakx x naky electrostatic field
apar complex ntg X nakx X naky AH
bpar complex ntg X nakx X naky 5B||k
g complex ntg x 2 x glo distribution function
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Chapter 13

AstroGK Algorithm

13.1 Simulation Equations

In the gyrokinetic limit, the evolution of a magnetized plasma with a uniform mean magnetic field B = Bz is governed by
the Gyrokinetic-Maxwell equations; see Howes et al. (2006) [?] and Schekochihin et al. (2007) [?] for derivations of these
equations expressly intended for the study of astrophysical plasmas. The gyrokinetic equation evolves the ring-averaged,

non-adiabatic part of the perturbed distribution function (X, Y, z,v,vy,t) for plasma species s,

ah ah c qSFOS 6<X>Rs 6h5
rr + U5 92 + {< )R, hs} = Tos ot + ot (13.1)

where X and Y are the guiding center positions in the plane perpendicular to the equilibirum magnetic By = Bz giving
a full guiding-center position Ry = (X,Y, 2), the equilibrium distribution function is Fys(v), the gyrokinetic potential
x(r,t) = ¢(r,t) — v - A(r,t)/c, and the collision operator is represented by (...).. Maxwell’s equations in the gyrokinetic

limit reduce to the quasineutrality condition

qs”% > [ v, (13.2)

the parallel component of Ampere’s Law,

—4—V¢ (A + Aya) = qu/d Vo (s )rs (13.3)

and perpendicular component of Ampere’s Law,

c

EVJ_(SB” Z qs/ (Z X Vi )hs)y. (13.4)
The electromagnetic fields are completely described by the scalar potential ¢(r,t) = é(z,y,2,t), the parallel vector

potential A (r,t), and the parallel component of the perturbed magnetic field 0 B (r, t); the term A , is the driving term
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from an external antenna current J, = —ﬁVﬁ_A”a. The equilibrium distribution function is a Maxwellian, uniform in
space,
2

Nos v
FQS(’U7t) = W exp <_1)_2> . (135)

ts

The nonlinear term in (13.1) is given in Poisson bracket notation, defined by

{(X)R., hs} =2 (agg’i‘s X a];)' (13.6)

In the Gyrokinetic-Maxwell equations, the ring average of a function a(r,t) at constant guiding center R is given by

1 2

{a(r,t))r, = o /. dpa(Rs — vy x 2/Qs, 1) (13.7)

and the ring average of a function a(Rs, v,t) at constant position r is given by

1 2T
(a(Rs, v, b))y = 2—/ dpa(r + v x 2/Qs,v,t). (13.8)
0

™

The cyclotron frequency is given by €.

For computational reasons (why? or is it more historical reasons now? This seems to have to do with isolating the

Alfvén wave from compressible fluctuations), we transform to a complementary distribution function g4 given by

qsFos vy -AL
—h. _vi-AL 13.9
g oI <¢ g >RS (13.9)

Performing this change leads to the following transformed set of the Gyrokinetic-Maxwell equations:

VL'AL

v A
09 dgs qsFos 0 (¢ — T>RS qsFos ()R, ¢ Oh,
o -, 0z + Tos ot + By Hor. ha} + ot /. (13.10)

ot 1752
2 2
qdsM0s _ qs 3 _ A2 AJ_
Tos ¢ ;TOS/CZV<<Q5 c > > Fos = qu/dvgsr (13.11)

——Vl (4 +A|‘a qu/d3vv|‘ (gs)rs (13.12)

S

2 A
iVﬂSB” — ; 1({_;5 /d3v <(i X VJ_) <¢ _ VJ‘TJ‘>RS> Fos = qu/ ((z x VJ_)gs> . (13.13)

where ((...)), denotes two ring-averages taking in sucessively.

Next, we express the electromagnetic potentials as complex Fourier series in position r over the perpendicular plane

of the form ¢(r,t) = >,  éx(t) exp[ik. - r], and the distribution function as a complex Fourier series in guiding center
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R over the perpendicular plane of the form gs(Rs,v,vy1,t) = ZkL gsk (v, v, t) expliky - Rg]. The ring-averages take

a particularly simple form for the Fourier components; for example, the ring average in the definition of g, becomes

A ) B 2 s 0B
<Q5 - c L> Fos = Zeers [Jo(as) o b+ sz F1{00) 2 i Fos, (13.14)
R

TOS K TOS Vig as BO
L

where Jy and J; are the zeroth- and first-order Bessel functions, as = kj v, /Qs, and the thermal velocity is defined by

Vs = /2T 0s/Ms.

The Fourier tranformed Gyrokinetic-Maxwell equations then become

Ogsk 09k _ qs P 203 Ji(as ) 5Bl\k Ohs
2 ) % — o) o s <TO p 20 g (maes haer} (K K+ T .

Kk’ k'’

(13.15)

ZQS/dSVJOsgsk (1316)

5Bnk

; QSTLOs(l - FOS) q;.}ik + ; gsnosl's
cki 3
— 1 A+ Ajpax) = > as | dPvoydosgex, (13.17)

ck1 Bo 6B|‘k kips QS¢k kips 6B|\k kips 3 2’UJ_ Ji (as)
A Z qsNosVts 2 I‘18 + Z qsNosVts 9 F2s BO = ; qsUts 9 /d a—gsk

ts s

(13.18)

Normalizing these equations, we find (dropping the hats)

agsk TOs 8gsk ds 8¢k 2 Jl (as) 8(SBHk aop / " 8h’5
— = J ) —— — 52 — ’;hs ok —k' —k
5 +v|\sms 5, Vs o(as) 9, VsV — 5 +klzk:” " (X)Rok s Psierr }6( )+ o ),
(13.19)
2

Gy 1‘{—;(1 ~To) + 6B Y Tis =Y qs/d3vsJosgsk (13.20)
Apc+ A Tos [ s J 13.21
26 ( Ix + Hak qu o VsU||sJ0sYsk; ( . )

S

2 Ji(as
OBk (E + ZT05F25> ¢kzi]sfls = ZTOS/d?’VS 2 l(ia )gsk (13.22)
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13.2 Simplified Algorithm

In general, we can discuss a simplified set of equations that has all of the same properties as the Gyrokinetic-Maxwell Equa-
tions. Thus, we consider the following of two equations governing the evolution of the distribution function f(y, z,v,t)
and the field ¢(y, z, 1)

0 0 15] 15)
8—{ + Ua—JZC = a(v)a—f + b(v)a—iS +N(v,0¢/0y,0f/0y) +C(v, f) (13.23)
10) :[ dv c(v)f (13.24)

The distribution function f(y, z,v,t) is periodic in the two spatial dimensions (y, z), and the nonlinear term N is a
function of derivatives of f and ¢ in the y-direction. If we substitute (13.24) into (13.23), it is clear that this is an

integro-differential equation for f(y, z,v,t).

We can express the distribution function and field in terms of Fourier series in y—for example, ¢(y, z,t) = > ¢r(z, t)e?*¥,
where the sum is over all possible wavenumbers k. Thus, the equations for the Fourier coefficients of the distribution
function fx(z,v,t) and the field ¢y (z,t) become

0 0 0 0
%‘FU%:CL(U)%‘FZ)O})% +Nk(v7¢17’¢Ny’fl,7fNy)+Ck(v7fk) (1325)
b = / dv  c(v)fr (13.26)

Some important properties of these equations are:

1. For all terms but the collision term C, the velocity space coordinate appears merely as a parameter

2. For all terms but the nonlinear term A/, the evolution of a Fourier mode k is independent of the other Fourier
coefficients k' # k

3. All terms are linear save for the nonlinear term N .

13.2.1 Implicit Advance of Linear Terms

Now, let us describe how the linear terms may be advanced nonlinearly. This implicit method for the advance of an
integro-differential equation was first used by Kotschenreuther [Kotschenreuther et al., 1995]; we will apply this method

to our system with the nonlinear term A and collision term C removed

0¢ 0¢

of  of
5, T

— 4+ v—=ua(v)

= 13.2
ot 0z (13.27)

o= [av cwrf, (13.28)
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Since we have dropped the nonlinear term, the Fourier modes are independent so we drop the subscript k& from the
Fourier coefficients fj and ¢y. The differencing is done according to a Beam-Warming algorithm [?], where the time and

space derivatives are given by

ot 2 At At '
a_f _ l ﬁklﬁj — fZ}J fﬁl:’ilj fsz-H (13 30)
0z 2 Az Az ’

where the discrete variables are given by fI'; = f(iAz, jAv,nAt) with i = 1,...,N, and j = 1,..., N,; the field is
similarly given by ¢ = f(iAz,nAt). We can write the differencing of (13.27) symbolically as

Difly 4+ Eifly  + Fifi + Gt = Hygl + Loty + Jioit + Kot (13.31)

and of (13.28) as
n+1 ZCJ fn+1 (1332)

Let us now consider the method by which we may step forward implicitly from the known values at the last timestep

f™ and @™ to the unknown values at the next timestep f™*! and ¢"*!. Also, we apply a known boundary condition
=0.

zlj

13.2.2 Brute-Force Implicit Solve

We can implement a brute-force implicit solution by substituting (13.32) into (13.31) to obtain the linear integro-

differential equation

Difl + Eifi  + Fi i + Gifidls = chj i +IJZCJ f1+1],+JJch f"+1+KJZcJ fril, (13.33)

I can rewrite this into a form that makes the form of the matrix more apparent

G~ JZCJ L T JZCJ = —Dy - Efl+1j+HJchf”+1jzcjfl+1j (13.34)

Given the values at the last timestep f™ and the boundary conditions fi=1 j, we end up with N,(N, — 1) linear
difference equations. If the vector of unknown values is written with the j index increasing more rapidly, the form of the
matrix is block bidiagonal as shown below:

A0 0 0 fytt Sy +C

B A 0 0 (ana S

0 B A 0 ot Sy (13.35)
0 0 B A frt1 35

5
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where the matrix blocks A and B both have dimensions N, x N, with elements given by

Agr = Grdrr — Ky (13.36)
and

By = F0r — Jyc (13.37)
fork=1,...,N, and [l = 1,...,N,. The source terms are due to the values at the last timestep f" and are given

by Sij = —D;fi"; — Ej —I—Hz,cjlej/—i-l >opcpfly fori=2,...,N, and j = 1,...,N,. The boundary
conditions at ¢ = 1 are 1mposed by the terms C; = —F; f"+1 +J; Z . Cjr f"+1 forj=1,...,N,.

In principle, solution of this equation is simple and the problem is solved. In practice, however, this matrix incorporates
information from all N, meshpoints along the field line with all of the meshpoints from velocity space (pitch angle Ny
and energy Ng) and species Ng. For a large run with N, = 128, Ny = 64, Ng = 32, and N, = 2, this yields a matrix
of dimensions 524, 288 x 524, 288. But we can use the linear properties of the equation to break this single large matrix
solution into a large number of small matrix solutions. Of course, sparse matrix solvers may be able to do this just as
efficiently, but for the moment we will focus on the presently implemented approach.

From the point of view of parallelization for scaling to thousands of processors, this approach is not optimal because
it requires information from the all N, meshpoints, and all meshpoints from velocity space (Nx Ng) and species Ns.
Because velocity space and species information appears in the collisionless gyrokinetic equation only as parameters, a
more efficient parallelization scheme can be introduced which takes advantage of this characteristic.

13.2.3 Kotschenreuther’s Green’s Function Approach

Because equations (13.27)-(13.28) are linear, the solution to the equations may consist of any linear combination of
solutions to parts of the equation. Thus, we may split the solution at timestep n + 1 into an inhomogenous piece that
depends only on the known distribution function and field values at timestep n and a homogenous piece that depends
only on the field quantities at timestep n + 1. These field quantities may then be solved as separate step using a Green’s
function approach.

First, we split the distribution function into an inhomogeneous piece f %J)rllj and a homogeneous piece f"lJ)rllj,
+1 _ pntl +1
fi f"o)” + fﬁ)i,j' (13.38)

These two pieces of the solution solve the equations

D[l + Bifl; + Fif ol + Gy, = Hiol + Lok (13.39)
Fifiy + Gif (i, = 3o + Ko (13.40)

Given the boundary condition f;—; ; and the distribution function and field values at the last timestep f™ and ¢",

(13.39) can be solved immediately for the inhomogeneous solution fo) "1 The matrix equation of (13.39) takes the form

0)i,5°
n+1
G, 0 0 0 Jioy2,s 555+ Cloys
F, G; 0 0 f(0)3,g — 535 (13.41)
0 F Gj 0 1o). (0)4,3 5ij
0 0 F Gj fioys.s S8
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where the matrix elements F; and G; depend only on the velocity coordinate j and the square matrix is of size N, — 1.

The source is given by
i1y = Hio + 1jdil, — Djf(%)i,j - Ejf(%)pru (13.42)

and the boundary condition, also dependent only on the velocity coordinate, is given by

Croy; = —Fj f1; (13.43)

To solve for the homogeneous solution, however, we must know the values of the field at the next timestep ¢"+!. To
solve for these required values, we use a Green’s function approach.

First let us write the field (13.32) as a sum of the moments due to the inhomogeneous and homogeneous parts of the

distribution function,

PP =moy + mayi (13.44)

where the moment of the inhomogeneous part of the distribution function
myi = Y i ity (13.45)
j/

is known since we have solved for f(’%;.lj and the moment of the homogeneous part is

mey = Y e i (13.46)
j/

Effectively, we need to determine the response in the moment of the homogeneous part of the distribution function due to

the field at the next timestep ¢"*!. Because this response is linear, any linear combination of solutions is also a solution.
Thus, we take a Green’s function approach and find the response in the moment due to a trial function given by

ot =5y, (13.47)

for k =2,..., N,. Note the the value of #""* is determined by (13.32) using the boundary condition fznjllj The matrix
form of (13.40) is

n+1
G, 0 0 0 f (1121,]‘ K, 0 0 0 ntl Cay;
Fj Gj 0 0 T | | % K 00 I (13.48)
0 F G, 0 a0y 0 J, K; 0 " 0
0 0 £ G )\ gt 0 0 J K N 0
»J

where the matrix elements F;, G, J;, and K; depend only on the velocity coordinate j and the square matrices are of

size N, — 1. The boundary condition, also dependent only on the velocity coordinate, is given by

Cayy = > e il = Fifly (13.49)
j/

Calculation of the response matrix employs the following procedure:
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1. Given the boundary condition f"'*

i1, j» we solve for the homogeneous solution fg;lj from (13.40) given a sequence

of N, — 1 trial functions chosen to be (;5?“ =0, for k =2,...,N,. Note that we must do this for each of the N,

velocity space coordinates j.

2. Summing over the NN, values of velocity space gives the N, — 1 values for the moment of the homogeneous plasma

response my); for i = 2,..., N, due to each trial function.

3. All of these responses to the trial functions are combined into an (N, — 1) x (N, — 1) response matrix M such that

the homogeneous moment my); due to any field ¢t is given by

may =y Migpt! (13.50)
k

Having calculated the response matrix, the full field (13.32) becomes

¢?+1 = myi (f") + m(l)i(¢n+1) (13.51)

for ¢ = 2,...,N,. This produces a dense, square matrix of size N, — 1 that must be inverted to solve implicitly for
the field at the new timestep ¢"T!. Because the response to a field at a given meshpoint z; is largely concentrated at
points nearby z;, the largest components fall roughly along the diagonal of this dense matrix. Therefore, the matrix is
well-conditioned and may be solved easily using a simple Gauss elimination scheme without pivoting.

With the field at the new timestep ¢"! solved, (13.40) is trivially solved for the homogeneous contribution to the

distribution function at the next timestep, f("lJ)rl Thus we have the full solution of (13.31) for the distribution function

at the next timestep f"! = f(%;rl + f("lJ)rl

13.2.4 Comparison of the Brute-Force to the Kotschenreuther Approach

The “direct” solution of the integro-diffferential (13.33) requires the inversion of a block bidiagonal (N, —1)N, x (N,—1)N,
matrix. The solution of the (N, — 1)N, unknown values to give the distribution function at the next timestep f"*!

requires use of all the velocity-space values. This leads to an algorithm that has poor scalability.

However, the (N, — 1)N,, x (N, — 1)N,, matrix that must be solved by this technique is constant; therefore it could
be solved in an initialization step. The matrix multiplication would probably involve some set of different velocity
space values and so may not be ideally scalable. To get the next timestep solution, one needs to multiply the source
and boundary condition vector in (13.35) by the inverted matrix. This matrix multiplication requires information from

different velocity space coordinates.

The Kotschenreuther solution, on the other hand, goes through the following procedure:

1. The inhomogeneous is trivially solved given the boundary condition f"*! and requires only values at the current

=1,
point in velocity space.
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2. The solution of (13.51) requires the inversion of a dense (N, — 1) x (N, — 1) matrix a single time to get the
field values, independent of velocity space, at the next timestep ¢"!. Note that, to solve for the inhomogeneous

moment, mg);(f"), we do need to sum over all N, velocity space coordinates at spatial position z;. This will
require some communication, and I don’t currently know if this is handled in a clever way. Once mq);(f™) is

calculated, however, the solution of (13.51) does not require the information from other velocity-space coordinates.

3. Calculating the homogeneous solution is trivial with knowledge of ¢"*! and requires no information from other

velocity space coordinates.

The beauty of the Kotschenreuther solution is that it takes advantage of the field’s independence of velocity space to

eliminate the need for values of the distribution function at other velocity space coordinates.

13.2.5 Nonlinear Term

The nonlinear term is handled using a 3rd-order Adams-Bashforth scheme such that the discretization of

df
— = 13.52
=N (13.52)
is given by
fn+1 B fn _ 23 n 4 n—1 b n—2
A = 12N 3./\/ + 12N (13.53)

Therefore, to write this in terms of the discretized 0f/0t, we obtain

5 +

n+1 n n+1 n
1 (Frig = Fis | Teavrg = Fiva
At At

23 4 )
) = Linear terms + EN,? — gN,:’_l + EN,:’_2 (13.54)

13.2.6 Collision Term

The collision term is handled by operator splitting. The nonlinear, collisionless solution is calculated using the Kotschen-
reuther algorithm including the nonlinear term to obtain ff,:rl. Then the collisional solution is obtained by an implicit
solve of

o= Ak = (13.55)

The actual collision operator is a pitch-angle scattering operator of the form

n+1 10

Cul(fii ) = V(E)§3—§ a€

n+1
(1 —52)—8 ki ] (13.56)

where E = v? = (vﬁ + 01, A=21/B, and { = v|/v = VE — AB/v.
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13.3 Parallelization Scheme

The decomposition of the gyrokinetic distribution function is accomplishing using a flexible parallelization scheme that
allows for different layouts. The gyrokinetic distribution function is

h(ky, ky, 2, \, E, 5), (13.57)

comprising a five-dimensional distribution function for each species s.

13.3.1 Questions

1. Is there a way to implement the direct solution by precomputing the inverse of the block bidiagonal (N, — 1)N,, x
(N, — 1)N, matrix? If the matrix multiplication to solve for all the (N, — 1) N, unknown elements of f"*! can be

written in a way that minimizes interprocessor communication, this could be a viable strategy.

2. Can we not use a Green’s function approach for each of the terms in the inhomogeneous solution as well? Doing
this and putting it all together with homogeneous solution is probably somehow equivalent to the direct matrix

solution.

172



Chapter 14

Antenna

14.1 Driving Antenna

The main parameters for the antenna are amplitude and frequency w_antenna. Setting up the antenna for a single driving
wavenumber k and for traveling waves (the default is travel=.true.), then given amplitude= A and w_antenna= wy,

we have

A )
a_ant = 5(1 + )e~wot (14.1)

b_ant = 0. (14.2)

—in At

NOTE: The actual equation in the code is a,1 = ane , which is seen to simply be a = Ae~*°* where we take

a, = Ae”wotn 5o for t, 1 = t, + At
Ung1 = Ae—iwotwrl — Ae—iwotne_i“’OAt — ane_iwoAt, (143)

Now, the driving potential for real driving frequency is given by

a_ant + b_ant

Aja = 7

etkiz (14.4)

and so for a_ant and b_ant above we find
A(1414)
2 V2

The routine get_volume_average puts in a factor of 1/2 for all k, # 0 modes, so the variable apar2 (output for

Aj = eilkiz=wot) (14.5)

write flux line=.true.) becomes

|[Aja? A2
= —. 14.
5 3 (14.6)

apar2 =

Hence, in the magnitude of A we find a factor of /8 difference between the analytical theory of Section (6.4.2) and the
output file from GS2.
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14.1.1 Amplitudes for Driving Strong Turbulence

According to the hypothesis of critical balance, the nonlinear energy cascade rate, which can be equated with the
perpendicular eddy turnaround rate v, = kv, balances with the linear wave frequency w = kjva to give

kl’Ul ~ W (147)

The reduced MHD limit of gyrokinetics, the perpendicular fluid velocity is given by

u, = Bioz X Vo (14.8)

and the perpendicular magnetic field perturbation is given by

BJ_ = -z X VA”. (14.9)
To find the amplitude of A that corresponds to the critical balance of the Goldreich-Sridhar strong turbulent cascade,
we note that in MHD v, ~ B, /(47ngm;)'/?, so we get

w k4
LY , 14.10
b k,  Amnm; ( )

Hence, the resulting amplitude is

Ay ~ V. (14.11)
€L

Normalizing this relation to dimensionless code units, this becomes

@QOAH ao - 2( w ) (k||P0) ( 4-7Tnimi> (QOBO> (mo) 'UA'UtOp?J (14 12)
c To po kjva ) (kipo)? By moc ) \ 2To Po ’
which becomes
. wk
Ap~ o2 (14.13)
2
k
1

This is the steady-state amplitude of A necessary to be in critical balance.

