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ABSTRACT OF THE DISSERTATION

Galactic Dynamics with Magnetic Fields

by

Gregory Gershom Howes

Doctor of Philosophy in Physics

University of California, Los Angeles, 2004

Professor Steven C. Cowley, Chair

Contributing to the effort to unravel the origin and understand the evolution

of magnetic fields in the universe, this dissertation focuses on the evolution of

the Galactic magnetic field through analytical and numerical approaches. The

current state of research into magnetism in the universe is reviewed, with partic-

ular emphasis on synthesizing a unified view of the various environments in which

magnetic fields have been observed. An analytical examination of the stability of

magnetic fields in a sheared flow is presented. Gradient Particle Magnetohydro-

dynamics is a new computational algorithm for MHD simulation developed here

with validation tests of the method to display its capabilities. Adaptive Particle

Refinement provides a general adaptive framework into which this new algorithm

can be fit, promising improved computational efficiency and better stability char-

acteristics. A model for numerical evolution of the magnetized Galactic disk is

described. Preliminary results of two-dimensional Galactic disk simulations are
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analyzed to demonstrate the potential of this new computational tool and lend

insight into the evolution of the Galactic magnetic field.
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Chapter 1

Introduction

1.1 Magnetic Fields in the Universe

The identification of a non-thermal radio emission from the interstellar medium

of the Milky Way as synchrotron radiation [4, 95, 169]—radiation emitted by rel-

ativistic electrons in a magnetic field [167]—marked the first chapter in the study

of astrophysical magnetic fields. Subsequent Faraday rotation measure studies of

the Milky Way [60] demonstrated that a magnetic field coherent on kiloparsec

scales permeates the disk of our Galaxy. The mechanism by which such a large-

scale field can be generated and maintained has provoked heated debate among

galactic astronomers. Current observations demonstrate magnetic fields ordered

on kiloparsec scales of microgauss strength both within galaxies and in clusters

of galaxies; a swarm of theories have been proposed to explain various observa-

tions. But a complete picture of the origin and evolution of magnetic fields in

the universe requires a synthesis of observations and concepts over all time and

space scales, from the Big Bang to the present day, from the immense voids of

intergalactic space to the subparsec scales of magnetized outflows from accretion
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disks.

Proposed theories for the origin and evolution of magnetic fields fall into four

general categories:

1. Cosmological Generation: Cosmological magnetogeneration before recombi-

nation

2. Protogalactic Dynamo: Dynamo amplification during structure formation

3. Galactic Dynamo: Galactic dynamo production of magnetic fields and ejec-

tion of fields into intergalactic regions

4. Compact Objects: Magnetization of large volumes of intergalactic space by

highly magnetized jet outflows from compact objects

Numerous variants on these theories exist, as well as the possibility that a com-

bination of these mechanisms may be operating.

For much of the universe the magnetohydrodynamic (MHD) equations provide

an accurate description of the dynamics of magnetic fields [171]. In the MHD

approximation, the magnetic field is evolved according to the induction equation

∂B

∂t
= ∇× (v × B) +

η

4π
∇2B, (1.1)

where η is the magnetic diffusivity, or molecular resistivity. The first term on

the right hand side is the inductive term, the second is the diffusive term. The

ionized interstellar medium is highly conductive so the diffusive term tends to be

important only for magnetic fields at small scales. A useful approximate formula
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for the magnetic diffusivity (in the range of conditions considered here) is given

by

η =
107 cm2/s

T 3/2
(1.2)

where the temperature T is given in eV. The plasma temperature in the interstellar

medium varies enormously but the hot component is typically T > 3 eV. We can

estimate the length scale below which resistivity will destroy the magnetic field

over the lifetime of the universe, τ ∼ 1010 years. This scale can be approximated

by

L ∼
√

ητ/4π ∼ 1011 cm ∼ 10−8 pc (1.3)

At scales much larger than this, the resistive term may be neglected and the

magnetic flux evolves as a frozen-in component to the interstellar medium [171].

For a frozen-in magnetic flux, one can derive a scaling relation between the mag-

netic field strength and the density of the interstellar medium given an isotropic

expansion or collapse when the field is too weak to influence the dynamics,

B ∝ ρ2/3. (1.4)

Likewise, the length scale of the magnetic field under the same conditions scales

with density as

lB ∝ ρ1/3. (1.5)

In order for the magnetic field to change in time by (1.1), the field must

initially be nonzero. If a magnetic field does not exist in the initial conditions of

the universe, the inclusion of non-MHD effects to generate a seed magnetic field

is required. Hence, theories typically require two separate processes to generate

3



the microgauss fields we observe today: the generation of an extremely weak seed

field followed by a more efficient dynamo process to amplify that seed field on

cosmologically short time scales to the presently observed magnitude. In most

cases, the dynamo must be responsible for a field strength amplification of 10–15

orders of magnitude.