We now need to connect this steady state amplitude to the driving amplitude Ag in the GS2 input file. If the loss of
energy in the driving mode is given purely by the linear damping, a Laplace-Fourier solution to the linear system tells
us that the saturation amplitude for A in the long time limit is given by

|AH(1§ — OO)| = — (14.14)

where Ay and wy are the amplitude and frequency of the driving antenna and the dispersion relation D’(wy) is given by

w? (AE + BC)?

"D = —
D'@) =7 |BA B>+2A/@-—AD+O2

~1. (14.15)
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However, this neglects the drain of energy from the driving mode (or modes) through nonlinear transfer of energy to
other wave modes. We can roughly include this transfer of energy by choosing a total energy loss rate for a given mode
Ytot = ¥ + Yni Where 7 is the linear collisionless damping rate and ,; is the nonlinear rate of energy transfer to other
modes. A Fourier solution for the saturation amplitude in steady state is given by

Aﬁo
(w — 50)2 + W2

|A(t — 00)|? = (14.16)

For almost any system in which we have interest, at the wavenumbers where we drive v,; > =, so we can neglect the
linear damping. Since the critical balance suggests the nonlinear transfer rate ~,; ~ w, we find
AQ

llo

Ayt S
43t = o) (@ —wo)? + @2

(14.17)

If we drive fairly near the resonant frequency such that | — | < ||, we can neglect the driving term; we arrive at last

at the result for the saturated amplitude in a strongly turbulence nonlinear simulation

Ao

w

|AH(1§ — OO)| ~ (14.18)
Note, however, that in reality if the decorrelation of the driving frequnecy is of the same order as the driving frequency,

then |@ — Wo| = [@], so a slightly more accurate solution may be |A)(t — co)| 2 Ajjo/(V2).

When the driver is not decorrellated, if travelling waves are specified, the effective amplitude of each mode is actually
Ajjo/2 (see Section (14.1) above for details); if [S(wo)| > 0, in other words if the driving antenna has a non-zero

decorellation time, then the amplitude is Ao. Additionally, taking into account that we stir with Ny, driving modes,

the total energy is increased by N, and thus the saturation amplitude is increased by \/Ng-. This modifies the
formula above to

AHO Vv Ntir

|A||(t—> 00)| =~ -

(14.19)

All that remains now is to connect the driving amplitude in the GS2 input file to the desired final saturated amplitude.
Finally, then, the solution for the necessary driving amplitude to be in critical balance for strong turbulence is given by

2@2];'”

- (14.20)
\% NstirkL

flo~
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14.1.2 Amplitudes for Driving Strong Turbulence (NEW)

From the cascade model, we have w = wy,; = Cok v = Cok) adB, /v/Amn;m;. Since 6B = ki Aj, we end up with

wy/4mn;m;

Ap= Y
” kiCQOf(kJ_)

(14.21)

Normalizing this equation, we get

v doA) a0 _ ( w ) (kyao) <qOBO) (m0> _2povio (14.22)

¢ To po Ejva /) (k1po)?* \ moc 2Ty ) Coa(ky)
giving
R 2wk
Ap=— (14.23)
kiCQOf(kJ_)

This is the steady state amplitude of /1” necessary to satisfy critical balance for the normalized wavenumbers /%” and k.
Now, we must determine the antenna driving amplitude Anonecessary to achieve this steady state amplitude AH' The
Fourier solution for the saturation amplitude in steady state is given by

12
Ao

(@ —@0)? + Veot”

| Ay (t — o0)|? = (14.24)

where the damping term includes not only the linear damping but also the nonlinear energy transfer, 7,,, = gamma+wny,.

For the driving wavenumber, the dissipation is generally weak, gamma < w,,;; as well, in critical balance we have W = w,,,
so this becomes

A2

Ao

Ayt — o0)]? =
e = o)l = G T

(14.25)

For driving at resonance, wy = W = W,; and the denominator reduces to wil; on the other hand, because of the
decorrelation of the antenna, the driving frequency drifts such that (@,; — @) ~ w2, and therefore the denominator will
be 2@%1. To cover both of these limits, we introduce a parameter § € [1,2], and we have the result

12
_ Ao

=—.
0wz,

|A)(t — o0)[? (14.26)
Taking into account that we stir with Ny, driving modes, the total energy is increased by Ngt-, and thus the
saturation amplitude is increased by +/Ng-. Hence we find a final result connecting the driving amplitude of the

antenna AHO to the saturation amplitude /1”

_ AHO \% Ntir
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Now we set these two values equal to determine the correct driving amplitude in order to be in critical balance. This
gives
2]%”52 51/2
I;i RV Nstir CQQ(ICL)

Ao ~ (14.28)
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Chapter 15

E x B Shear

15.1
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Chapter 16

Distribution Function Advance

16.1 periodic boundary condition

Let us describe how the periodic boundary condition is implemented in (12.27). We will consider v| > 0 case here. The

case with v < 0 goes in the similar way with opposite sweep along z.

First the distribution function is split into homogeneous and inhomogeneous parts:

9" =gl o (16.1)

where inhomogeneous part includes all effects from g™ and other terms and homogeneous part includes only g"** terms.

Then (12.27) can be split into two equations:

Crgi" + C2gi 1 + Dlg?i:ﬁ)ﬁi + D2QZI§)J+1 =[] + B2y + G1o! T + G2 + other terms, (16.2)
Diggyi + Dagmyis =0, (16.3)

the sum of which recovers the original equation (12.27). It is noted that the inhomogeneous and homogeneous split here
is to do with boundary condition and nothing to do with the split in the overview chapter. Thus they are denoted with
the bracketed subscript.

Assuming 9(inh),—ntgria = 0, we can solve (16.2) by a sweep from ¢ = —ntgrid to ¢ = ntgrid — 1:
98:}11),i+1 = —DLQ(Clgf + Cagiyy + Dlg?i:ﬁ)ﬂ. — F1¢} — Fadly — G1g) T — Gagl] — other terms). (16.4)
Next by assuming gzh)ﬁntgrid =1, we can solve (16.3) by another sweep from i = —ntgrid to ¢ = ntgrid — 1:
Ihy,irr = —g—;gihm- (16.5)
By rescaling the homogeneous solution as
In) = lg(mh)’imgnd%)a (16.6)

!/
- g(h) ,ntgrid

we obtain the periodic solution (16.1).
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16.2 Subroutines

Subroutines section from Tomo notes.tex

init_vpar

In dist_fn.£90. For untrapped particle
vpa(ig) = o/ E(1 — AB(ig))

vpac(ig) = %[vpa(ig) + vpa(ig+ 1)]

and for nonpassing zone

vpa=0

vpac = o

where o = +1 denotes the coordinate for the sign of v. And then vpar is defined by

(1g) = —Z—tunits > Llgradpar(ig) + gradpar(ig + 1))  vpac(ig)
vpar(ig =T unitso— - [gradpar(ig) + gradpar(ig vpac(ig

where gradpar(:) = kp in salpha option.

wstar = delt *x wunits * [fprim + tprimx (E — 1.5)]

init_bessel

In dist_fn.£90. We define Bessel functions
ajo = Jo(arg), ajl = Ji(arg)/arg,
with a formula taken from Abramovitz & Stegun (page 369, 9.4), where

vmT .
arg = %\/ kperp2 x AE,

kperp2 = k2 + ki

init_invert_rhs
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(16.7)
(16.8)

(16.9)

(16.10)

(16.11)

(16.12)

(16.13)

(16.14)

(16.15)

(16.16)



1
ainv(nt lo
(ntg,glo) = 1+ bd + (1 — fexp) Z[iwd(1 + bd) + 2vp]

~ {1 + (1 = foxp) At (zwd + A—g)]

= (coeft. of f”+1 in the lhs) ™! = (Dy plus bd factor) !

1—bd+ (1 —fexp)
14+ bd+ (1 — fexp)

[iwd(1 — bd) — 2vp]
[iwd(1 + bd) + 2vp]

. 2@” .
= [1 + (1 = fexp)At (zwd — E)] * ainv

= (coeff. of f*' in the lhs) * ainv = (D3 plus bd factor) * ainv

T
r(ntg, glo) = Z
AU

T
a(ntg,glo) =1+bd + fexpE [—iwd(1 + bd) — 2vp]
=1 — foxpAt (iwd + AHU) ?(haven’t checked wq factor)
= Dy (coeff. of f"*! term) plus bd factor
T, .
b(ntg,glo) =1 —Dbd + fexpz [—iwd(1 — bd) + 2vp]
. 2
=1 — fexpAt (zwd - Ev) ?(haven’t checked wq factor)

= Dj (coeff. of f* term) plus bd factor

(16.17)

(16.18)
(16.19)

(16.20)

(16.21)
(16.22)
(16.23)
(16.24)
(16.25)

(16.26)

(16.27)

(16.28)

where wd = wdrift (= 0 in reconnection) and vp = vpar(ntg, 1, glo). Note that they are all defined for positive v;.

fexp is a complex number. What’s the meaning of the imaginary part? The meaning of the real part of fexp and bd

( = bakdif) is explained later (in get_source_term?).

|init fieldeq]

Z2
gamtot = Z nTS //(1 — JZ2) * anond\ dF + kperp2  poisfac
gamtotl = ZTLZS // 2viJoJ1 x anond\ dE

gamtot2 = ZnT // 20 J? * anond\ dE

Of course these integrations are done with proper weights and Jacobians described elsewhere.
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(16.30)

(16.31)



invert_rhs

In dist_fn.£90. Add source term

so exp|[(—iwo + 70)1] (t > to)
sourcefac 3 (1 — cos :—) exp((—iwo +70)t] (t <to) ’
0

where sg (source0), wy (omegal), 7o (gamma0), and ¢y (t0) are given parameters specified in source\_knobs.

‘get_source_term‘

Writing f, = £phi, fexp = fexp (=1 — 9 in Kotschenreuther paper)

T n
phigavg = fyJo [fCXP¢n + (1 - chp)anJrl] + fa, E”ijl [fcprﬁ + (1 - fcxp)AJ_Jrl}

apargavg = fAH Jo [fcprﬁL +(1- fcxp)ATr+1:|

JF

ufac = 2 x uprim + TWE?’/Q * uprim2

The following is for reconnection problem:

Z Jo(ig) + Jo(ig + 1)

source(ig) = —2vpar(ig)om — vaac(ig) ) Ajm
where
o(J.
¢m = phigavg(ig + 1) — phigavg(ig) ~ Af (f)gd))
A = A (1g + 1) + AT (i) — Aff (ig + 1) — 4] (ig)
o2
T
phigavg = Jo(ig) [fexp¢"(ig) +(1 - feXp)(bn—H(igﬂ
(ig) = Z At i)(ig) +oy(ig+1) Z At
vpar(ig = T Ad P 5 72"
. ylig)+ 9 (ig+1)
vpac(ig) = :
Thus,
. Z. [0(h¢) , , 94
source(ig) ~ —=10 20 +Jo 5 (2At)

(16.32)

(16.33)

(16.34)

(16.35)

(16.36)

(16.37)

(16.38)

(16.39)

(16.40)

(16.41)

(16.42)

where ¢ and A are evaluated from both time steps of n and n + 1. This is the expression you get at set_source. Is the

sign of the first term in [...] okay??
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Moreover, if nonlin = .true., then add nonlinear terms

1 delt
source = (16.42) + 3% °
norm

x (nonlinear terms), (16.43)

in Euler scheme at the first time step and in second order Adams-Bashforth scheme for the rest. tnorm = V2 in

reconnection runs, and delt is multiplied by tnorm in init_run_parameters. So the factor delt/tnorm corresponds to

the real delt specified in the input file. The At ( = delt) in the linear terms is V2 times larger than that. The precise

form of the nonlinear terms is described in add_nl.

Next, we go back to get_source_term and around the place where Do matrix multiplications... For o0 =1
b(ig,iglo) = g(ig, 1,iglo) + a(ig, iglo) * g(ig + 1,1,iglo) (16.44)

is added to source(ig), which corresponds to the g™ terms arising from the finite difference form of the lhs:

O iwaf oy 9 S [T S — U )
FE I~ Fop) (F SR + Fonp 7+ 30)]
b [0 o) U5~ S75) + fosp i = 1) (16.45
where wq = 0 in the reconnection problem. For o = —1, the sign change of 9| is taken care of by multiplying a and

b oppositely on g(ig) and g(ig + 1), respectively, because the definition of a and b uses vpar(ntg, 1, glo) which is the
positive part of .
Okay, let’s think about bakdif now. It is introduced in order to make 9dp f term an upwind difference scheme. As

is described in (16.45), everything is evaluated at grid point ¢ + 1/2 in 6. Instead of changing the finite differencing of
Oy f, we shift the grid point for other terms to be evaluated a little bit forward. Then, the scheme is going to be upwind

finite difference.

Let’s work on the terms appearing in (16.45), and we write 8 = bakdif for simplicity. Any term evaluated at i + 1/2

is expressed as follows:
1
fivr2 = 5(fi+1 + fi)- (16.46)

By shifting it forward, we may write it as

firsy2 = 5l + B) firr + (1 = B)fil, (16.47)

N =

where 0 < 3 <1 and 8 = 0 corresponds to second order centered difference scheme (may § be larger than unity?).
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Thus, for the terms in (16.45), they are finite differenced as

<2f~+zwdf> +-<05§>
¢ i+(143)/2 i+1/2

zwd

(1

HNarpl —tm g gt — 1

) At

— fexp) [(L+BFIR + (= BFF] + foxp [(1+B) fl3a + (1

fn+1 n fn+1 fn

-8 £}

05 (L= foxp) 5 = FI7) + Fexp (i = 1)
— L "H’l r n+l n o _ n
T 2At LunvflJrl ainvfi afiti —Bf| -

(16.48)

Here comes the question. When you use finite bakdif, do you not need to implement it in the source term either?

|invert_rhs_1|

Is it okay to use r and ainv defined for ¢ > 0 in the calculation of gnew for vpar < 07

This is in dist_fn.£90.

getfieldeql

In dist_fn.f90.

get_field_vector‘

In fields_implicit.£90.

antot = ZnZ // Jo * gnewd\dE

/T
antota = Z 2xbetaxnsy\/ — // Jo?|| * gnewdA dE
m

= Z 2xbetaxns // JoO)| * gnewdA dE
antotp = ZnT // J19?3 * gnewd\ dE

fieldeq = antot — gamtot * ¢ + gamtotl x B

fieldeqa = antota — kiA”

fieldeqp = fpantotp + (fogamtot2 + 1) B + %gamtotl * @

fieldeq
fllnfield * (2 xntgrid + 1),nakx,naky] = | fieldeqa
fieldeqgp
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(16.50)

(16.51)

(16.52)
(16.53)

(16.54)

(16.55)



In fields_implicit.£90.
call get_field_vector
u = —aminv* fl

call get_field solution

get_field_solution

In fields_implicit.£90.

phinew
aparnew | =u
bparnew

If the time step (istep) is advanced from the last call (istep_last),
g2 =gl
g1 = ik, [JO (fo0— oy, 47 ) + 27mJ1@ifALA’4
ba = F (g1)
gl= % {zky (Jof¢¢>+ 27mJ11A)ifALAT_)] + ikyg
gb = F(g1)

bracket = ba * gb * kxfac

2m

gl = ik, {Jo (f¢¢ — ) fa, ﬁ) + 7J1@ifALAq
ba = F (g1)

Z 2
gl = T |:ZI€I <J0f¢¢+ %JlﬁLfALAZ)] + kg

gb = F (g1)
bracket = bracket — ba x gb *x kxfac

gl = F (bracket)

where kxfac = 1 when equilibrium option = s — alpha.
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(16.59)

(16.60)
(16.61)
(16.62)
(16.63)

(16.64)
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(16.66)
(16.67)
(16.68)

(16.69)
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Chapter 17

Nonlinear Terms

17.1
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Chapter 18

Matrix Inversion

18.1
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Chapter 19

Collisions

19.1 AstroGK’s Implementation of Collisions

Let us be specific about the implementation of collisions and hypercollisionality in GS2. This is well described in a note
by Greg Hammett dated June 26, 2003; this note also includes insightful discussion that is not included here. I will
summarize his results here and update them to include the classical diffusion operator that arises from taking pitch angle
derivative with at constant guiding center R rather than constant position r.

The electron collision operator includes both electron-electron and electron-ion collisions with the equilibrium Maxwellian

distribution,
<Ce(h8)>Rc = <Cee(hev FOe) + Cei(h€7 F()i)>Rc (19.1)
while the ion collision operator includes only ion-ion collisions with the equilibrium Maxwellian distribution,
(Ci(hi))r; = (Cii(hi, Foi) )R- (19.2)

Question: What happens to the adiabatic piece of the distribution function in the collision operator?

19.1.1 Electron Collision Operator

The electron collision operator is given by

(1 +€2)@hke} (19.3)

N kR, (L [0 g 2y O] 02
Cuthon. = ez { g 0 - %] -

te

where the coefficient, dependent only on the magnitude of velocity, is given by

Ve(v) = Ves (%)3 [ZE +H,, <i)] (19.4)

Ute

(NOTE here that in the GS2code, the factor of 1/2 in (19.3) is actually absorbed into the constant v.(v) and so actually
appears only in (19.4)) with the like-particle collision coefficient is given by

2

1 2 ® 42 1 e ®
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and with
dmetn
Vei = 1/27 (196)
me’ " (2T,)3/2

Here A denotes the Coulomb logarithm A = In(Ace) ~ In(Ae;), the pitch angle coordinate is defined by £ = v /v, and
the thermal velocity is defined by v, = 2T,./m.. The first term in (19.3) is the standard pitch-angle collision operator

and the second term is a classical-diffusion correction due to the fact that the derivatives 9/9¢ are evaluated at constant
guiding center R rather than at constant position r. At the moment the second term is included when cfac=1.0 in
the collisions namelist; this is the default behavior (a change from earlier versions of the code). This correction term is
motivated and derived in Schekochihin et al. (2006).

Figure 19.1 plots the variation of the functions Hs(v/ves) and ve(v/vee) with energy, or magnitude of velocity.

19.1.2 Ton Collision Operator

Analogous to the electron collision operator, but neglecting ion-electron collisions, the ion collision operator is given by

D, = e oy { g [0~ 1%8 ] 0+ 5 (19.7)
where
vi(v) = vig (%)31{55 (%) (19.8)
and
4.4, .
Vi = % (19.9)

Figure 19.1 plots the variation of the function v;(v/vy;) with energy, or magnitude of velocity.

19.1.3 Collisional Coefficients

In the GS2 input file, the collisional coefficients vnewk are used as the values of v.; and v;; in the electron and ion collision
operators above. If we denote these user supplied values as vnewk, = U.. and vnewk; = I;, then the normalization is

given by
Dy = 2280 (19.10)
Uto
19.1.4 Collisional Heating
To estimate the collisional heating, we take the gyrokinetic equation,
ohs = Oh,  c 4s IR
— hs] — (C(hs = = Fos, 19.11
U G e (R = (COg, = A= Ry (19.11)
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Figure 19.1: Plot of the functions Hs(v/vis), Ve(v/Vte)/Vei, and v;(v/vy;) /vy to demonstrate how these coefficients vary
with energy (magnitude of velocity).

multiply by Tshs/Fos and integrate over all space and velocity to give the entropy-balance equation. (In fact, to be
more precise, in complex space we must actually take [ [, TshiGK/Fos + [ [, TshsGK*/Fy,, where GK denotes the
gyrokinetic equation; but we will be somewhat loose with notation here.) The second and third terms on the left-hand

side give nothing when integrated over all space for periodic boundary conditions, leaving the result

BR, 9 (X)r d [ &R T BR T,
S | dBvq, Sy — — S| By =25 p2 /—S/CP’ 95 (hoC(hs - 19.12
/ % / Ve dt/ % / VR T TV Vi, (hsClhs)lr, =0 (19.12)
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Let us now take a closer look at the heating from the collisional term. Writing the gyrokinetic distribution function
as a Fourier series

he(Rg, v, 1) = Z hics (K, v, t)ek R (19.13)
k

and using a generalization of (19.3) and (19.7), we find

/d R, /d3 To, (hsC(hs)) g (19.14)
FOS ®
AR ikt R, / 3. Vs(v) 0 2\ Ohis k% p?
zk:;/ T, [ dv 2Foshk' 5 (1—¢2) 5 vts(1+§) Pacs
Using the property
/ PR R — 5k 1 1), (19.15)
the reality condition that
h_ks = hig, (19.16)

and transforming to velocity v, pitch angle £ = v /v, and gyrophase angle 6 coordinates

o) 1 27
/d3v_/0 v%iv/ldgfo do, (19.17)

this simplifies to

/dR /d3 122 (hCh)) (19.18)

o0 ; ! . 0 Ohys k2 p?
ot [ 5 { [ st [0 %] - 5 [ s omerr)
k s - -

S

We may now perform an integration by parts in pitch angle on the pitch angle scattering term to obtain the final,
sign-definite result

/d R, /d3 Tos (hsC(hs)) g (19.19)
FOS ®

o0 ’ 1 Ohws|> 02 k
= e [t {/1d5<1—52> el “’5/ d5<1+5>|hks|2}-
k s - -

0¢ Vi, 2
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19.2 Hypercollisionality

The hypercollisionality operator for a species s is defined by

) 1(0 Ohks 2 k2 p?
(Cns(hs))r, = zk:e“"Rst(mpi)”g {6—5 [(1 — £ x } -2+ 52)lT”5hks} (19.20)

65 Uts

where vgs is a constant coefficient, independent of velocity.

19.2.1 Goal of Hypercollisionality

The aim of any hyperdamping term is to model the transfer of energy from the smallest resolved scales in the box to
smaller, unresolved scales. Without such a mechanism, energy builds up at the smallest scales because there are no
smaller scale modes with which to couple nonlinearly. Hence, a bottleneck in the energy spectrum results.

One task to be completed is to estimate the nonlinear energy transfer rate (as a function of amplitude) and determine
the minimum necessary hyperdamping to remove that energy. Although, at the moment the magnitude of linear hyper-
collisional damping is not well understood (in relation to the coefficient supplied in the input file), in principle we can
at least connect the required effective hyperdamping to the nonlinear energy transfer rate. Due to critical balance, the
nonlinear transfer rate should simply be of order the linear wave frequency, kyv, ~ kjva. Hence, the requirement for
hyperdamping is to achieve v/w > 1 at the end of the cascade, meaning that the energy will be damped out in roughly
one wave period.

A more elegant technique, rather than to just choose some constant coefficient for the hypercollisional damping in
any given run, is to allow the coefficient for the hypercollisional damping to vary as a function of simulation quantities
(such as |x|?), so that the effective damping supplies just the right amount of energy transfer for a given amplitude
at the smallest resolves scales in the box. Hence, rather than specifying two parameters, the driving amplitude and
hyperdamping amplitude, we simply specify the driving amplitude and allow the hyperdamping to vary in such a way as
to always provide at least the minimum required damping rate.

19.2.2 Hypercollisionality in the Reduced MHD Limit

To find the what form a hypercollisional term takes in the Reduced MHD Limit will shed light on the effect of hypercol-
lisionality.

We begin with the gyronkinetic equation written in terms of gs,

9gs 9gs ds 895 C 7
o Fos— + — | ¢ — A, he| — (C(hg)) — (Cpn(hs)) = Fos— 19.21
o TG R+ (6= A = (€)= (Calha)) =~ Fou (19.21)
where we have used following definitions
_ . 4s(9) gs{vi-AL)

9s = hs = = Fog + ", (19.22)

Jy [ Eeus 2 5H

7 _ kivy 1 ( Qg ) msvy 5B||
¢ = Jo( . )+ — By (19.23)

s
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and
kJ_'UJ_ ) ’U”AH

AEjo(Q -

(19.24)
To derive the vorticity equation, the first step is to multiply the gyrokinetic equation by ¢s, ring average at constant
position r, integrate the equation over velocity, and sum over species. We will consider each term in turn. Using the
quasineutrality condition in terms of g5, integrating over velocity for the potential terms, and solving for the integral of
gs gives us a form for the first term

0 q2nOs 6& q2n05 0 Ts 5B||
" s(gs)r = — (1 —Tos) 5, — T | —5 | - 19.25
8t 2‘/\,(] <g >r 3 TOS ( 0 )8t B TOs ! 8t ds BO ( )
The second term, after using the Parallel Ampere’s Law in terms of g, becomes
0] c 0,
— s s)ir = ———V35A. 19.26
0z g/vq UI{gs e 4dr 8zvj‘ I ( )

The third term integrates to zero because it is odd in vj.

The fourth term, the nonlinear term, we neglect because it does not affect the form of the hypercollisional term.

The fifth term is the physical collisional term. Since we are generally interested in collisionless problems for which
w > V., we neglect this term as well.

The term on the right-hand side is also odd in v| and so contributes nothing after integration over velocity.

The sixth term on the left-hand side is the hypercollisional term. The ring average at constant position r of the
hypercollisional operator becomes

) 8 8 s ,UQ 2 2
((Crs(hs))ry)r = EGZk'rJO(Qs)VHs(kLPi)n% {8_5 [(1 —£?) gg ] — U_fs(l + 52)%hks} (19.27)

where a, = k) v) /Qs Summing over species and integrating over velocity gives

i 0 Ohis 2 2 2
— ;/VQS;elk»rjo(as)VHs(kLpi)n%{8—§ |:(1_€2) hx ] _U_2(1+€2)%hks} (1929)
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19.3 Adaptive Hypercollisionality

Because the effectiveness of the hypercollisionality in damping the turbulent cascade is dependent on the structure of
the distribution function in velocity space, determining the value of the hypercollisional coefficient needed to achieve the
desired amount of damping is difficult. Thus, an algorithm for adaptively adjusting the hypercollisional coeflicient to
yield just the right amount of damping is extremely valuable. But even this requires a diagnostic of the effective damping
of the cascade. Here we review a model-dependent derivation of this diagnostic and explain the algorithm for adjusting

the hypercollisionality.

19.3.1 Estimation of 7/w from AstroGK

To dissipate the turbulent cascade at the highest resolved wavenumbers—and thus avoid a bottleneck of energy—we
want the effective normalized dissipation in the nonlinear simulation vy, (k1 )/wni (kL) to take on a large enough value
to damp the cascade, where v,,;(k, ) is the damping rate of the nonlinear fluctuations at some value k; and wy; (k) is
the nonlinear energy transfer rate to higher wavenumbers. At the same time, we do not want ~,;/wy; to be too large or
the hypercollisional damping will affect too much of the dynamic range of the simulation. A good estimate for the value
needed is Yy /wny =~ 1/(27) ~0.16 at k. = k1max1/V2.

We can use the heating diagnostics in AstroGK along with a model for the nonlinear transfer rate to calculate a
value of (k1 )/wni(kL). An estimate of the damping rate is v (k1) = Pr(k1)/Ex(k1), where Py(k,) is the heating
power within a given wavenumber band centered at k; and Ey (k) is the total energy contained in that band. We must
normalize this damping rate by a nonlinear energy transfer frequency; we use the cascade model from [Howes et al., 2007]

to determine wy; (k). The nonlinear cascade rate from this model is

Wnl = CQICL'UL(I{:L) = Cgkla(SBl(kl)/\/ 47‘mimi (1930)
where
1, kipi<1
k)= 19.31
alky) { kipi//Bi +2/(L+Te/Ti), kipi>1 ( )
and we can use
/2
_ (klpi)Q r
=w~ |1+ 19.32
w14 g (19:32)
over all values of k. Thus we find
wnt = Cok1 6B (k1) /vAmnm; [1 + (kL po)” ]1/2 (19.33)
" o Bi+2/(1+T./T;) )

where the value of the critical balance Kolmogorov constant is Cy € [1,2]. Normalizing this to the AstroGK normalization,

(wnlao) — 0, (k1po)® ('ULO Q4 @) ( By ) (% moc 1 ) [1 N (kipi)? 1/2 (10,34
Vto 2 ¢ To po v/ Amngmg m0 qoBo povio Bi+2/(1+Te/T;) .
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which gives
RA L
2v%o Bi+2/(1+Te/T)

Gy = Cs (19.35)

19.3.2 Connection to Code Diagnostics

One can use the code heating and energy diagnostics to determine the magnitude of the magnetic field fluctuations at a

given k, . For a given mode (k,, ky), the magnetic energy in fluctuations perpendicular to the mean field is

KA Gee, by )

Ep, (ks ky) = o (19.36)
In normalized units this becomes
Ep, (ko ky) = %ﬁz’kw (19.37)
which is calculated in hk(it,ik)%eapar in the code.
Summing over all of the N,,,4. modes in the band from ]%J_ - AIA@_/Q to /A@_ + AIA@_/Z we find
kL 12;3|A”|2Nm0d8 (19.38)

B 4p,

assuming that all of the modes have statistically the same value of /AlH. To connect with the formula for w,; above, I can
use this to find

£ Ak
WAy B (19.39)
2 V 50 Nmode
so the nonlinear frequency can be determined by
FAk L 5o 1/2
Gt = Coky ([ =2 |1+ iat (19.40)
Nmode ﬁz+2/(1+Te/Tz)

19.3.3 Rules for Adaptivity

The rules for adapting the hypercollisional coefficient are outlined here. First, we define a few quantities. The measures

for
Ynl Pl Ynl P2
=" _ = — 19.41
h wn  Erwny f2 wni  Brwny ( )
where for the ions
Py =P+ Prei P>= Phei (19.42)
and for the electrons
P1:Pci+PHci+Pce+PHce P2:PHce- (1943)
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For example, for the electrons, f1 is the total normalized damping rate and fs is the normalized damping due only to
the electron hypercollisionality.
The coefficient is only adjusted adaptively if there is enough energy in the band compared to the total turbulent
energy
Ey

tot

> 107" (19.44)

and adaptive hypercollisionality is specified for the species spec(is)’adapt_hc = T. If these conditions are specified,
then the following tests are performed to determine if the hypercollisionality coeflicient should be increased or decreased.

The threshold normalized damping rate is f; =spec(is)%gw hc; a typical value is f; = 1/27 ~ 0.16. When the
hypercollisional coefficient is adjusted, the collisional matrix must be recalculated, so one wants to adjust the value as
infrequently as possible—thus, we define a buffer around the threshold value for which the hypercollisional damping
is acceptable. We define this as ¢ =spec(is)%gw frac; a typical value is ¢ = 0.1. The test is simply that when
|fn = fel/(fu + fi) > q, the damping rate is beyond the threshold buffer and the hypercollisional value may need to be
adjusted. For the moment, only the electron hypercollisionality is adaptive—preliminary tests suggests adaptive both ion

and electron hypercollisionality is unstable.

FIRST TEST: Damping too strong If total damping is outside the buffer and too strong

h= Al g and f1 > f; (19.45)

fi+ fi

then we need to determine if reducing the electron hypercollisionality will help (if real collisional damping dominates and
is too strong, then reducing electron hypercollisionality will not make any difference). If the electron hypercollisional

damping is also outside the buffer and too strong

o= fil . and £ > £, (19.46)

fo+ fe

and if the electron hypercollisionality is greater than the minimum value
VHe > Vyemin (19.47)

then the electron hypercollisionality is adjusted according to

VHe = IAax <I/H6%, VHemin> (19.48)

The flag is set to nuh_changed = T so that the collisional matrix will be recalculated.

SECOND TEST: Damping too weak Else if total damping is outside the buffer and too weak

=l and < 1, (19.49)

fi+ fe
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then increase electron hypercollisionality up to the maximum value
. It
VHe = min I/Hef—, VHemax (19.50)
1

and the flag is set to nuh_changed = T so that the collisional matrix will be recalculated.
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Chapter 20

Fields Advance

20.1 Normalized field equations

Here is the list of normalized field equations in terms of gs2 variables:

Qodr — QBB = Qa(gsk),
k3 Al = Pa(gsk),

Rydr + RpdBjr, = —Ra(9gsk),

where

2
qs nOS
TOS

S

Q)= qunos/JJo(as)- d\dE,

Qs = [1—To(es)l;

Pa = 2602q5n05/jv” - d\ dE,

qu = % Z qsnOsF1 (065)7 RB =1 + % Z nOSTOSrQ(aS)’

N1(%) oy aE

Qs

Raq = ZnosTosﬁo/Jﬁi

QB = Z anOSFI (Oés),

¥ is under species dependent normalization and J is the Jacobian of the velocity integral:

1 E g

T=3mVT="

Notice that v, is normalized species-dependently while v| uses general thermal velocity vyo.
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In GS2, the following variables are defined:

2
ngs
gamtot = Qp = > “*[1 - To(as)) (20.6)
2
gamtotl = Qp = %qu = ZanOSfl(as), (20.7)
gamtot2 = % (RB —-1) Z nosTosT2(as), (20.8)
antot = Qu(gsk) = qunOS/JJO(as)gsk d\dE, (20.9)
antota = Pa(gsk) = 260 Y _ 4sMos / T gsk AN dE, (20.10)
1 Ji(ag
antotp = E’Rd(gsk) = zsjnOSTOS / TJ? 155 ) gsk ANAE. (20.11)

20.2 Discretization
Let’s discuss about the difference between g. and ginn or gn. We may introduce g, by
gt =gt +ai. (20.12)

The discretization of gyrokinetic eqn is straightforward, and the equivalence of field equations is explained for quasi-
neutrality condition in the electrostatic case for simplicity. The discretization of the electrostatic quasi-neutrality condi-

tion at the future time step
Qo7 = Qulgi™)

Q@ﬂb+%<%>wﬁuwﬂ

= Qulgrfh) + Qu <§z) PrE, (20.13)
J

where we used (§g/5¢)¢™ = gi', is solved with respect to ¢! and yields

89
{ Q4dij + Qu ( 5; )} P = Qo — Qalgl i) (20.14)

Since the form of the operator on both sides are exactly the same, the matrix on the left hand side can actually be

obtained by computing the right hand side with J;; and dg;/d¢; for ¢ and g”“.
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General form of the discretized field equations are summarized as follows.

[—Q¢5ij + Qq (gzl)] ¢n+1 + Qq (;A ) A"+1 |:Q3617 + Qq (;B )} Bn+1 Qe — QBB — Qd(gfjl), (20.15)
J

691 n+1 591 n+1 691 n+1 n n+1
Pd<5¢>¢ [ kj‘(s”_'—Pd(éA A + P4 5B B kJ_A P(g* ), (20.16)

{R@ij + Ry <59i )] " 4+ Ry < %9: ) it {RB&J— + Ry < 09: ﬂ B = —Ry? — RpBY — Ra(g'th). (20.17)
3¢; N 0A; ) ™ 0B

Since these field equations are coupled together, we build a big matrix containing the information of all z components for
all three field equations, where the each component of z appears alternatively in the matrix. Namely, the first component
is for the first z component of (20.15), the next is for that of (20.16), the next is for that of (20.17), and then we move
along z axis and start from (20.15) again. This is for the ease of obtaining inverted matrix. Since the plasma response
must be mostly concentrated around the same point where you put the source, this way makes the matrix to have large
values around the diagonal components while they scatter when we separate equations and collect with z components.

20.3 Adiabatic option

When we don’t want to solve GK eqn for electrons, we may simply choose to not define electron species in the
species_parameters namelist. In this case, we are allowed to choose adiabatic option in the namelist dist fn knobs.

There are four choices for the treatment of adiabatic electron dynamics.

default This choice changes the coefficient @4 as follows:

2 2
dcNoe qsnos
Qs = 1 —To(as)l, 20.18
[ TOe + - TOs [ 0(a )] ( )

where the whole term ¢?ng./Tp. should be put in the parameter tite in the namelist parameters. Species sum may

only represent ion species.
iphi00=3 This choice applies the default option for k, # 0 only.

field-line-average-term In addition to the default choice, it also changes the right hand side of the quasi-neutrality
condition in a complicated manner. I don’t know the details.

zero This option cannot be chosen by the input file.
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Chapter 21

Diagnostics

21.1 Polar Energy Spectrum Calculation

The polar energy spectra in k are calculated in the module gs2_diagnostics in the routines init_polar _spectrum,

get_polar_spectrum, and finish_polar_spectrum.

The energies calculated are:

Ep, —/r% (21.1)

By —/r% (21.2)

E, = /nTW (21.3)
Esy, = / S /V TSFOSW (21.4)
Eh, —/RS/VTSFOSW (21.5)

where §fs = hs — qsFos /Ts.

NOTE: The equations above are not quite correct. Really it is a sum over (k,, k,) modes, not an integration over

space, that gives you the energy.

21.1.1 Energy Spectrum Calculation in AstroGK

The perpendicular energy spectrum calculation in AstroGK is performed by calculating raw and log-averaged spectra

using an average of the energies of each mode at a given k .
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First, some notes on the indexing of perpendicular Fourier modes in GS2. In the input file, we specifiy nx and ny;

these values are used in the calculation for the number of k, modes

—1
ntheta0 = 2int (nx3 ) +1 (21.6)

and the number of k, modes

-1
naky = int <ny3 > + 1. (21.7)

Choosing yO0 specifies the minimum wavenumber in the box, kg = 1/y0.

As an example, for nx = ny = 24, we get the number of k, modes ntheta0 = 15 and the number of k, modes

naky = 8. The akx, ikx, aky, and iky arrays become

ikx = 0,1,2,3,4,5,6,7,—7,—6,—5,—4, -3, -2, —1

akx = 0, ko, 2ko, 3ko, 4ko, 5ko, 6ko, Tko, —Tko, —6ko, —5ko, —4dko, —3ko, —2ko, —ko (21.8)
iky = 0,1,2,3,4,5,6,7 :
aky = 0, ko, 2I€0, 3]{30, 4I€0, 5]{30, 6I€0, 7]{30

Raw Spectrum

The grid of k, and k, values gives aset of k; = /k2 + k% values, each with at least two modes at that &, . For each of the

k. values in this set, the energy of all the modes with that k£, value is averaged. This averaged value is then multiplied
by W% to give the proper weighting that would occur by integrating over fow k1 df. The resulting spectrum is equivalent

to the the 1-dimensional energy spectrum, but is typically very noisy. The output is written to runname.kspec_raw.

Averaged Spectrum

The raw spectrum is then logarithmically averaged in both k; and energy in linear-spaced bins in k. This is clearly the

correct approach if one hopes to find a power-law behaviour, which produces a linear relation on a log-log plot.

The number of bins for averaging (if nkpolar is not set in the kt_grids namelist) is calculated by
nkpolar = int (\/ireal(naky - 1)) . (21.9)

Effectively, this gives bins of width k.

Within each bin, the averages of log(k,) and log(E) are taken. The average values produce a much smoother

spectrum, more suitable for fitting to a power-law. The output is written to runname.kspec.avg.

NOTE: This log-averaged spectrum is currently broken.
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Tests of Spectrum Calculation

Here I present the spectrum calculated by four different methods: raw, averaged, directly binned, and directly binned
with correction. Each of these methods is described below.

The raw spectrum calculation finds the energy at each possible k| arising from the set of £, and k, modes by

kL 2y Blka, ky) (21.10)

Eraw k =
(k1) "o N

where the sum is over the N modes satisfying k, = ,/k2Z + k2.

The averaged spectrum begins with the raw spectrum values as calculated above, averaging over bin of width Ak .
For all Ny;,, values of E.aw(k)) with k) falling within the bin, the logarithmically averaged value is calculated by

log Eraw(k
Eavq(kj_avq) = exp |:2me g ( J_):| (2111)
’ ' Nbin
where the value of (k4.4 is calculated in a similar way using
logk
K Lavg = €xp (M) ) (21.12)
Nbin

The directly binned results simply sum the energy of all (k,, k,) modes with %k, falling within bins of width Ak,

Ebin(kJ_cen) = Z E(k;m ky) (2113)
Nbin

where k| .., is taken at the bin center.

Finally a corrected, directly binned result is calculated from the directly binned results above. The correction is
intended to compensate for the missing modes in the corner of the box in k,-k, space with k; > min(k,,k,). The
correction calculates the area of ring corresponding to the bins of width Ak, on the k,-k, upper half-plane; this area is
given by

7k up =k iow

I ow 21.14

where the values k| ypand k0, are the upper and lower £ values of each bin. The corrected energy is given by

Abin

Eincorr k cen) — E in Nt 21.15
b (L ) b Nbin ( )

This correction performs a similar average (although not logarithmic) as the average spectrum described above, but
beginning instead with the directly binned results; it accounts for the decreasing number of modes in the corner of the
box because the possible modes at that k; do not span the entire upper half-plane of k,-k, space.

To compare these methods, we have initialized the energy at each (kg, ky) mode by the formula
8/3

Ko (1 + froisew) (21.16)

\/ k2 + k2

E(ky, ky) = vg
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Spectrum Test k,p;

Figure 21.1: Comparison of the four methods for energy spectrum calculation with noise-free data.

where fpoise gives the fractional noise and the random number w € [—1,1]. Figure 21.1 and Figure 21.2 compare the

results of these methods for different levels of noise.

21.1.2 N-dimensional Energy Spectra

The definition of the the N-dimensional energy spectrum E) is not clearly defined in much of the literature on
magnetized turbulence. Here I will try to sort out the story starting from the single point of the Goldreich-Sridhar (GS)

theory of strong incompressible MHD turbulence.

Magnetohydrodynamic Goldreich-Sridhar Turbulence

Here I review the heuristic argument behind the Goldreich-Sridhar (GS) theory of strong incompressible MHD turbulence.
We begin with turbulence that is stirred isotropically at some wavenumber kg with a velocity vy (there will be constraints
on the magnitude of vy to ensure that we are in the regime of strong turbulence). Three basic conjectures underlie the

GS strong turbulence theory:
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Figure 21.2: Comparison of the four methods for energy spectrum calculation with a noise level of 100%, or feise = 1.

1. The frequency of nonlinear energy transfer to higher wavenumbers in strong turbulence is quasi-two dimensional,
governed by the eddy turn-around frequency in the plane perpendicular to the mean magnetic field

WNI NkL’UL. (2117)

This effectively is an assumption that the interactions are local in wavenumber space—that eddies on a given scale
only interact with eddies on nearby scales.

2. For strong turbulence, the cascade remains in critical balance, where the nonlinear energy transfer frequency
balances the linear frequency of Alfvén waves

w:kH’UANkLUL. (2118)
3. Kolmogorov’s hypothesis that the rate of energy transfer in the inertial range is constant

OF
i constant. (21.19)
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Combining conjectures (1) and (3) allows us to derive the scaling of velocity v, with wavenumber.

i wnrvd =k vd = kol (21.20)

Solving for the velocity as a function of the scale k gives

oo\ 1/3
sz(—O) vo. (21.21)

Hence, the energy as a function of scale k is

o\ 2/3
E= (—°> 2. (21.22)
ki

Combining the critical balance conjecture (2) with the solution for v, above allows us to relate the characteristic

parallel wavenumber of the turbulence k| to the perpendicular wavenumber k| .

I A (21.23)
VA
If this constraint is precisely conserved, it means that turbulence exists only on a the surface of a cone in 3-dimensional
wavenumber space defined by the equation above. For any value of £k, only one value of k| containing any energy; a
o-function can be used to incorporate this constraint into the full 3-dimensional energy spectrum. The turbulence is
then, in fact, entirely two-dimensional on the surface of this GS cone. In practice, this constraint is only as exact as this
heuristic theory.

Constructing the N-dimensional Energy Spectra

To determine the correct form of the N-dimensional energy spectra, we will use the Goldreich-Sridhar result for the 1-
dimensional energy spectrum as a starting point and normalize all spectra using the total integrated energy. To simplify
the final form of the integrated energy, we will integrate from kg to oo in k ; since the smallest scales contain the most
energy, this will not change our determinations of the N-dimensional energy spectra.

We begin with the result that the 1-dimensional energy spectrum predicted by the GS theory has the form

12/

EW = ﬁvg. (21.24)
i

We'll see that this energy spectrum is the energy after integration over k| and angle . We know that the total energy

E can be calculated from the 1-dimensional energy spectrum by

E = /E(l)d/ﬂ_. (21.25)
Therefore, we find that the total energy is
o) k2/3 3
E = 0 _vgdk, = =v]. 21.26
~/ko e 0 TR (21.26)
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Now, I define the 2-dimensional energy spectrum by

E= / / E@k, dodk, ; (21.27)
this is the energy spectrum integrated only over all values of k. To yield the result that the total energy £ = %’U%, we
discover the 2-dimensional energy spectrum must be defined by

2 /3

E® = va (21.28)

27Tk8/3 o

Similarly, we define the 3-dimensional energy spectrum by

E= / / / E® dkyk dodk, (21.29)

To achieve a consistent result for the total energy, the 3-dimensional energy spectrum must be defined by

2/3

ko
E® = 0425 (k| e ) . (21.30)
2k vA

Here the o-function enforces the critical balance constraint, maintaining turbulence that is two-dimensional on the surface
of the GS cone. Note that this is not what actually occurs in magnetized turbulence. Within the cone, at kjva <kivy,
turbulence can exist; in this case, the timescale for nonlinear transfer of energy to higher k, is faster than the linear
timescale, so the cascade progresses in a manner similar to hydrodynamic turbulence as if there were no characteristic
linear frequency in the medium. But, for the moment I will keep the -function because it simplifies this argument and
I like it.

Summarizing the results, we find

2/3
1-D EW =E(k,) = %vg
+ 2/3
2D E® = E(k,,0) = 2’“28,3 2 (21.31)
2/3
#D E®) = (k. k1.0) = Jhouds (ky — K2Ry 22 ).

21.1.3 Connection to GS2 Diagnostics

The described above in Section (21.1.1) produces the angle-integrated energy spectrum—this is equivalent to the 1-
dimensional energy spectrum. Hence, the slopes of the output from the GS2 polar spectrum diagnostics should be
directly comparable to the 1-dimensional energy spectra predicted by the Golreich-Sridhar theory.

21.1.4 .kspec_raw and .kspec_avg

Ifwrite_asciiis true (the default), then if write Epolar is true, the polar spectrum vs. k is output to runname.kspec.raw

and runname.kspec_avg. The output columns are:
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Column | Value
2 t
4 k1
6 Eiot
8 By,
10 Ep,
12 E¢12
14 o
16 | Eyp
18 E¢g
20 Ep2
22 | Esp
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21.2 Discrete Fourier Mode Energy Calculation

There is some subtlety involved in the calculation of the turbulent energy and it’s connection to analytical theory. In
this section, I will attempt to describe precisely the calculation of the energy and make this connection to theory clear.

The energy density in gyrokinetic theory can be expressed as

_ |5]3|2 / 3 Tos QS(b
b= / @ Z 2FOS Ts FOS

For the moment, we’ll focus on the energy in the perpendicular magnetic field perturbation §B (r,t). Suppressing the

(21.32)

dependence on time for notational simplicity, the perpendicular magnetic field perturbation in a periodic box of size

(Lg, Ly, L) can be expressed as the Fourier series

8B (r Z Z 5B, ij(z)ei k=it thuiy) (21.33)

i=—00 j=—00

where ky; = 2mi/L, and ky; = 2mj/L,. We may then express

oo o0 oo

|6BJ_(I‘)|2 = 6BJ_ 6BJ_ Z Z Z Z 6BJ_U 6BJ_Z’ /( )ei(kxiikzi/)xei(kyj7kyj/)y (2134)

i=—00 j=—00 i/=—00 j'=—0

We can thus write the energy density as
LY S S S [ L [ o [, o
iffoogffoo i'=—00 j'=—00 Y
Now, we make use of the identity
1

L/2 ) ,
_/ dxezQﬂ'(nfn )z/L _ 571"/ (2136)
L Jr2

where d,,,/ is the Kronecker delta. Thus, the energy simplifies to

o0 o0

1 dz
Z > Z Z / —0B14j(2)0B7 1/ (2)0: 85 (21.37)
i=—00 j=—00 i =—00 j/=—00
and we obtain the final result
Z Z / dz |5B“’ . (21.38)
1=—00 j=—00

21.3 Ascii output files

Everything turned on by the flag write_ascii.
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(runname) .moments Controlled by write_final moments and each column means
0 ky, k. ntot dens wy Ty Ty 0—6y is

middle 5 normalized by phiO

(runname) .mom2 Controlled by write_final moments and each column means

¢ ky ks ntot demns wu; T T 6—0p is

(runname) .fields Controlled by write final fields and each column means

0 ky ke O & A A ALy Al 0-00 |9

21.4 .fields

If write_ascii is true (the default), then if write final fields is true, the fields as functions the parallel coordinate

(theta, or ig) are output into the file runname.fields at the end of the run. The output columns are:

Column | Value
theta(ig)
aky_out (ik)
akx_out (it)

—_

© 00~ O Uk Wi

theta(ig) —thetaO(it,ik)

917

RN
= O

216



Chapter 22

Parallelization

22.1
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Chapter 23

Input and Output with NetCDF

23.1 Netcdf file and gs2.pro

phi2 in (runname) .out is a volume average.

phiO, apar0, aperp0 written out in the subroutine nc_loop are all 3D arrays including time at the slice with ig =

igomega ( = igomega * 27r) where igomega is an input variable in gs2_diagnostics knobs namelist.

phi and apar are 3D arrays of the electrostatic field and parallel vector potential at the last timestep written out
by the subroutine nc_final fields. Their arguments are (ky, ks, 0, i) as seen in the ncdump command, but in gs2 and

IDL routine, they are accessed as (ri, 6, kg, ky).

Variables md and nd are valid number of modes after truncation by 2/3-rule in k, and k, direction, respectively.
malias, and nalias are the full number of modes, or the number of grid points in y and x directions. Making the
connection to gs2 variables, we obtain the following correspondence:

md = naky, nd = nthetal (23.1)
malias =ny, nalias =nx, (23.2)

where the left hand sides are the variables in gs2.pro and the rhs are those in gs2. malias and nalias were defined in
gs2.pro as

malias =3#md, nalias=3xnd/2+1, (23.3)
but I changed them to the followings:
malias = (md — 1) * 3 + 1, 234

23.5

malias = malias + (malias mod 2)
nalias = (nd —1)/2%3+1 23.6

(
(
(
(23.7

)
)
)
nalias = nalias + (nalias mod 2) )

which are the exact inverse of the aliasing expressions found in gs2 when nx and ny are exact powers of 2 and larger
than 2.

Here is a list of changes I made on gs2.pro.
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. recovered exact number of grid points as explained above
. added one more grid in both x and y directions to take care of the periodicity

. added phi, apar, and apar_1 in the ‘Field Plot’ section. They are the 2D real-space values of each quantity at the
final step. So, if the run stops in the linear phase, they give the eigenfunctions. They only work with the axes of
'x,y’, and apar_1 is obtained by eliminating the equilibrium component out of apar. The value of # is controlled
by ‘Active I’ slidebar in the right.

. added phi, apar, and apar_1 in the ‘Line Plot’ section. They are the 1D real-space values of the above. The plane
you slice in y is determined by ‘Active M’ slidebar.
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Chapter 24

Isothermal Electron Fluid Equations

24.1 dispersion relation of IEF equation

Here we work on the Fourier space without putting the subscript k. The linearized ion gyrokinetic equation without
collision term is

24.2 multiple ion species

Equations (88), (93) and (96) do not change. Changes should be made in the field equations. Quasi-neutrality equation
yields

Zn i ik
qedne g Z <q§_‘—010¢ — Ze k q; / Jo(ai)hik d3'U> . (241)
k

ions

Parallel Ampeére’s law yields

qen()eu”e = ——VJ_A” ZZ ik-r /UHJO CLZ zk d v. (242)

ions

Perpendicular Ampeére’s law yields

0B Be (0ne | qed wor [ 203 Ji(a ;
?0 N _? + TOe Z 27101 Z / thz i Zk d v (24.3)

Noe . a;
ions

where 5 = 8mnoTy/ Bg and (; is defined for individual ion species.

24.3 normalization

The normalization of IEF equations are summarized as follows.
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Part 111

AstroGK Operation
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Chapter 25

AstroGK Operation

25.1 Compiling AstroGK

1. To compile, use the Makefile included in the src directory.

2. Run the script test_os to assign the environmental variable CPU. On Dawson, this can just be set to Dawson by
the command
export CPU=Dawson

3. Create a temporary directory called /tmp/ghowes. At the moment, you need to change the line in the Makefiles
that say
FIOFLAGS = -gmoddir=/tmp/ghowes -I/tmp/ghowes —-qsuffix=f=£f90 -I (UTILS)—I(GEQ) -I /u/local/apps/netcdf/i
-I/u/local/mpi/mpilam/include

so that all the /tmp directories reflect the correct name.

4. Also, for Dawson, do not us FC5 or FLIBS5 as the compiler or libraries for any compilation because the Dawson
option does not recognize it.

5. To compile on Bassi, you must add to the .login.ext file in your home directory:

module load GNU emacs netcdf fftw totalview gnuplot hdf5 par

setenv TMPDIR $SCRATCH
setenv MP_SINGLE_THREAD no
setenv TERM xterm

umask 022

25.2 AstroGK Makefile Notes

1. To use aperp._r instead of the new bpar_r in the NetCDF files, create Makefile.local in the src directory, and

put in the line
USE_NETCDF=0l1d

2. NOTE: This is probably not useful and better done by expand.
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25.3 General Operation

1.

2.

Running agk: To run agk, type: ./agk file.in

To stop a run, type: touch file.stop

25.4 Nonlinear Runs

Here is an example of some of the important input parameters used in nonlinear runs. The file used for this example is
transl.in

1.

2.

3.

10.

&parameters: beta = 40.0

&kt _grids_knobs:

(a) grid_option=’box’

(b) norm_option=’mtk’

&kt_grids_box_parameters:

(a)

(b)

(©) vy
)

(d) rtwist = -1. Square box with no twist: L,/L, = rtwist.

ny = 24
24

[=]
]
I

o
I

4.0 Note that the box size is L, = 2myg so that the ky,,,, = 1/yo.

&theta grid parameters: ntheta= 48 Rule of thumb: use ntheta= 2(n, or ny)

. &le_grids_knobs:

(a) ngauss = 16
(b) negrid = 8

(c) ecut= 6.0

. &dist_fn knobs: test = .true. Will not run a timestep, but will allow you to look at the energy grid for

testing.
&knobs:
(a) delt = 1.0e-2 This is the maximum timestep

(b) nstep = 4000

&reinit knobs: deltminimum = 5.e-7 Choose this to be small enough to be out of the way; it is useful to stop
the run if something goes wrong, because usually a problem will cause the timestep to shrink rapidly.

&hyper knobs: hyper_option=’none’ For [ = 40, there should be plenty of damping.

&nonlinear_terms_knobs:
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(a) nonlinear mode=’on’
(b) cfl = 0.2

11. Various &species namelists
(a) m;/m. = 1846

(b) Ti/T. = 100

)
)

(c) v; = ve = 0.05 Generally, we probably want ve/v; ~ \/m;/me

(d) Decentering: fexpr= 0.4 Good for temporal implicitness to be slightly upwinded.
)

(e) Decentering: bakdif= 0. Spatial implicitness decentering does not work well for electromagnetic runs—best

left at 0.
12. &init_g knobs:

(a) ginit_option= "gs" Goldreich-Sridhar cascade
(b) restart_file = "nc/transl.nc"

(c) phiinit= 1.e-1 This option might be turned off?

13. &driver:

amplitude = 200. Strong/Weak turbulence depends on this

(0.6364, -0.5657) Slightly off resonsance

w_antenna

)
)

(¢) nk_stir = 2
) write_antenna=.true.

14. Driven modes:

(a) &stir1: kx =1, ky = 0, kz = 1

]
-
9

]
=

(b) &stir2: kx = 0, ky
15. &gs2_diagnostics_knobs:

(a) write Epolar = T Write out polar spectra

b) write_hrate = T Write out heating data

(

(c
(d
(e

(f) omegatol= -1.0e-3 (omegatol< 0 means it won’t halt simulation if frequency converges)

)
) write_final epar = .true. May have a sign error?
) nsave= 1000 Write restart files every nsave steps.
)

save_for_restart = .true.

(g) OPTION: make movie = .true. In development.
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25.5 Restarts

Restarting is an important step in performing nonlinear runs. Here is a step by step guide on how to do restarts.

1. Your first run used the input file runi.in. Specified in this file were:

(a) &gs2 diagnostics knobs: save for restart = .true.

(b) &init_g knobs: restartfile = "nc/transl.nc"
2. To restart this file, copy transi.in to transib.in
3. In trans1b.in, make the following changes

(a) &init_g knobs: ginit option="many" (Changed from ginit option= "gs")

(b) &knobs: delt_option=’check restart’

(c¢) In the antenna namelist, set &driver: restarting=.true.. This imports from the netCDF file the last
known antenna amplitudes so the restart connects smoothly to the last run.

(d) The old way to specify the antenna amplitudes for restart by hand is described below for historical reasons:
Copy the last antenna amplitudes to from transi.antenna to the driving modes. The example here is for
two stirring modes. The final lines of trans1.antenna will look like this (a number of significant figures have

been dropped to fit this on one line):

0.4E+01 0.2E+02 0.5E+02 0.7E+02 0.3E+02 0.1E+03 0.4E+02 0.6E+00 1
0.4E+01 0.3E+02 0.2E+03 0.1E+03 0.1E+03 0.9E+02 0.1E+03 0.6E+00 2
Columns 4-7 contain the real and complex parts of the driving mode coefficients a and b:

e Column 4: Rela]
e Column 5: Imla]
e Column 6: Rel[d]
Column 7: Im[b]

These values should be copied into transib.in to read:

&stir_1
kx =1
ky = 0
kz =1

a = ( 0.765263E+02, 0.387651E+02 )
b = ( -0.112786E+03, 0.420840E+02 )

/

&stir 2
kx =0
ky =1
kz =1

a = ( -0.148025E+03, 0.181600E+03 )
b = ( 0.922631E+02, 0.186526E+03 )
/

Soon this step will be automated, with the final antenna amplitudes incorporated into the NetCDF restart
file.

(e) OPTIONAL: You can change the maximum timestep, &knobs: delt = 1.0e-2, if you want here.
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25.6 Advanced Options

Special Diagnostics are listed and described in this section.

Output of distribution function over velocity space.

(a) Set writef = .true. in diagnostics namelist to use the routine write_f which is found in dist fn.£90.

(b) Output appears in runname.dist.

(c) For each total energy, all of the possible values of v, and v are plotted, with a space between energies.

(d) The columuns of the output are:

i. 1 vy
il. 2: 4o
iii. 3: g (or maybe h) for o = +1
iv. 4: —yj

v. 5: g (or maybe h) for o = —1

(e) I believe this diagnostic is only called at the final timestep.

25.7 Obsolete input parameters

Here is the list of obsolete parameters, which must be useful when one imports an input file from GS2.
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namelist paramater | description
init_g knobs widthO disappeared
knobs wstar_units disappeared
fphi use_Phi (logical)
fapar use_Apar (logical)
faperp use Bpar (logical)
dist_fn knobs gridfac disappeared
boundary_option disappeared
species_parameters._ vnewk nu
dist_fn_species_knobs_i fexpr fexp
kt_grids_knobs kgrids
norm_option disappeared
kt_grids_single parameters | aky akperp
theta_grid_parameters theta grid
eps disappeared
epsl disappeared
shat disappeared
theta_grid_knobs disappeared
gs2_diagnostics_knobs diagnostics
write_line disappeared
write_phi disappeared
write_apar disappeared
write_aperp disappeared
write_gheat disappeared
write_tavg disappeared
write_pflux disappeared
write_vlux disappeared
write_gmheat disappeared
write_pmflux disappeared
write_vmflux disappeared
write_dmix disappeared
write kperpnorm disappeared
write_phitot disappeared
write_eigenfunc disappeared
write_avg moments disappeared
write fieldline avg phi | disappeared
dump_check1 disappeared
write_fieldcheck disappeared
write_fcheck disappeared
print_old_units disappeared
dump_final xfields disappeared
dump neoclassical flux | disappeared
write neoclassical flux | disappeared
fields knobs disappeared
layouts_knobs layouts_fields_solve disappeared
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25.8 Choosing initial condition

Here is the list of available initial conditions. The values are specified for the input variable ginit _option in the

init_g _knobs namelist.
default This doesn’t seem to make any initialization. Probably local variable phi has to be initialized at least.

gs Random phase perturbations
cos(f + ) * (refac, imfac) (25.1)

for all k, and k.
kpar Homogeneous in all &, and k, components and have some sinusoidal dependence along z.

kz0 This puts homogeneous initial condition on g defined by
g =phiinit Z (1 41i) (25.2)

except for k, = 0 mode.

nl This option puts perturbation for 3 wave numbers chosen in the 3 dimensional array ikkk for k, and ittt for &,

with a random amplitude

dfac = den0 + denl cosf + den2 cos 26 (25.3)
ufac = upar0 + uparlsin f + upar2sin 26 (25.4)
tparfac = tpar0 + tparlcosf + tpar2 cos 26 (25.5)
tperpfac = tperp0 + tperplcosf + tperp2 cos 26 (25.6)

where § = z/z0 — 7 and

g(ittt,ikkk) = phiinit % dfac * ns * Ra, (25.7)

where Ra denotes the complex random amplitudes of their values in (—0.5,0.5). This amplitude is random only for

different k, and k,, but homogeneous along z and velocity space.

nl3r This option puts perturbation for 2 wave numbers chosen in the 2 dimensional array ikk for k, and itt for k,
with a fixed amplitude (refac,imfac) on g and Aj. The perturbation in g is same as nl, but it also adds perturbation
on Ay, which is

Aj(itt, ikk) = apar0 * (refac, imfac). (25.8)

noise This option puts noise for g in all 3 spatial directions but homogeneous in velocity space.
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recon, recon2, restart Restart runs...

zero Zero initial conditions for all fields and distribution functions. Good for driven simulation.

25.9 General Notes for Collaborative Work

1. To allow others to view your files at supercomputing centers, in your home directory issue the command
chmod 755 .
and then, if files within are not world readable, issue
chmod 644 *
within each directory you want people to read.

2. However, be careful not to issue chmod 644 for executable files.

25.10 Version Control with Subversion

1. We use Subversion 1.4 for version control of AstroGK. These are general notes on its use, assuming the Subversion

repository has already been created.

2. The subversion repository is hosted at Maryland on spare.cscamm.umd.edu. To find out what exists in the repos-
itory, you can get a list using

svn list svn://spare.cscamm.umnd.edu/

3. To create a working copy of the repository on the local machine, you must check it out using
svn checkout svn://spare.cscamm.umd.edu/agk/trunk agk dir

where agk dir is a local directory in which you want the working copy to be created.

4. To see the status of the local working copy compared to the latest revision in the repository,
svn -v status.

5. To update your local working copy with the latest revision,
svn update
Doing this merges any changes you have made with those in the latest version. If the status of a file comes up as
C, then you have a conflict and you must look at the file to see what to do to resolve the conflict. When you have
resolved the conflict,
svn resolved file.f90
will removed the conflict flag and allow the new changes to be committed.

6. To commit your changes to the repository,
svn commit -m ¢ ‘Put notes on this revision here’’
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25.11 Running on Bassi at NERSC

1. ssh -X bassi.nersc.gov
2. Repository number m414; this is CMPD, with Jean-Noel Lebouef as the project P.I.
3. Bassi has 888 processors (111 nodes with 8 processors on each node).

4. Job control commands for Load Leveller:
11gs returns the list of all jobs in the queue.

11lgs -u ghowes just lists my jobs.
1lsubmit hc01.nqgs submits the .ngs file to the job manager.
llcancel b0201.54486.0 cancels the job with the Step Id.

5. Bassi has gnuplot, so you can look at your data on the fly.
6. Batch submission file (.ngs file)

e class can be regular or interactive

e tasks_per_node can be up to 8

e nodes is the number of nodes you want

e wall clock_limit has 00:30:00 maximum for interactive; look on website for other limits. This is important.

e account_no is m414 for me.

e Follow all the specifications by the simple command

./gs2.x runname.in

7. Environment setup in bdorland/.login.ext file:
module load GNU emacs netcdf fftw totalview gnuplot hdf5 par

umask 022 makes my directories world readable.
8. Bassi password is changed at http://nim.nersc.gov

9. To run from the shell (not in batch mode), type

poe ./gs2 runname.in -tasks_pernode 8 -nodes 1 Here poe stands for Parallel Operating Environment.

25.12 Running on Seaborg at NERSC

1. ssh -X seaborg.nersc.gov Password changes are done on sadmin.nersc.gov.
2. Repository number m414; this is CMPD, with Jean-Noel Lebouef as the project P.I.
3. Bassi has 6080 processors (380 nodes with 16 processors on each node).

4. 16 to 64 GB of shared memory on each node
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5.

10.

11.

12.

13.

Job control commands for Load Leveller:
11gs returns the list of all jobs in the queue.

11lgs -u ghowes just lists my jobs.
1lsubmit hc01.nqgs submits the .ngs file to the job manager.
llcancel b0201.54486.0 cancels the job with the Step Id.

Batch submission file (.ngs file)

e class can be regular or interactive

e tasks_per_node can be up to 8

e nodes is the number of nodes you want

e wall clock_limit has 00:30:00 maximum for interactive; look on website for other limits. This is important.
e account no is m414 for me.

e Follow all the specifications by the simple command

./gs2.x runname.in

Environment setup in bdorland/.login.ext file:
module load GNU emacs netcdf fftw totalview gnuplot hdf5_par

umask 022 makes my directories world readable.
Seaborg password is changed using ssh sadmin.nersc.gov.

To run from the shell (not in batch mode), type

poe ./gs2 runname.in -tasks per node 8 -nodes 1 Here poe stands for Parallel Operating Environment.
For some reason, I have to use gmake to make GS2 on Seaborg.

HORRIBLE MEMORY PROBLEMS: Default sizes:
datasize 131072 kbytes, 128 MB

stacksize 32768 kbytes 32 MB

To avoid these problems, I must compile using the following flags:
-bmaxdata:0x70000000, sets to 1792 MB
-bmaxstack:0x10000000, sets to 256 MB

Another way of avoiding the memory problems is to compile it in 64 bits using compiler flag -q64; this can be

difficult because then everything (including the libraries) has to be 64-bit.
Compiling 64-bit version of AstroGK

(a) Specify compiler flag -q64
(b) To compile a 64-bit version, you must link to 64-bit versions of all libraries used.

(¢) The mpi wrapper for the compiler mpx1£f90_r will use the 64-bit MPI libraries when compiler flag -q64 is

used.
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(d) Switch modules for NetCDF and FFTW to 64 bit versions using
module switch fftw fftw 64
and
module switch netcdf netcdf 64
Doing this will automatically set up necessary paths, so other than adding the -q64 compiler flag the Makefile

does not need to be changed

(e) You must keep physical memory limitations in mind when using 64-bit version because it can start to page

and dramatically slow down performance if you exceed physical memory.

(f) NERSC website has lots of information on using and changing modules

25.13 HPSS File Server at NERSC

The HPSS (High Performance Storage System) mass storage system is a backed up server designed to archive high-
performance computing output. The useful clients for accessing HPSS are hsi and htar. Once the system is set up, use

is simple. The following are examples:
1. Logging in: hsi

2. Once running hsi, one can use obvious commands to maneuver and view files on HPSS and your local machine.
Commands such as cd, 1s, and mkdir act on the HPSS system; 1cd, 11s, and 1mkdir act on the local filesystem.

3. To copy files from the local system to HPSS, use
put local file : hpss_file

4. To copy files from HPSS to the local system , use
get local file : hpss_file

5. htar is a handy utility that performs both tar archive creation/extraction and transfer to/from HPSS simultane-

ously, avoiding the need for making a local tar file before transfer.

e To create a tar file on HPSS:
htar -cvf archive filename.tar content files*

e To extract from a tar archive on HPSS to the local machine:
htar -xvf archive_filename.tar
For external computers, the procedure is different and is outlined in detail on the NERSC webpage.

1. Basically, for ftp access, an encrypted username/password pair is put into a .netrc file for authentication.
2. Then type ftp archive.nersc.gov
3. The access is automatically authenticated and you can send many files using mput swt*tar.

4. Be sure to use lcd to get into the correct local directory and cd to get to the correct remote directory.
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25.14 Running on IBM Blue Gene/L ANL

1. ssh -X bgl.mcs.anl.gov

2. cgstat -f to query the job queue

3. 2048 processors (1024 nodes with 2 processors each)
4. Running Jobs

(a) cqsub -q short -n 16 -c 32 -t 30 -N ghowes@astro.berkeley.edu -0 agk.lap2v agk.lap2v lap2v.in

(b) Here, -n specifies number of nodes, -c is the number of processors if not equal to the number of nodes, -t is
time in minutes, -q is used to specify the short queue for jobs of less than 30 minutes and 64 nodes or less,
-0 is used to specify the prefix of the .output and .error files, -N is the e-mail address to send notification

of job start/stop.
(c) cqstat -f to see list of jobs

(d) cqdel 121362 to delete job 121362. If it will not die, then you can force with cqdel -f 121362, but send a

message to support@bgl.mcs.anl.gov so they can clean up the mess.

25.15 Running on Franklin Cray XT4 at NERSC

1. ssh -1 ghowes franklin.nersc.gov

2. myquota command gives information on the limits of the $HOME directory.

3. Compilation: ftn -fast -o mpi-hello mpi-hello.f, compiler runs on login node
4. Running: aprun -n 2 ./mpi-hello, launch parallel job on compute nodes

5. Batch System Script:
#PBS -N hellojob
#PBS -q debug
#PBS -1 size=2
#PBS -1 walltime=00:01:00
#PBS -e hellojob.out
#PBS -j eo

cd $PBS_O_WORKDIR
ftn -fast -o mpi-hello mpi-hello.f #compiler runs on login node

aprun -n2 ./mpi-hello #launch parallel job on compute nodes
gsub runhello

6. To specify using a single core on each node, aprun -n 4 -N 1 a.out

To specify using both cores on each node (default), aprun -n 4 -N 2 a.out

7. 9672 compute nodes with dual core processors (19344 processors)
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8. Memory: 4 GB per dual core node, 3.66 GB per node available when overhead is accounted for.
9. Run batch jobs out of $SCRATCH directory rather than $HOME directory for better performance.

10.

25.15.1 Module Software User Environment

1. To compile AstroGK we need to ensure that the correct modules are loaded for third party software such as the
FFTW, NetCDF, and HDF libraries. This is accomplished by running the command
module load netcdf fftw/2.1.5 hdf5/1.6.7 par
to load the correct version of those libraries. Similarly, you can swap out current modules for other modules, for

example to remove the fftw/3.1.1 library and add the fftw/2.1.5 library (which is the version used by AstroGK, you
run
module switch fftw/3.1.1 fftw/2.1.5

25.16 Computational Resources

1. Dawson: at least 540 processors (270 nodes with 2 processors on each node) At least 256 of these processors are
2.3 GHz G5 processors.

2. Bassi: 888 processors (111 nodes with 8 processors on each node)

25.17 Notes on Porting

1. Read the README file

2. The UNIX command uname is useful for determining the computer on which you are operating:
uname -s gives the system: Darwin
uname -p gives the processor type: 1386

uname -n gives the nodename: wave.physics.uiowa.edu
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Chapter 26

Normalization in AstroGK

26.1 AstroGK Normalization

This section defines the normalization of all quantities used in GS2 and of supplemental quantities that arise in the
analytical theory.
26.1.1 Normalization of all quantities

In this section, the normalization of each quantity is summarized. There are several notes of importance:

1. The subscript 0 refers to the species independent reference quantity.
2. The subscript s signifies that a quantity is species dependent.
3. Note that all fluctuating, first-order quantities are multiplied by the factor ag/po.

4. Note that the distribution function, velocity, energy, pitch angle, and magnetic moment are species dependent
quantities so that integrations over velocity space can be efficient even when each plasma species has a different
temperature. Because of this dependence, certain factors arise in the normalized equations that otherwise would
not be there. Hence, going through the normalization carefully is necessary to avoid any subtle errors.

5. Naturally, temperature, mass, and charge are also species dependent, but in a less complicated way.

Quantities Stored by the Code

Note that any normalized quantity with a subscript s is a species dependent quantity.

Parallel Position

z
2= — 26.1
o (26.1)
Perpendicular Position (z or y)
x
T=— 26.2
) (26.2)

239



Parallel Wavenumber

Perpendicular Wavenumber

Time

Species Temperature

Species Mass

Species Charge

Distribution Function

Velocity

Energy

Pitch Angle

Magnetic Moment

Magnetic Field

Scalar Potential

Ky = kjao
ki =kipo
~  tv
=2
ap
. T.
T, = FS
0
~ ms
ms = m
0
~ qs
ds = —
qo
~ h,s ap
* " Fos po
R v
Ve = —
Uts
1/2mgv? B v2 o
2 2 = v

(v1,/v2)

~ (2/v%)(B/Bo)
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(26.3)

(26.4)

(26.5)

(26.6)

(26.7)

(26.8)

(26.9)

(26.10)

(26.11)

(26.12)

(26.13)

(26.14)

(26.15)



Parallel Vector Potential
A, = U0 904 a0

c To po
Parallel Magnetic Field
A~ 5B|| an
B =By o
0 Po
Current
jo_J @
n0qovVto Po
Bessel function J
Jo = Jo(7s)
Bessel function Jy
~ J1 (s
g, = D)
Vs

Bessel function argument

_ kJ_UJ_s Vv mSTS ]AfJ_ﬁJ_s

v -
° Q qs B
Hyperviscosity
N VHao
vg = 7
PoUto
Hyperresistivity
. 1H a0
""H = —
PoUto

Supplemental Quantities Not Explicitly in the Code

Gyrokinetic potential

5 = Jox %
To po
Electric Field
. E
fo — %09 %o
To po

Distribution Function Normalization

As noted above, the distribution function h, is normalized by

o = L 00,
Fos po
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(26.18)

(26.19)

(26.20)

(26.21)

(26.22)

(26.23)

(26.24)

(26.25)



The normalizing factor Fys is a species-dependent quantity, whereas a species-independent normalization is given by

Note that the normalized version of the species-dependent distibution function normalization can be written

2/ 2
n —v® /v, R a2
Fos 71'3/251)?5 € E Ng € Vs
F = o = -3 3/2 (2627)
00 03,

-3
Vo

How this is done in the code, when the exponential is combined in the integration over velocity space, is explained in
section (26.7.1).

Other Useful Relations

Of prime importance is the definition of the thermal velocity v; used in this document. Everything in this document
assumes the convention
2T
v =1\ — (26.28)
m
Note that any quantities with the subscript 0 signify quantities calculated using reference values. For example, the

reference thermal velocity is

2T,
vp = ) =2 (26.29)
mo
but the species dependent thermal velocity is given by
Vs = 2TS. (26.30)
M

Thus, a quantity which depends on velocity will be ultimately normalized by the reference value, but within integrals
the velocity is species dependent. Thus, the parallel velocity v is normalized as follows
- il
Vg = — 26.31
s =2 (26.31)
but the sum over species to get a total quantity (total energy, for example) must be normalized by the reference value.
Thus,

1 V|| Uts . T,
_— vy = _—— = v s ~ 26.32
Uto ; ! ; Uts Uto ; ! ms ( )
Other useful definitions, defined here for the reference values, are:
Cyclotron frequency
_ qoBo

Qo = (26.33)
mocC
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Gyroradius

Plasma Beta

Alfven Velocity

26.1.2 Gyrokinetic Potential

The unnormalized version of the gyrokinetic potential is given by

ko, oAy (BgE) me? 9By
= J —_— _—
(0m = (=gt - L+ 2L
The Bessel functions, already dimensionless, are normalized in the code by
Jo = Jo(7)
and
A J
g, = 1(7)
Y
where the argument is
o kJ_’UJ_
-—q

Multiplying both sides by goao/(Topo) gives

qoX o qo® ao Vs Vgs (V0 Q0 A ag Ji(v) ms v} vk 5 qo
OXT0y g P20 ) g ()8 ZEs [ 260 T07 20 JINT) s Uls Tts 2 40
(R som =) (5 52) it P A e e

Ty po Ty po Vs Vo \ ¢ Lo po

This can be simplified to

Further simplification leads to the final result

S
Xr="Jo [ -9y m_sA”
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-~ Mg o Tsmo 2T0@6 -

e 52 =0
gs ~“msTy mo To

R T, -
+ J120% ,=26By.
ds

(

0By a0
By po

)

(26.34)

(26.35)

(26.36)

(26.37)

(26.38)

(26.39)

(26.40)

(26.41)

(26.42)

(26.43)



Besssel Function Argument

The Bessel function argument is a bit tricky:

k s s sB s 7oA
TLOLs (k) po) <vl > A0 20 P <m00> =kt

T
Qs Uts QSmOB Po QOBO (?SB

where we used pg€2y = vy to simplify the expression. Note also that

_ qsB

msc’

Qs
where B is the local (not reference) value of the magnetic field.

26.1.3 Normalization of velocity space

Ts v msTs I%LFDLS
V ms (js B

(26.44)

(26.45)

Velocity space is defined in terms of energy and pitch angle (F, A) instead of (v,v,) and is always a species dependent

quantity, so we will append the species subscript s to all such quantities to make this explicit. In unnormalized units,

the quantities as defined as follows:

Energy
E, = %msvf
Pitch angle
L
v2B
Magnetic Moment
ek,
2B
The relation between these quantities is
As = g—

The energy is normalized by the species dependent thermal energy 1/2m v,

& 1/2m?

2
ivs

= 2 T 3
1/2msvi,  vi,

_n2
= vy

which can alternatively be expressed as

. EB
E=_—.
T

(26.46)

(26.47)

(26.48)

(26.49)

(26.50)

(26.51)

The pitch angle is normalized in terms of the reference magnetic field By (and the thermal velocities which cancel),

N (Uis/vi%s) _ Uis

T (v3/vi)(B/Bo) 2B
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The magnetic moment is normalized in terms of the species dependent thermal energy 1/2mgv? and the reference

magnetic field By,

2
MmsV, ¢

,DQ
fus = 20— = —== (26.53)
2B(§S B

Thus, it is clear that the fundamental relation for the normalized quantities is unchanged The relation between these

quantities is

A = B2 (26.54)
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26.2 Normalized Equations

This section derives the equations of gyrokinetics in the normalization system of the code.

26.2.1 Parallel Ampere’s Law

4 4
—Vﬁ_AH = 7&]” = Z ?qs/d3vv|‘<h

After Fourier transform this can be written

47
k1A = —0Jj.

Normalizing these two quantities as above,

Toc  po 12 2 (Vo QoAj ap _ 4mnoqovio po [ J)  ag
2043 gy (B0 2 &
vt0q0Pp Ao ¢ To po c ao \ 0govto Po

Expressing k1, Aj, and §J) as normalized quantities and simplifying this expression gives

PO Arngqévi p2 -
2 _ 090 Yt0 0
FlAi=—Ta o

ao a 8mngT 2 B2 m2
2 040 dp Dy 0
- () () (3 s

Gl
i3 A = 26,2000 Yo 8J;
tO

This can be expressed as

Noting that p3Q2 = vZ) leaves

(26.55)

(26.56)

(26.57)

(26.58)

(26.59)

(26.60)

(26.61)

The 20, factor exists to eliminate the coefficients in the parallel Ampere’s Law (and is also there because of the vy in

the parallel vector potential).
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26.2.2 The Gyrokinetic Equation

ohy,  Ohy ¢ Ohs 4 AR,
5 T + 5 (R, ] <( 5t )COH>RS =T ot BRI (26.62)

Multiplying by a?/(Fospovio) we get

hs a v v 0 hs a a hs a
I5) s &0 H ts s Qo 0 s 4o
g P =)+ L) -2 = 26.63
9(tvio/ao) (F()s po) Vs Ve O(2/ ) (F0s Po) Ut0< (F0s Po>> ( )
o) Ry

¢ Toag po 1 { qoX ao (hs @)} _asTo R
Bagovwaopg | To po’” \Fospo )] n  a0Ts O(tvio/ao) Fos

+

Simplifying this to the normalized quantities gives
~ Gs O(X
4 900 (26.64)

(%s N [ 6;1, BQ moc 2T0 1 o D ap
= — yhsl — —{(C(hs)) = ——5
ot A V m s 0% + (%Bo) (mo) POVt0 {<X> }N Uto< (he)) T, Ot

And then we finally find the normalized gyrokinetic equation

Ohs . | Ty dhs 17, ao ;07 gs O(X)
: - hs| ——(C(hy)) = =22 26.65
ARIL b P [<x>, }N vt0< (hs)) 7 o0 (26.65)

Note that for the pitch angle collision operator, defined by

(26.66)

where £ = v /v. The quantities § and 1 are dimensionless and thus needs no normalization, and so we need only scale

the pitch-angle scattering rate by
Dy = 22290, (26.67)
Ut0
We can write shorthand for this normalized collision operator by C, so we get
A
4 90 (26.68)

Ohs . |Ts0hy 1 [, . - -
5 + 9 E@*’ﬁ[@(%hs]]\l (C(hs)) = 7. ot
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26.2.3 The Power Balance Equation (B19)

Equation (B19) is given by
d d3r 3 Ts qs(b ? |6B|2
%/7 |:/d V;2FOS (hs_ TS FOS + ST

- w5 e T

We define the species-indepedent normalization of the distribution function by

(26.69)

o

3
Uto

Foo = (26.70)

and note that the normalized version of the species-dependent distibution function normalization can be written

n v?/v2, R a2
Fos 71'3/251)t3 € ¢ Ng € Ys
o AR (26.71)
00 5 o3, ™

2
First, we multiply the equation by 2% ™ (Z—g) nolTo where we can substitute ng = vj,Foo when necessary.

d d3r/ pan VUts s Ts FOS hs ago QSTO q0¢ ao 2
Z il 2 - -2 (26.72)
d(tvio/ag) V/(p3ao) vy, \vw /) 2To Foo |\ Fos po qTs \ To po
Bg d /dgr/(p%ao) B ag |”
8mnoTo d(tvio/ao) J  V/(pgao) | Bo po

_ dgr/ p0a0 Z/ (%)3 EFOS <( hs @) CvtO ( hs @)>
V/(pdao) v, \vwo /) To Foo Fospo) ao \ Fos po
d3r/(p0a0) ( Ja @) . (fJoaoE @)

V/(p5a0) \mogovio po To po

Thus in normalized quantities, this becomes

d [ d3 e ATy (0 @ -\° 1d [d%
— [ = d3v, S +——A/ .
at) v ZS:/ T3z 2 ( T, ) Bodt ) V

d3A e

(26.73)
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26.2.4 The Entropy Equation (B10)

Equation (B10), written in an alternative order, is given by
d*r / T. < (811 ) > >R
— | — [ &*v=(hs / / d*vq
/ |4 Fos coll

As with equation (B19) above, we begin by multiplying the equation by 2 ™ (Z—g) o FooTo
_/dBr/(pgao) /dsv <%)3EFOS << hs @) Cag < hs @)> (26.75)
V/(pgao) J vis \veo) ToFoo \\Fospo/ vio \ Fos po '
/d3Rs/(P3ao)/d3V (%)321’05 (hs @) d <Ma_o>
V/(p§ao) vi \vw ) qoFoo \ Fos po) O(tveo/ao) \ To po
0 /dgr/(ngO) / d3V (vts)3 FOS Ts ( hs a0>2
O(tveo/ao) V/(p§ao) vi, \ v/ Foo2To \Fospo)
In normalized quantities this simplifies to
3¢ 3. € s 7 i eh
/ / 4 <hsChs> (26.76)

=
~2 ~2 ~

e % O, 0 d3t 3. € U5 NgTs 2y

/ / Voo e = [ | AT

o [ dr s Ts 4
hs—a/v/d V2Foshs. (2674)

to find
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26.3 The Power Balance Equation (B19) Term by Term

26.3.1 Antenna Power

The power due to the driving antenna is given in the power equation (B19), in normalized units, by

3AA A
- / dVrJa-E (26.77)

To evaluate this we need to determine Jy, - E, the normalized antenna power, in terms of the quantities we know: giA), /Al”,
and ];’H .

First, we consider here only the case when we drive a parallel current (which drives only the Alfven mode), so

Ja = Ju)2. Using the definition of the electric field in terms of the potentials,

10A
E=-V¢— —— 26.78
b=, (26.78)
we obtain
Jo - E=Jy | —ikjp— —— 26.79
[ ( WP = <o (26.79)
To normalize J, - E, we multiply by
2
ap Qg
20 26.80
noTovio p3 ( )
to get
Ja E gy 0 A
() (322 « ()t (32) 2 (2988)] o
n04oVto Po To  po n0qoVto Lo To po d(tvio/ao) \ ¢ To po
Thus, in normalized units we have
i, E=J —i/%é—aA” (26.82)
a all I o7

Substituting, we find the driving antenna power is given by

B (. 94
— Joy | ik - 26.83
+/ vl <Z 19+ i ) (26.83)

Since the gyrokinetic approximation requires that the parallel wavenumber is small, we may drop the first term to find

B . 04
+ | —Juy—= 26.84
/V " oi (26.84)
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26.3.2 Change of Magnetic Field Energy

First, a short note on the magneitc field in gyrokinetics. The fluctuating magnetic field is given by

5BZVXAZVX(A”2+AL):VAH XZ—FVXALZVAH XZ—F(%Q—FVL) X A (2685)
This can be written
5B:VAH><2+2X§AJ_+VJ_XAJ_ (26.86)
4

Note that the term V, x A gives a component only in the z direction, while the other two terms are only in the
perpendicular direction. Thus we can replace V| x A | with 6B)z. Also, note that only the perpendicular derivative of

the first term survives after the cross product with z, so are left with
N .. 0
5BZVLAH XZ+5B||Z+Z>< &AL (2687)

Finally, under the gyrokinetic approximation, the parallel derivative is small compared to perpendicular derivatives, so
we may drop the final term to achieve the final result

0B = VJ_AH X Z + 5B||i (26.88)

Now, lets find the magnitude [0B|? after taking the Fourier transform, so

0B =ik Ay(k1 x 2) + 0Bz (26.89)
Taking the magnitude,
10B[? = k141> + 6By (26.90)
We normalize this by multiplying by
L a (26.91)
B§ pj '
to find
0Bay* _ ke v dody aol” & T§ |8y a0l (26.92)
By po g | ¢ To po| v qgBs By po ’
This can be simplified to
L2 s (2 (m3? 1 AT? .12
oB| = i3 |4 (L> —— (—0) + |68 26.93
o =k |4l (Ggg) mgz G ) 15 (2692)
Finally, we get
12 1an | 12 L2
‘5B‘ = Zki ‘A”‘ + ‘53”’ (26.94)
The magnetic energy term of equation (B19) is
L d / r ‘5]3 ’ (26.95)
Bodt) V '
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Thus we should have

2 [EE (G fa + o) (26.96)

ERROR: The code does NOT have this factor of 1/4.

26.3.3 Fluctuating Energy

The term due to the fluctuating energy in the distribution function is given by

d [ d3 R T O A
— . BVvg—e—= | hy — = 26.
ai) v Z/ Vs 33 g ( Tsaﬁ) (26.97)

&Py e e G\ d (s
- V= sTs | hs — =& ) — ( hs — = 26.98
/ 1% Z/ Ve ( TS¢> dt( T ) ( )
which can be written out to yield

d*r
[ TE [ el

NOTE: This agrees with the code except for a factor of Jy multiplying the middle term. I think that the code is
correct, but I need to think about it more.

dt dt dt

f}sdhf s <h d ) ;;@] (26.99)

26.3.4 Collisional Heating

The collisional term in the power equation (B19) and heating equation (B10) is

/d3 Z/ 9. Sﬁ Ty (h(h)) (26.100)

NOTE: The collisional heating is difficult to extract from the code, so more work must be done to figure this out.
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26.4 The Entropy Equation (B10) Term by Term

26.4.1 Collisional Heating

This term is identical to the collisional heating term in the Power Balance Equation (B19), so it is discussed in sec-
tion (26.3.4).

26.4.2 Wave-Particle Heating (Cowley Form)

In the heating equation (B10), the Cowley form of the heating is

dR 3. € sAA A3t 3Ae ns 9
/ /d gamy f . at/ S (26.101)

Writing out the time derivative on the second term, we have

PRy [ 4. e*sA 43¢ 3Ae o .. Ohs
/ /d 3/2” — / /d i Tohe— 2 (26.102)

NOTE: In the code, the term 74 is not present. Although for a pure electron-proton plasma this term will cancel, it

is present in the other terms in the Power Balance Equation and should be kept here for consistency.
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26.5 Normalization of Collisional Heating

2
We begin with (19.19) and multiply by " (ﬂ) m to find

PO
/d3Rs/<p3ao> /d3v (_>
Vi(p3a0) J o \vio

Z = /OO vy
= —_ m—
k TO 0 Ut35

v? (k1po)? (Ps ) ? /1 s ao
+ - = dé(1+¢%)
v, 2 Po —1 S+ Fos po
Note here that the variable £ is already dimensionless
|
£=¢=
v
and the collision frequency v, (v) is normalized by
~ Vsao
Uto

We also write the

Ps _ Vts QO _ (2Ts)1/2
Po Qs vyo ms

Writing all of this in normalized, dimensionless variables yields
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msc¢ qoBo [ mo 1/2_ T
qsBo moc \ 270 - \Tp

0 £700 105 pO 'UtO IOS pO
('Uts> IOS <V;(L0> /
Uto —ZOO Vt0

| <h‘“@)
(95 Fos po

)1/2 (%) 1/2 @ _ (Tsms)l/Q
mo qs qs

o2kt T
s 2 qf\Q

S

1 2
[ dé e

(26.103)

(26.104)

(26.105)

(26.106)
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26.6 Thermal Velocity Definition

The input parameters of GS2 allow several choices for the definition of the definition. We concetrate here on two options
for the thermal velocity, the Bill Dorland convention (norm_option=’bd’)

T
Vi = — (26.108)

and the Mike Kotschenreuther convention (norm_option=’mtk’)

2T
v = (26.109)

Thus, we see the difference in the two conventions is

vZ =23 (26.110)
We will use the variable a = v/2 to keep track of factors when switching from one definition to the next. This choice is
made far more convoluted because I the internal normalization always has the mtk definition. Thus, only in some places
will this factor of alpha appear; I believe these places are where values are output to the user, such as time, wavenumber,
and energy. Just how this works is not yet completely apparent.

Note the following useful transformations:

Veom = QU0b (26.111)
Vtom AVL0b
m = = —= 26.112
Po Q0 o apPob ( )
kim = kipom = krapo, = ok (26.113)
. toom .
fom = U;‘; = a;;% = alo (26.114)
Gy = 0% _ Woto _ Gop (26.115)
T viom  aviy @ '
oy = =0 = 0 _ S0o (26.116)
Pom & Pob e
fom = 2 =20 _ 5, (26.117)
an an

26.6.1 General relations of normalizations depending on thermal velocity
26.6.2 Velocity integration

I believe the velocity intergration of the distribution function depends only on the unchanging internal normalization of
the code. For example, the density fluctuation is defined by

dng = /d3vhs (26.118)
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which can be expressed in terms of normalized quantities as

~2

Sy = /d:”{rSQA hus. (26.119)

232
I believe that [ d3€fse_ﬁ§ is not changed by the user’s choice of normalization, so the only change in the distribution
function between thermal velocity conventions is due to the ag/pp factor that is present in all fluctuating quantities.

Thus,

A _ hs G0 _ hs ag :hsm (26.120)
T Fos pom Fos apos a

26.6.3 Questions

1. The calculations of energy integrated over space are then divided by total volume in the theory paper. If this
division is not performed in the code, then the volume multiplying the energy is will have a factor of V = agp?
multiplying it, so because space depends on the definition of thermal velocity so will this volume, and so will the

energy over the volume.

2. It seems that the vy in the normalization of A| does not change with the definition of thermal velocity or else the

balances would be completely wrong. But

3. At what layer do we want to transition from code units to user units? Ideally, it seems this should be done just at
output, so that all other calculations are consistent with the internal convention of GS2.

26.7 Miscellaneous Notes

26.7.1 Velocity Space Integration

Integration over velocity space includes part of the equilibrium distribution function. Ultimately, we want quantities that
have been integrated over velocity to be species independent. Consider the following example of the integration over the
perturbed distribution function to get the perturbed density. We begin with

ong = /d3vhs (26.121)
and normalize by multiplying by the factor
1 ap
—. 26.122
v Foo po ( )
Note that our definitions of Fyg and Fys are
Foo= - (26.123)
Yto
n 2,2
Fog = —se? Vi 26.124
0s = ~3/2,3 © ( )
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so that their ratio is

2,2
s v° /v R a2
FOS o 71'3/2va6 b _ ns e Vs 926.125
F - ng 23 3/2 ( . )
00 3 Vg T

and we can use ng = v?OFoo. This gives

ong ag A3V [ vgs 3 hs ao\ Fos 3. .32 Tge s
— | = — | —= — = [ d°Vs0; hg— 26.126
( ng Po> / vy, ('UtO Fos po) Foo / Velts o3, w3/2 ( )

Finally, we obtain the result

—$2

N “ e s ~ ~
S = /d?’vsmnshs (26.127)

The routine le_grids:integrate_species includes the exponential and 7 factor in the velocity space integration.

Hence, it always performs the integral
~2

3, €

This generally means that any normalized quantity integrated over velocity will have an extra factor of n4 in the integrand
which arises as shown in equation (26.127).

This can be seen in le_grids:integrate species. The line in the code is:
tot(:,it,ik)
=tot(:,it,ik)+weights(is)*w(ie,is)*wl(:,il)*(g(:,1,iglo)+g(:,2,iglo)).
Here, weights(is) is a species dependent multiplier passed into the routine. For example, to perform the integral
f d?’vToshg, the factor Tys would be passed in as the argument weights(is). The factor w(ie,is) is a weight factor

for integrating over the energy grid. The factor wl(:,il) is a weight factor for integrating over the pitch angle A grid.

26.7.2 Other short notes

1. The routine collisions:g_adjust is used to convert from g to h and back. To convert from g to h, call routine

with parameters (£phi, fbpar). To convert from h to g, call routine with parameters (—fphi, —fbpar).
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Chapter 27

Methods for Analysis of AstroGK Results

27.1 Analysis

27.1.1 General Analysis Methods for Turbulence Runs

1.

10.

Energy Spectra: Plot the steady-state spectra of all the fields. How do the slopes of these spectra compare to

theoretical expectations?

Steady-state at all scales: Check the time evolution of the k by k energy to determine if each scale has reached a

quasi-steady state.

Movie of Energy Spectra: Compile a quick movie of the evolving spectra to visually see if it appears to reach a
steady state. Also, is it possible to see fluctuations in energy injection pass down through the cascade?

Steady-State: Look at plots of the evolution of the plasma energy to see if it has reached a steady-state. Is the
heating d&/dt fluctuating about zero (no net energy buildup in plasma)?

Heating: How much heating goes to ions vs. electrons?

Heating by Mode: Are the channels of heating peaked in the wavenumber ranges we expect? Is there ample

dissipation at smaller scales?

Composite Spectra: After removing dissipation ranges, assemble spectra from different wavenumber ranges to get
a clue about the global spectrum, similar to the Great Power Law in the Sky. This is not quite right because of
varying anisotropy, but it will make a nice rough picture before trying a monumental size run (Insight Awards,
etc.).

Electron Energy vs. Beta: Plot d. vs. §; to see how the ratio P;/P. changes with parameters.
Entropy Cascade: Can we identify the entropy cascade?

Make movies of field lines with existing run data.
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27.1.2 Analysis Tools for Development

1. Contour plot of power on the k -k plane. Note that this needs to use the facility that derives the actual k|

following the fields lines, not just the k, as output in the .fields file. To get this output, I need to turn on the
write_gs flag in the diagnostics namelist. The procedure in memory intensive, and should be done only for one

timestep to get the output.
2. Polar spectra of heating rates

3. Make movies of field lines.

27.1.3 Notes on GS2 Output Files
Here are some notes on analysis and data files:
1. The file runname.fields contains z-structure of all k£, and k, modes.
2. The file runname .kspec_raw contains polar spectra of energies for all possible k| from all of the k; and k, modes.

3. The file runname.kspec_avg contains binned and log-averaged values of polar spectra of energies using nkpolar

bins. Default is such that nkpolar= int[real(naky + 1)v/2]
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27.2 Transient Fit by Laplace Transform for Linear Runs

The best way to get precise fits of the resonant frequency and damping rate is to fit the transient behavior of the driven,

damped system.

27.2.1 Laplace Transform

Assume the linear system behaves as an linear operator with a source term
— = Lo(t) + S(t) (27.1)

where the linear operator gives a complex eigenvalue —i(wg — i)

Lo(t) = —i(wo —i7)d(t) (27.2)

and the source term simply drives a constant frequency ws

7'L-w5(t7t())
S(t) = { 0506 . (27.3)

Thus, we have the equation

99(t)

5 = ~Hwo —i)e(t) + Soe ™. (27.4)

To solve the the time-dependent behavior if the antenna is turned on at time ¢, we do a Laplace transform of this system.

For the source term, we use the property of Laplace transforms that
/ Ut —to)e *tdt = e "0 f(5s) (27.5)
0

where the U(t — to) is Heaviside’s unit function times F(¢)

Ut — to) = { OF (*) (27.6)

and f(s) is the Lapace transform of F'(¢). The Laplace transformed equation becomes

~ . She—as
sb(s) = 6(0) = —ilwo —7)(s) + T2 (27.7)
Solving for the Laplace transform (Z;(S) gives
o(s) = — 20 Soe (27.8)

s+iwo+7y  (s+iws)(s+ iwo+7)
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Taking the inverse Laplace transform of this solution gives

e*iws(tft()) _ e*i&)o(t*to)ef’y(tfto)

t) = p(0)e o™t 4 G, - 27.9
o(t) = 9(0) ) oo T (27.9)
Let us take the driving antenna to be turned on at tg = 0 and zero initial amplitude ¢(0) = 0, so we get
e—iwst _ e_iWOte_Vt
t) =S , 27.10
#(t) = 5o i(wo — ws) +7 (27.10)
For late times ¢ > 1, this solution agrees with the Fourier solution
e—iwst
t)=Sy——m. 27.11
o(t) P (27.11)
Solving for the amplitude |¢(#)|?of the antenna as a function of time, we obtain
1+ e 27 — 277 cos|(wo — ws)t]
> = 5§ 27.12
|¢( )| 0 (WO _Ws)2+72 ( )
Again, at long times, we get the usual Lorentzian response
2o S
lo(®)|* = lim (27.13)

=5 {ug — )+ 72

27.2.2 Fitting the Laplace Transform Solution

There is a simple strategy for obtaining precise fits of the Lapace Transform solution. For a given driving frequency
ws, there are three parameters to the fit: the amplitude Sy, the resonant frequency wg, and the damping rate . These
parameters can be determine to high precision using the simple precodure below.

1. Run one case (A) off resonance |wy — ws| > 7. To obtain convergence to a fraction f, the runtime needs to be

¢ > 22 (27.14)

gl

For a convergence of f = 0.001, this is approximately ¢ > 7.6/~.

2. From case A, you can determine the resonant frequency quite precisely by fitting the oscillation at the beat frequency
wo — Ws.

3. After determining the value wy — ws, one can determine the amplitude Sy by fitting the final amplitude after the

transients have settled down. This is only possible if |wg — ws| > 7.
4. Run a secondd case at resonance (B) such that |wg — ws| < 7. The required run time is the same as before.
5. From case B, determine the damping rate v by fitting for the final amplitude.

6. Check the fit of B at all times to see if any further adjustments are necessary. Notice, if the resonant frequency of
the fit is adjusted slightly, the fit changes dramatically.
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27.3 Frequency Sweep Runs

. Set ki pi, nx, ng for the run.

Collisionality of each species C;, C. must be less the desired damping rate.
Timestep At must be much less than the frequency of the resonance (or the resonant frequency will be too low).
Guess at resonant frequency wg and set initial frequency w; lower.

Choose sweeping rate w such that the sweep is slower than the damping rate (or the Lorentzian will be pushed over

and the amplitude will show a lot of oscillations).

To plot the data using Gnuplot

1.

First, extract the data from the run_name.out file using grep
grep ’w=’ swpbltlkl0.out > swpbltlklO.w

. Next use Gnuplot to plot the data against a Lorentzian with three parameters, the peak amplitude Ag, the damping

rate v and the resonant frequency wg.

. To plot, type

plot ’swpblt1k12.w’ u 2:4, ’swpbltik12.w’ u 2: (Axg* (($2-w)**2 + gx*2)*x(-0.5))

This will plot the data against a Lorentzian of the form

Aoy
(W —wo)? +12

Alw) =

If you want to plot the lorentzian and have gunplot automatically fit:
f(x)=(A/sqrt ((x-w)**2.+g**x2.))

fit f(x) ’test.dat’ u 2:4 via A, g, w

plot ’test.dat’ u 2:4, ’’ u 2:(£($2))

replot

27.4 Ion to Electron Heating Ratio Runs

. Set ki pi, nx, ng for the run. In these cases, a large number of points in velocity space (ny = 40 and ng = 40) is

necessary to resolve the very weak damping of the subdominant species.

. Collisionality of each species C;, C. must be less the desired damping rate for that species; for the less damped

species this can be VERY small.
Run the code until it converges with w;, = 1076,

Columns 4 and 5 (the first two after heating rate) in the .h file give the ion and electron power; copy them to the
data file to keep.
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To plot the data using Gnuplot

1. First, extract the data from the run_name.out file using grep
grep heating rate hrb10t_01k10.out > hrb10t_01k10.h

2. Next use Gnuplot to plot the data to check that it has stabilized by typing
plot ’hrb10t_01k10.h’ u 2:4, ’hrb10t_01k10.h’ u 2:5

27.5 Decaying Alfven Wave Runs

1. Two runs are necessary: the first to build up a single eigenmode by driving at a certain frequency and wavenumber;
the second to turn off the driving antenna and watch the wave decay

2. Wayve set up runs

nkstir =1

antoss =F

navg = 20

)
)

()

(d) nwrite =10
)
) omegatol = 1.0 x 10~°
)

nstep= 5000 and delt_option = check restart
nkstir =0

antoff =T

navg = 1
omegatol = —1.0
save_for_restart = F

)
)
()
(d) nwrite =1
)
)
)

4. Set kj p;, nyx, ng for the run. In these cases, a large number of points in velocity space (ny = 40 and ng = 40) is

necessary to resolve the very weak damping of the subdominant species.

5. Collisionality of each species C;, C. must be less the desired damping rate for that species; for the less damped
species this can be VERY small.

6. Run the code until it converges with wy,; = 1076,

7. Columns 4 and 5 (the first two after heating rate) in the .h file give the ion and electron power; copy them to the
data file to keep.
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To plot the data using Gnuplot

1. First, extract the data from the run_name.out file using grep
grep heating rate hrb10t_01k10.out > hrb10t_01k10.h

2. Next use Gnuplot to plot the data to check that it has stabilized by typing
plot ’hrb10t_01k10.h’ u 2:4, ’hrb10t_01k10.h’ u 2:5
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27.6 Analysis for Astrophysical Turbulence Runs

This section describes a number of different diagnostics and scripts for analysis of runs simulating astrophysical turbulence.

1. Parallel Fourier spectra: Analyze the runname.fields fields by taking each (k;,k,) mode and Fourier analyzing
the structure along the field. This proves that the run was resolved along the field and did not reach the Nyquist
frequency of the parallel grid. We use the sm script /sm/agk/fields fft.smto create a series of postscript files, one
for each mode, showing the real space structure and fast Fourier transform. These can be made into an animated
gif move using pstogif.all and whirlgif.

2. Steady State: It is extremely important that turbulence data used for analysis have reached a statistically steady
state, where energy injected at large scale is balanced by total energy dissipated (mostly at small scales). There

are several methods to check this:

(a) Movie of energy spectrum: One can compile a movie of the energy spectrum using /sm/agk/kspec mov.sm
and inspect visually if some part of the spectrum is monotonically increasing or decreasing in time, rather
than just fluctuating about some steady solution.

(b) Total energy vs. time: A better solution is to plot the evolution of the energy in the plasma over time to see
if any components are increasing or decreasing. However, this is dominated by the driving scale; the Driving

scale Alfvén waves produce an oscillating behavior in 0B, and Jf; (or v;).

(c) Total energy by k) vs. time: We can also analyze the runname . kspec _ravw file using gs2 analysis.f90, option
0, to extract the time behavior at each mode, which can then be plotted using /agk/ek vs_t.sm. This is the
best diagnsotic to determine if you have reached a steady state at all wavenumbers. Note the h; seems to
adjust most, slowly; you can also look at etot for each wavenumber to get the overall picture.

3. Contour plot of Power in k| —k, plane: One can use the Fortran program kplane.e to analyze the runname.fields
file to create a contour map of the power in various fields on the k; —k. plane using the script /sm/agk/map kpkz. sm.
It is a bit difficult to interpret this compared to theory since you really should do this along the perturbed field
lines to get the power in the k) —k plane. But this can be a useful diagnostic to ensure that nothing awful has

occurred.

27.7 Dissipation Estimates for Nonlinear Runs

1. T can use python script tnl hr_sum.py to read the runname.out.nc file and output a runname.tnl file.

2. Run /sm/kspec/swt_hk_diss.smto plot the estimated normalized dissipation P/(Fw) ~ «/w. Note that this does
not take into account the reduction in nonlinear frequency due to dissipation, so we may need a similar estimate
based on P/(Ewpy;).
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27.8 Amplitude Scan for Turbulent Driving

In this section I review methods for analyzing a suite of runs to test the proper amplitude for driving turbulence. In

short, I list here the basic methods used to interpret the data.

1.

2.

Plot final spectrum for each run to extract the slope of the steady-state spectrum.
Plot the energy in the driving mode vs. time to show that we have reached a steady state at different levels.

Contour plots of mode energy on the £, — k. plane. Using the write_gs option, I should be able to also produce

the same data (or at least for v2 and US) on the k1 — k| plane; this plot should produce the Goldreich-Sridhar

Ky o kf_/ % law for driving amplitudes in the strong turbulence regime.

Plot the antenna power in P,,: vs. the heating measures P; 4+ P. and P.; + P.c + Prci + Prce to show that the net
plasma energy change is zero. We should be able to look at the heating data by &, as well to show that energy is
indeed cascading to high k£, before it is dissipated.

We can also plot the steady state P, vs. the estimated saturated value of the energy 9 541 /0t.

Plot the measured value of w,;/w as a function of the driving amplitude. Can I explain what appears to be a

relation wy,; /w oc A3/2?
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Chapter 28

AstroGK Utilities

28.1 Expand

Expand is a utility that allows you to increase the number of x and y Fourier modes and z gird points to achieve a higher

spatial dynamic range.

28.1.1 Expand Input File

The input file for expand is a single namelist expand. Below is an example:
&expand

nproc_in = 64

nproc_out = 64

layout_in = ’yxles’
layout_out = ’yxles’

file_in = ’exp20.nc’
file out = ’exp2l.nc’

ntgrid_in = 12
nakx_in =

7
naky_in = 4
ntgrid_out = 24
nakx_out = 15
naky_out = 8

negrid_in = 8
negrid_out = 8

nlambda_in = 32
nlambda_out = 32
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nspec_in = 2
nspec_out = 2

tfac = 0.25

use Phi_in =T

use Apar_in = T
use Bpar_in = T
use Phi out =T

use_Apar out =T
use Bparout =T

ant.on = T

/

Note that the connection between the expand parameters ntgrid, nakx, naky, negrid, and nlambda and the

AstroGK input file parameters ntheta, nx, ny, negrid, and ngauss are given below:

ngtrid = ntheta/2 4 (nperiod — 1)ntheta

-1
nakx = 2 int (nx3 )—i—l

-1
naky = int (ny3 ) +1

negrid = negrid

nlambda = 2 ngauss

To convert from nx and ny to nakx and naky, here is a conversion table:

naky

nx | nakx || ny
10 7 10
15 9 15
16 11 16
24 15 24
32 21 32
64 43 64

4
5
6
8
11
22

270

(28.1)

(28.2)

(28.3)

(28.4)

(28.5)



Chapter 29

Performance Issues and Problems

29

29.

1.

2.

29.

.1 AstroGK Code Bugs

1.1 Outstanding Bugs

Adaptive hypercollisionality for any (;
Expand does not work for 256 to 1024 processors (only 1020 files created)

For adaptive hypercollisionality, I must use a variable number of species—at the moment it is fixed at 4. (31 OCT
07)

There appears a crash for 8; = 100 run with plasma energy running away. This may be due to centering in time
(fexpr=0.5) or some other cause. Adaptive hypercollisionality is not working here.

It seems that the temporal implicitness parameter may help in this case.
Is the minority species crashing because of assumed two species in heating calculations?

In EXPAND, the code cannot reduce the number of files created due to a bug that seems to be related to having
file_proc both as a global variable and as a subroutine variable. (10 DEC 07)

1.2 Potentially Fixed Bugs

. E x B shear issue with large runs

. Adaptive hypercollisionality for §; = 1
Heating diagnostics for more than two species
NetCDF filenames for nproc; 10000

Expand NetCDF filenames for nproc; 10000

Restart in AstroGK used .0000 hardwired for timestep and amplitude NetCDF file. This did not work when proc
numbers changed to 5 digits .00000. I believe it has now been fixed. (Nothing seemed to be wrong with Expand).
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29.1.3 Fixed Bugs

1. none

29.2 Memory requirements

1. nmesh = (2 * ntgrid + 1) x 2 * nlambda * negrid x ntheta0 * naky * nspec

2. nz and ny should have only prime factors 2,3 and 5.

29.3 General Coding

1. Parallel HDF output has been implemented in the code.

2. 3rd order Adams-Bashforth

29.4 Hypercollisionality

1. A wavenumber dependent collisionality coefficient will accomplish resistivity and a perpendicular viscosity (due to

FLR terms in collisions).

2. Replace v with vy + (ki pi) vy

29.5 Hyperviscosity

1. Heating began at a nonzero value: This appears to be because an incorrect form of the hyperviscous operator
(vaV4 hs) was used. Different numbers of stirring modes seems to have no effect on this problem. In decaying

runs, heating also begins nonzero. As the timestep is decreased, heating by hyperviscosity increases (slightly).

29.6 Entropy Balance

1. The difference between the QDH heating and collisional heating is simply a scaling factor, but there is no obvious

dependence of that scale factor on any parameters.

2. The electron entropy also shows the scale factor, but there is also, in a few cases, a slight phase shift; this could be

simply a very small computational effect, however.

3. Is the electron entropy poor because the collisions are much too high (and velocity space resolution too low) to

resolve the small electron damping?

4. Does the entropy balance change as the collisionality coefficient is changed?
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5. Where is the Landau resonance with respect to the thermal velocity for a given species, and how is this realted to

the typical damping rate?
6. Why is the entropy going negative in some places (particularly for electrons)?

7. Consider what the ion and electron heating terms mean compared to the collisional terms. If the collision rate is
zero, no entropy can possibly be generated, but there must still be “heating” in the form of structure in velocity

space. Is there a time lag between this collisionless “heating” and the actually entropy increase due to collisions?

29.7 MHD Run Stability

1. At high 8, the MHD runs tend to be unstable. Bill has seen this strange behavior before.
2. Low 3 runs seem to be working

3. The problem is related to this. On the RHS of GK equation is dA/dt. When fexpr= 1/2 and bakdif= 0, this
term vanishes exactly at the Nyquist frequency (when A = 24z).

4. Using a Beam-Warming scheme (for parallel space and time) with compact differencing and going from 2nd to 4th

order, we can kill off this Nyquist frequency problem.

29.8 Fixed Code Bugs

(a) August 2007: Fixed bug in initial conditions for electromangetic runs. BD and TT.

29.9 Known Code Bugs

(a) In gs2 diagnostics.f90:init polar_spectrum, there is an error in calculating the correction factor to the

raw polar spectrum. The correction is calculated to be

7k 1 pin
Ebhincorr — 5 (291)
Nbin

but this depends in the scale &k, , which is incorrect. The correction factor should be scaled to be

k in
ToLb (29.2)

€bincorr = L )
Npin K Lbinmin

so that the number does not depend on the absolute value of k£, , only on the relative value compared to the

minimum k; in the box.
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29.9.1 Tomo’s Code Bugs
(a) Can we remove theta0 and ntheta0? — almost done excepet for agk dist_io hdf.f£90.
(b

(c

(d) Why at all is vpac introduced? It is different from vpa when al becomes larger than unity which never

check the sign of wstar related to background density or temperature gradient.

ei collision frequency included for electron momentum conserving term?

)
)
)
)

happens in principle.
(e) Do we want the default value of chop_side = .true.?

(f) At MODULE DECLARATIONS section in Makefile, LINKS should include file_utils.f90: fixed. Also at DIRECTIVES
section, there are multiple declaration of file utils.o (maybe case dependent?), but is the second line needed

in the first declaration? If needed, file_utils.f90 may also need to be added in dependency.

(g) Inconsistent default values are defined for fphi, fapar and faperp in run_parameters.£90.

29.10 Potential Code Bugs

(a) In collisions.f90, calculating the array vnewk has the conditional if (spec(is)%type == electron _species)
then. Does this mean that in single species runs, when you are folling the code into thinking it has fluid elec-
trons when really you are using fluid ions, that it is keeping the zeff term in the collision operator, which
should only be present for electrons and not ions?

29.11 Potential upgrade

I didn’t know where to put them so just move whereever you want (TT).

1. ion drag term in ei collision — half done (TT)

2. Legendre pitch-angle collision operator

3. upgrade 9/9z to fourth order compact finite difference

4. upgrade time stepping to Greg Hammetts’ suggestion

5. upgrade collision to AB3-BDF2

6. implement isothermal electron fluid eqn — half done (TT)

7. OpenMP (BD)

8. remove ecut for too high value (TT)

9. Is LU-decomposition faster than matrix multiplication? (TT)

10. BLAS library for matrix multiplication? (BD) — Does aminv need to be complex? Making it real may enhance
the performance. But it may need complex values when tprim is finite. Also, store the transposed matrix and
calculate by matmul. (TT)
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Chapter 30

Development

30.1 List of Modifications for Development

1. Code up the entropy and power balances in the heating output
2. Parallel I/O (HDF): This is VERY important for large runs with nproc > 4negaussnegridnspec.

3. Fourier treatment of the field-aligned coordinate z

30.2 May 20, 2008

AstroGK version r307 known issues:

1. NetCDF output file has 4 or 5 digits.

30.3 April 19, 2007

Here is a list of papers that need to be written.

Computational or Gyrokinetic

1. Nonlinear Spectrum

2. AstroGK Validation

3. The Vegas Rule and minority species heating
4. General heating paper (Bill)

5. Critical Balance in NL simulations
6. Black Hole accretion disk paper

7. Validity of Linear Damping rates
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8. Nonlinear interactions (Local or nonlocal)
Analytical

1. Turbulent Cascade (1-D) (almost complete)

2. Slow wind turbulent driving paper

3. Critical Balance with 2-D MHD cascade
4. Full 2-D Kinetic Cascade

5. Kinetic Velocity Shear instability driving paper (Phil)

To Accomplish this week

1. Rework turbulent cascade regarding Alex’s comments

2. Wrap up Turbulent cascade paper

3. Try AstroGK nonlinear run (same as swt10a.in) (submitted)

4. Debug Hot Plasma Dispersion relation (WHAMP, Eliot’s old version)
5. Begin writeup of SW NL spectrum paper (PRL)

6. Start AstroGK validation paper (JCP)

7. Try isotropic HD cascade numerically

8. Look into Corona turbulence and respond to Ben

Completed tasks:

1. Rework turbulent cascade regarding Alex’s comments

30.4 March 29, 2007

Completed tasks:

1. Establish SVN for AstroGK
2. Establish SVN for AstroGK documentation

3. Learn as much as I can about the inner workings of GS2 from Tomo

4. Discuss Alex’s Tome

5. Debug Expand and run NL sims

6. Begin writeup of SW NL spectrum paper
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30.5 Oct 24, 2006

I would like to do an analytical calculation estimating the power spectra for strong turbulence for all fields in any regime.

The following ideas would be incorporated:

1. Linear and nonlinear physics will be decoupled in this model.

2. Linear physics will be derived from gyrokinetic dispersion relation, particularly the equipartition of energy between
fields.

3. Nonlinear physics will be treated by a local in wavenumber prescription inspired by the fully nonlinear terms in

the equations.
4. Given an input energy at a given scale, the energy in the fields is run until an equilibrium is established.

5. For hydrodynamic Kolmogorov turbluence with Laplacian viscosity, this works nicely. For more complicated sys-

tems, determining the interaction between different fields may become somewhat tricky.

30.6 Sept 12, 2006

1. Grand Solar Wind Run: This run will pull together four regime that span from the collisionless MHD regime to

the electron Damping regime, covering four decades of scale:

| Regime | k1 p; Range

I | Collisionless MHD 0.02 to 0.2
II | Transition 0.2 to 2.0
IIT | Kinetic Alfven Wave 2.0 to 20
IV | Electron Damping 20 to 200

We choose as parameters for this run 8; = 1 and T; /7T, = 3, which puts electron damping scale at &k p; = 74k, pe.

Ideally, we can do this run in order of decreasing scale to attempt to match amplitudes as closely as possible.

Each of these segments can be done on Dawson using n, = n, = 32. The only outstanding problem at the moment
is hypercollisions that operate effectively in the MHD regime. Also, we should be able to reduce computation by

reducing velocity phase space in regime I and using adiabatic ions in regime IV.

2. Large Transition Regime Run (Black Hole Accretion): This run will test the total damping occuring with large 3;
around k, p; ~ 1. For this case we need a few supplementary runs to determine that we can achieve total damping

of the turbulence onto the ions as §; — 1.

(a) Main run: §; = 100, T;/T. = 100, and 0.2 < k1 p; < 6.0 (requiring n, = n, = 96). Hopefully this run will
show 5/3 slope on the MHD portion and 7/3 on the KAW portion.

(b) Supplementary run: Same as above but increasing §; to 3; = 300 or possibly 8; = 1000 to demonstrate

complete ion damping. This can be done with a smaller box 0.2 < k; p; < 2.0 (requiring only n, = n, = 32).
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Run kaw4 and kawb longer to see if things really settle to a nice equilibrium. But KAW is the worst regime because
the frequency at the driving scale is slow, while the frequencies at higher modes are much faster. If you need a full
turn-around time (or more) at the driving scale to reach equilibrium, then you prefer a much faster frequency at
the driving scale. (Perhaps KAW would be much better done at 3; ~ 1 and T;/T. ~ 3 because then you don’t have

to run for so long.

. Estimate total requirements (size and number of timesteps as well as memory and CPU hours) for Seaborg sized
runs.

Run code with driving in the middle of the box to look for any possible inverse cascade of magnetic field. If B-field

energy piles up at large scale, we have evidence for dynamo action.

. Try to figure out how low you can go with velocity phase space for MHD runs. (I think (8,4) should definitely
work, but can we go to (5,3)?)

(a) Test (5,3) first with same parameters as other MHD run. If unstable, then increase to (8,4). If stable, try
(4,2) (why not get greedy?)

30.7 Code Modifications

30.

1

2

7.1 Diagnostics

. (GGH) Put fluctuating energy diagnostic into heating.

. (GGH) Fix energy and entropy balance for single species runs

. (GGH) Determine correction procedure for E(k, ) calculations.
Moving GS diagnostic for k| out of code.

Energy diagnostic E(|k|).

Energy diagnostic E(|kj]).

Energy Contours on kj-k1 plane for both weak and strong turbulence
. Determine structure of k& by k nonlinear energy transfer.

(a) Use reduced MHD as a test bed for this energy transfer diagnostic.

(b) Possible of velocity-space dependence of nonlinear effects and energy transfer. Do not integrate over velocity

and look at h?(v) at a given k to see if cascading energy has any dependence on v. REAL PHYSICS!

(c) Look for velocity space tails in distribution function driving by turbulence. E| is never very big, and you must

overcome the collisions with a Driecer field.
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30.7.2 Dynamics

1. (BD) Antenna amplitudes in continuation files for restart.
2. (BD) Check for restart bug.

3. (BD) Fix BD norm for heating calculations.

30.7.3 Eye Candy

1. Field-line following with tracer particles.
2. Tracer particle evolution.

3. Flux tube in a black hole accretion disk to zoom into flux tube and looking at small-scale turbulence.

30.8 Analytical

30.8.1 Short Term

1. Determine hyperdiffusivity terms in reduced MHD limit.

(a) Compare with dispersion relation for reduced MHD.

b) Look at relative amplitude of ¢, A as a function of v, 7.
I

2. Linear dispersion relation using density and momentum conserving Krook collision operator. Comparison to reduced
MHD slow wave dispersion relation.

3. Model energy cascade in turbulence numerically to estimate effect of changing damping rate on cascade.

4. Derive nonlinear tranfer terms analytically. Nonlinear transfer terms dependence on particle energy or pitch angle
may be illuminated by this.

5. Conserved Quantities

(a
(b

) Clean up Energy
) Helicity is [ Ay B) plus helicity breaking terms.
(c) Enstrophy, Helicities, etc.
)

2
(d) Magnetic Moment, u = % is a conserved quantity in gyrokinetics. Integrated over the box it should still be

conserved, so perhaps we can use that as a clue to find another quantity. HINT: Look at Antonsen and Lane
in their formulation of GK which uses coordinates (E, ). Perhaps finding energy in their simulation will be

similar.

6. Clean decomposition of Alfven and Slow mode energy (Entropy mode).
7. Determine Poynting Flux and Local version of conserved energy.

8. Determine Reynolds and Maxwell Stress
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30.8.2 Long Term

1.

Turbulent cascade model using GK as base and critical balance as criterion for nonlinear energy transfer.

30.9 Documentation

30.9.1 Short Term

1.

Treatment of Fourier series and complex terms.

30.9.2 Long Term

1.

30.10 Code Runs

30.10.1 Short Term

1.

2.

10.

DONE: Locate and implement some run experiement/project management software to coordinate our runs.

Determining window of validity of collision frequency (Plataeu). How is minimum collisionality dependent on
velocity space resolutions? How is max collisionality related to desired damping rate and does this depend on
parameters (. etc?

Determine amplitude of driving for weak/strong turbulence

. Run 8 = 100 case over k p; from 0.1 to 3.

. Testing hyperviscosity, especially convergence test in nonlinear runs while scaling hyper term with box size keeping

all else fixed (gridnorm=T).

What is difference in resolution in ngauss vs. negrid? How does it affect collisionality, etc? Bill believes only one

is important (ngauss more important than negrid?)?

Determine minimal velocity-space resolution for MHD runs. Would like 2563 grid in space.

Perform HUGE MHD run as soon as possible.

. Entropy balance convergence with space and time resolution. Could be that energy balance calculations need

implicit time derivative, not explicit.
Test higher k| modes in nonlinear run to verify that code is recovering the linear theory result adequately.

(a) Extract a single mode and run it to see if it agrees with linear theory.

(b) Issue with timestep wAt: For the maximum %, v, on the grid, the timestep satisfies kv At < Fopr. More
precisely, [x,] ~ kivjAj. Because there are a few high v)’s in code, so although ¢ > A, this v A may

dominate the Courant condition.
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11. Run Slow waves in Alfven turbulence, and see that k) of slow mode does not increase.

30.10.2 Intermediate Term
1. Heating scan of parameters

(a) Define a standard acceptable box size and resolution for transition regime simulations 64 x 64 x 128 (k range

of 20) running from k p; from 0.2 to 4.0.

—~
o
=

Run § scan at fixed T;/Te.

—
o
~

Run T;/T. scan at fixed 3.

(d) Compare to Quataert-Gruzinov predictions about heating vs. parameters. Put points on there plot to check

their prediction.

2. Orszag-Tang Decaying Turbulence problem

30.10.3 Long Term

1.

30.11 Future Projects

1. Demonstrate or test locality of nonlinear interactions in k-space.

2. Show the transition from weak to strong turbulence and determine the threshold and its parameter dependence.
Study the transition.

3. Spectral features of density fluctuations in turbulence and see if slope depends on beta (other than 5/3 would be

exciting).

4. MHD turbulence heating at very low 3 for solar coronal heating. Include non-hydrogenic particle species to look
at Z-dependence of minority heating.

5. Oft-cited papers:

(a) More thorough investigation of heating with more beta and temperature ratios.
(b) Low beta coronal heating problem.

(¢) Weak to strong transition and overdriving. Do we believe Goldreich-Sridhar?

6. Reconnection
(a) Linear Dispersion relation for reconnection problem. (Shooting code, global vs. local boundary layer solution).

(b) Heating out of reconnection.

7. Generalize gyrokinetic theory for Bimaxwellian equilibrium distribution function F'(E, u) oc exp —[(E—uB)/T)] exp —[(uB)/TL].
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8. Heating due to microturbulence in tokamaks.

9. Study of velocity-space anisotropy in perturbed distribution due to plasma heating in turbulence. Document
existence or non-existence of non-thermal features.

30.12 Astrophysical Topics/Questions for Study

1. Reconnection in the strong guide field limit

2. Collisionless shocks in the limits of a strong field parallel to the shock front (perpendicular to the normal). This

will only work if the gradient is large scale with respect to the ion Larmor radius (thus the need for a strong field).

3. Work out collisional gyrokinetic dispersion relation and follow the evolution of the slow wave through the mean
free path scale.

4. Add diagnostics for density perturbations

5. Plot gamma vs. nu for the whole range of varying nu (Expect poor unconverged behavior too low nu, and then

collisionless damping to gradually decrease as collisionality is increased.)

6. What is the relation of the pitch angle scattering collision operator to real collisions and resisitivity? How does the
behavior limit as collision rate increases, does it asymptote to the viscous and resistive behavior of an MHD fluid

(non-ideal)?

7. AND, in what limit does resistive MHD pertain to reality?

30.13 Reading

1. Morrison papers: Full nonlinear stability criterion for a Vlasov Plasma.

2. Hallatschek
3. Krommes

4. Kadomtsev: Plasma Turbulence (80 pages)

5. Brizard and Hahm (2006)

30.14 May 9, 2006

[

. Hypercollisionality: Implement and test
2. eMHD cascade slope (see Bale)

3. Particle and momentum conservation in collisions (and hypercollisions)

>~

. Density conserving Krook operator in dispersion relation
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5. Determine the dependence of the collisionless damping rate plataeu in collision frequnecy depending on velocity

space resolution.

6. Determine limits of weak/strong turbulence depending on amplitude of driving. Determine the linear saturation

amplitude and how it relates to driving amplitude.

30.15

Feb 16, 2006

1. Determine all possible quantities to output

(a)

Figure out all pieces of Energy/Entropy Balances

2. Figure out hyperresisitivity implementation for 6B

3. Verify entropy and power balances for hyperresistivity

4. Test convergence of entropy balance with increasing velocity-space resolution

5. Return response to referee

6. Sort out definition of entropy, enstrophy, etc. and their equivalents in gyrokinetics

(h)

What are the conserved quantities in gyrokinetics?

In 2-D fluid turbulence, energy E = |V ¢|> = v? and enstrophy |V¢|? are conserved quantities. (these may

be wrong.)
Can we define similar quantities in gyrokinetics?

In reduced MHD, magnetic and cross helicity are conserved. They must also be conserved in the long wave-

length limit of gyrokinetics. What form do they take?

The fluctuating energy F is a conserved quantity, which includes (6f)? and |§B|2. But is there more included

in here? What is form of the fluctuating energy in the long wavelength limit?
Reference: Hallatschek derives the Gibbs Free Energy (fluctuating energy).

Hyper terms may be accomplished by using a collision operator with a factor of k2 in it. A Hyperresistivity
may be accomplished by using the same collision operator but with a k& dependent coefficient, such as vC(h) +
VHkQC(h).

Current collision operator is second order in pitch angle, 92/9v2. We could operate twice, effectively giving a

hyper operator that goes like 9% /9.

7. Hyperdiffusivity

(a)

Hyper terms may be accomplished by using a collision operator with a factor of k? in it. A Hyperresistivity
may be accomplished by using the same collision operator but with a k& dependent coefficient, such as vC(h) +
v k?C(h).
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(b) Current collision operator is second order in pitch angle, 92/912. We could operate twice, effectively giving a

hyper operator that goes like 9*/9y%.

(c) If you have no resistivity and only viscosity then you may end up with a high Prandtl number plasma and

accodringly weird behavior.

(d) Is a hyperviscous term in the electron equation equivalent to a hyperresistivity? One needs to work this out

to see what you get in the reduced MHD limit.
8. Think about the transfer of energy from & to k& and how to define that in terms of diagnostics

(a) [d3r [d3vf[f,g] =0 because of integration, but each term in Fourier series is not zero, only the sum.

(b) Perhaps we can calculate the typical nonlinear transfer term and see how the size depends on mass ratio;
then perhaps we can put a mass-ratio dependence into the hyperviscosity coefficient in order to even out the
amount of heating going into different species.

(¢) We want the hyperviscosity to mimic a tranfer of energy to smaller scales. So we don’t want an excessive

amount of energy poured into the electrons (as seems to be the case now.)

(d) Energy balance with both hyoerdiffusive terms seems to be dominated by the hyperviscosity.
9. Linear Collisional Gyrokinetic Dispersion relation

(a) Reference: Phil Snyder’s Thesis

(b) Electron collisions are important for shear Alfven wave, so one must ensure that the collision operator is

momentum conserving.
10. Linear Hyperviscous Gyrokinetic Dispersion relation

(a) Why is it ill-behaved? Can I get a nice comparison that will work?
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Chapter 31

Visualization Tools

31.1 Plotting Notes in Gnuplot

1. To plot, type
plot ’swpblt1k12.w’ u 2:4, ’swpbltlk12.w’ u 2: (Axg*(($2-w)**2 + g#*2)**(-0.5))

This will plot the data against a Lorentzian of the form

Aoy
(w—wp)? + 72

Alw) =

2. Surface plots:
splot ’iawla.dist’ u 1:2:3
This plots a surface plot of variable in column 3 on the plane defined by variables 1 and 2. To set the viewing
angle, use
set view 30,60,1,1
Other good possible choices are (0,30,1,1) or (90,90,1,1).
set cntrp levels 50 sets number of contour levels.

(un) set con sets contours on bottom.
(un)set surf sets surface plot.

3. Shortcuts:
set da s 1 means set data style lines.

set au to go back to automatic ranging.

31.2 Graphics and Plotting Packages

1. SCI Run (downloadable from the web

2. Visbd
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31.3 Plotting Magic with SuperMongo

31.3.1 Colors

The default colors in are: white, black, red, green, blue, cyan, magenta, yellow. Here are a few commands for defining
some additional colors:
#DEFINE NEW COLORS

# Brown

CTYPE = CTYPE() concat 139 + 256%(69 + 256%19)
CTYPE = CTYPE(STRING) concat ’brown’

# Orange

CTYPE = CTYPE() concat 255 + 256%(165 + 256%0)
CTYPE = CTYPE(STRING) concat ’orange’

# Purple

CTYPE = CTYPE() concat 160 + 256%(32 + 256%240)
CTYPE = CTYPE(STRING) concat ’purple’

# Pink

CTYPE = CTYPE() concat 255 + 256%(20 + 256%147)
CTYPE = CTYPE(STRING) concat ’pink’
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Chapter 32

Proposed GS2 Runs

32.1 Grand Solar Wind Runs

Here we want to model the solar wind from the Collisionless MHD Regime (k) p; < 1) through the Transition Regime
(kipi; ~ 1) through the Kinetic Alfven Wave Regime (k;p; > 1 and k; p. < 1) to the Electron Dissipation Regime
(kipe ~1). We choose 8; =1 and T;/T. = 3.

1. Collsionless MHD Regime 0.08 < k p; < 1.04
2. Transition Regime 0.4 < k; p; < 4.0

3. Kinetic Alfven Wave Regime 4.0 < &k, p; < 40
4. Electron Dissipation Regime 40 < k1 p; < 400

5. Collisional Transition Regime 0.4 < k, p; < 5.2

32.2 Black Hole Accretion/Transition Regime

Here we want to study high §;, two temperature T;/T. = 100 turbulence to understand how much of the turbulent
energy is deposited in ions as opposed to electrons as a possible explanation for underluminous super-massive black hole

accretion disks.

1. Electron Energy vs. Beta: Plot 6. vs. 8; to see how the ratio P;/P. changes with parameters.

32.3 Effect of Driving Different Modes

1. How different are the dynamics and energetics when modes are driven in both directions as opposed to just one

direction?

2. How is this related to imbalanced cascades (lithwick and Goldreich)?
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32.4 Driving Amplitude Scan

1. KAW regime.
2. Investigate the transition from weak to strong turbulence in the various regimes
3. Develop a scaling law for the transition from weak to strong turbulence

4. What happens when you overdrive?

32.5 Driving at High Wavenumbers

1. Is there any evidence of an inverse cascade in either collisionless MHD, transition, or KAW regimes? Which fields
might show this?

2. Drive at high k).
3. Drive the box weakly to observe effects.

4. Look at the difference when drving with waves going in one or both directions.

32.6 Minor Ion Heating

Add in a third species with n = 1075 of the other species with a small ¢/m and look at its heating rates. Is this due

primarily to nonlinear phase mixing?
1. Do minority ion species with low g/m get preferentially heated through nonlinear phase mixing?
2. Third species: ¢ =2, m =12 and n = 107°.

3. Step 1: Do a linear run with and without the minority species. If you are not near k) p,, ~ 1, then the minority

ion m should be heated very little, the majority of heating going to protons or electrons.

4. Step 2: Perform a nonlinear run and look at the heating of the minority. The heavier ion, with a much larger

Pm > pi, should be strongly heated by the process of nonlinear phase mixing (responsible for the entropy cascade).

32.7 Nonlinear Transfer of Energy

Is there any evidence that energy can be transferred nonlocally in wavenumber space, particularly when p; is a special
scale in the problem?

1. Can we calculate the energy that is transferred from one wavenumber to another? Since interactions have at least
three waves, can you say from which mode energy came and to which it went?
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32.8 Slow Mode Damping

1. Put by hand a slow mode at longest wavelength in the box

2. Then put in into a fully turbulent box

32.9 Alfvén Wave Packet Collisions

1. Watch them not interact until they hit each other, then they scatter off of each other.

2. Can we do the same thing in the KAW regime?
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Appendix A

Useful Mathematics

A.1 Gamma Function Definitions

test
Integrations over v involve pairs of Bessel functions and can be written as modified Bessel functions. Three such
integrals arise in the calculation of the linear gyrokinetic dispersion relation; we label them T'g(a), T'1 (), and T'z(a).

These integrals are

*2v.d k
To(a) = / oL “Jg( lQ“)evi/v?h, = Ip(a)e™®,
0 Vth
% on dv, 202 Jo (BLre) gy (Beos) B
Ii(a) = / ——— o kavj( . )e L = [Iy(a) — L(a)]e™®,
0 Vth Vi ~a
002’ULd’UL41}4 Jl (kj‘w‘) ? 2 /.2
Mofe) = [ PRI SR e o), (A1)
0 Vin  Uip Q

ki p?

where Iy and I; are the modified Bessel functions, the argument is o = 5

In the large-scale limit k2 p? < 1, or a; < 1, we can expand the functions I'o(a), T'1(as), and Ta(a) as follows:
To(as) ~ 1 —ag, T1(as) =1 —3as/2, and Ty(as) ~ 2 — 3as.

A.2 Useful Manipulations and Properties

1. Ring Average Defintions
(a) Ring Average at constant guiding center R

\%

(a(r,v,t))r = % fd@a(R - S i,v7t) (A.2)
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(b) Ring Average at fixed position r
1 VXZ
(AR, v,t))r = Py ]{dGA(r + T,v,t) (A.3)
2. Demonstrate the property
/d3r<A>ra: /dBRA<a>R (A.4)

Here we take a function of position in space a(r,v,t)and a function of guiding center position A(R,v,t). The

Fourier decompositions of these functions are

a(r,v,t) Zakvt er (A.5)

and

AR, v,t) ZAkvt kR (A.6)

Performing ring averages on each of these to convert them to functions of the alternative spatial coordinates, we
have

{a(r,v,t))r = Z Jo (kJ'(;)J'> a (v, t)e’ R (A7)
k

k .
(AR, v, t))e = > Jo ( l&) Aw(v, t)ekr (A.8)
k
The left-hand side of (A.4) becomes

/d3rZJ (/um) DTS g (v, e T = 503 g (kJ_S;)J_> An(v, ) (V,t)/darei(k+k/).r

K/ k K
=3 FLULY AL (v, D)a (v, ) = W/ FLOLY 4 (v, t)at (v, 1) (A.9)
- 0 Q k\V, —-k\V, - 0 Q k\V, k\V, .
where we have used the properties
/ PreiEHEIR — 5k 1K), (A.10)
and the reality condition
a_x = ay. (A.11)

The right hand side can be handled in the same way to yield

kiv - kiv . ,
/ dngAk/ (v t)e™ RZJ < < L) (v,t>e“"”—ZZJo( lQl>Ak/(v,t)ak(v,t) / Preiteh) R

k Kk’

=3 (’“;L) A (v )a(v,t) = o (’“Q“) AL (v, t)ax (v, t) (A.12)
k k
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Since the reality condition means that quadratic functions must be real, we note that Ay (v,t)ay(v,t) = Ag(v, t)ax(v,t).

Thus, we have proven (A.4).

A.3 General Math

1. Vector integration by parts

of 0
3 L2 Ty ys Zf B f .
/d rA- 9L = AT AT+ AL /d ef A (A.13)
2. Vector Differential
0 9. 0. 0.
a_a—xx—i-a—yy—i— EZ—V (A.14)
A.4 Bessel Functions
1. One definition of the Bessel Function Jy (9.1.18) is
Jo(z) = L /% dfet* cos? (A.15)
0 o 2 0 '
2. Derivatives: (9.1.28)
dJ()(Z) -
= J1(2) (A.16)
3. Higher Order Forms: (9.1.21)
c—n 2
Jn(z) = Z—/ df cos(nf)e’= <os? (A.17)
2 0

4. The form of an Ascending Series expansion for the Bessel functions (9.1.10) is given by

00 k
LV (39)
v pu— —_ _— A-l
Tu(2) <2Z> £ BT (v + K+ 1) (A.18)
Thus for the zeroth Bessel Function
22 A
=1——+=—--- Al
Jo(2) 1 + o1 (A.19)

This can be used to find the small argument expansion for the Bessel Function.

5. The large argument expansion for the Bessel Function (9.2.1) is

T(2) =/ 2 {cos(z — )2 —m/4) + elfz\0(|z|—1)} (A.20)

w4

This tells us that for large 2
Jo(z) ~ O(l2] ™) (A.21)
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6. The modified Bessel function I,,(z) obeys the derivative relation (9.6.27)

dlo(2)
dz

= Il (Z)

7. The recurrence relation for modified Bessel functions (9.6.26) is

drl,(z)

v

S () - L)

dz

8. Ascending series form for modified Bessel functions (9.6.10) is

L(z) = @,;) R

9. From Watson, Basic Integrals of Bessel Functions,

(oo} —a?z2 1 e ) 2
/0 e In(px) I (qr)xdx = 53¢ (p*+4%)/(40%) (

A.5 Plasma Dispersion Function

1. Definition of the Plasma Dispersion Function Z

2. Another oft-used formula

3. And another handy formula,

+oo
€1+ £2(6)] = % / dt

4. Limits of the Plasma Dispersion Function (found on page 30 of the NRL Plasma Formulary)

(a) A power series representation of the plasma dispersion function for a small argument || < 1 is

Z(€) = iyme & —2¢ (1 -
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v+k+1)

2¢2
3

4¢4

+o0 —2
e
dt
00 t— 5
+oo —t?
—t
/ dt—C
oo —t
—thftz
E—t

8¢5

pq

2a2

R

)

(A.22)

(A.23)

(A.24)

(A.25)

(A.26)

(A.27)

(A.28)

(A.29)



(b) An asymptotic series representation of the plasma dispersion function for a large argument |£| > 1 is

2 1 1 3 15
where
0 y>|z|7!
o=¢ 1 |yl <=7t (A.31)
2 y<|z|™!
and £ =z + 1y.
5. Limits for £Z(&)
(a) £€>1
€Z2(¢) ~ iv/meoe s — 1+ 2—22 (A.32)
(b) ¢x1
€2(6) = ive -2 + 2 (A.33)
A.6 Poisson Bracket Math
1. Definitions
ou ov  OJudv Oudv
2.
[u,u] =0 (A.35)
3.
u2
ufu,v] = |:?,’U:| (A.36)
4. For periodic boundary conditions,
/d3r[u,v] =0 (A.37)

A.7 Useful Integrals

These formulas have been extracted from a number of references for mathematics [Abramowitz and Stegun, 1972, Dwight, 1961,
Gradshteyn and Ryzhik, 1965, Prudnikov et al., 1986a, Prudnikov et al., 1986b, Spiegel, 1968].

Useful references for mathematical functions and integrals are [,
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/ e~ dy = l\/E (A.38)
0 2 a

= omo—an?, _ Llm+1)/2]

where I'(n + 1) = nl'(n) and T'(1/2) = /7.
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Appendix B

References

B.1 References for GS2

1. Bill Dorland’s Thesis

2. Mike Beer’s Ph.D. Thesis (online)

a) Energy transfer between k’s

(a)

(b) Found a conserved quantity

(c) Calculates sources, sinks, and transfers at each k
(

d) In a tokamak, all cascade is in kj, none in k.
(e) Near the end of his thesis

(f) Energy functional for GS2 may be h??

3. Phil Snyder’s Thesis

(a) At www.pppl.gov/ hammett/papers/ (may be w3.pppl.gov etc.)
(b) Nicholson, Plasma Theory (thin blue book). Great Landau Damping discussion.

4. John P. Boyd, Chebyshev and Fourier Spectral Methods, 2nd edition, Dover, New York 2001, 688 pp.

(a) THE book for Spectral Methods

(b) Free online from the author’s homepage.

5. Dale R. Durran, Numerical Methods for Wave Equations in Geophysical Fluid Dynamics, Springer, Berlin, 1998.
$79.95

(a) A great book with some advanced algorithms, better than the standard schemes.
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