The majority of mechanisms for the generation of seed magnetic fields are

based on a battery mechanism driven by non-parallel pressure and density gradi-

ents. Biermann [22] suggested keeping a pressure term in Ohm’s Law, a term that

is dropped in the MHD approximation, resulting in an extra term in the magnetic

induction equation

∂B

∂t
= ∇× (v ×B) +

η

4π
∇2B +

c∇pe ×∇ne

n2
ee

(1.6)

where pe is the electron pressure and ne is the electron number density. This extra

“battery” term in the induction equation generates magnetic field from zero-field

initial conditions. This battery effect is a natural consequence of the fact that

electrons and ions have the same charge but different mass. Any phenomenon

that drives a non-barotropic flow, pe 6= pe(ne), leads to magnetic field generation

through this battery effect. Although Biermann introduced the idea to explain the

generation of magnetic fields in stars, a number of other plausible astrophysical

causes for the battery production of magnetic fields have been proposed; most of

the seed field generation mechanisms discussed below differ in detail but are based

in general on this Biermann battery effect. Note also that the presence of two

gradients in the battery term means that the battery term becomes non-negligible

only at small scale. The seed fields thus generated are on the same scale as the

4



smallest structures in the environment; depending on the epoch of generation,

however, these “small” scales may correspond to large scales, perhaps megaparsec

scales, in the present day universe. A final point concerns the relative importance

of the two terms in (1.6) as the magnetic field evolves. Initially, for zero or small

magnetic field, the battery term dominates, typically effecting linear growth of

the magnetic field at small scales. But as this seed field grows, the magnitude

of the inductive term approaches that of the battery term. An estimate of the

magnetic field strength at which these two terms are equal is informative. For a

variation length scale L, the terms are approximately equal when

vB

L
∼ cpene

n2
eeL

2
. (1.7)

Substituting pe = nekTe and solving for B results in the expression

B ∼ ckTe

veL
. (1.8)

A typical temperature of the ionized component of the protogalactic medium is

T ∼ 3 eV. Assuming thermal equilibrium between the ions and electrons in the

protogalactic plasma Te ∼ Ti, estimating the velocity as the ion thermal velocity

vTi
= (kTi/mi)

1/2, and taking the range of fluctuation lengths to be L ∼ 1 pc to

1 kpc, the range of magnetic field strengths at which the two terms are equal is

B ∼ 10−19G to 10−16G. For field strengths much greater than this, the inductive

term dominates, yielding exponential growth of the magnetic field if there exists

any shear in the velocity field. This clarifies why a combination of two separate

mechanisms are needed to explain the presently observed magnetic fields.
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In a highly conducting medium, two types of turbulent dynamo are currently

known: the isotropic dynamo and the mean-field dynamo. The isotropic dynamo—

also known as the small-scale or fluctuation dynamo—operates in any homoge-

neous, isotropic turbulent flow by amplifying the magnetic energy by the random

stretching of field lines [12, 94, 111]. Although the isotropic dynamo is indeed a

dynamo by virtue of amplifying the magnetic energy at the expense of turbulent

kinetic energy, it does not amplify the mean magnetic field. Thus, the isotropic

dynamo produces a strong but highly tangled magnetic field; the bulk of the mag-

netic energy is concentrated at small scales [111, 123]. The growth rate of the

magnetic field by the isotropic dynamo is determined by the turnover time of

the smallest scale eddies in the turbulent cascade; these small eddies have short

turnover times so this dynamo amplifies fast. In contrast, the mean field dynamo

depends on anisotropy in the turbulence to achieve mean-field amplification via

the α–Ω dynamo [130, 145, 159]. The requisite anisotropy—typically provided by

rotation, stratification, shear, or strong magnetic fields [17]—leads to a non-zero

helicity in the turbulent velocity field. This helicity is what leads to an amplifi-

cation of the mean field. The mean-field dynamo has a growth rate typical of the

turnover rate of the larger scale eddies; the turnover time for these large eddies

is long, yielding a slow dynamo. Most studies of dynamo growth have concen-

trated on kinematic growth where the field is too weak to affect the flow. Both

the isotropic and the mean-field dynamos will figure prominently in the following

discussion of magnetic field generation and maintenance.

This discussion is organized on a principle similar to observational astronomy:

as astronomers peer more deeply into space, and hence further back in time, they

6



necessarily can only observe objects that increase in size. I follow the chronology

of the universe from distant times and immense spatial scales to the present day

and smaller, nearer objects. I begin with a discussion cosmological mechanisms

for magnetogenesis, move next to the immense voids of the intergalactic medium

between galaxy clusters, then focus on the galaxy clusters themselves, and finally

zoom into the magnetic fields of individual galaxies. I define now some terminology

to clarify the discussion:

Intergalactic medium (IGM) the medium filling the universe outside of galaxy

clusters

Intracluster Medium (ICM) the medium filling galaxy clusters outside of the

constituent galaxies

Interstellar Medium (ISM) the medium filling the galaxy

As an additional reference, a timeline of major events in the history of the universe

is presented in Figure 1.1. Magnetic field strengths and scale lengths quoted in

this discussion are understood to be values for the comoving magnetic field, the

values the field would have at the present time accounting for the expansion of the

universe. In discussions of the formation of galaxies, the time of the formation of

the galaxy is considered to be the point in time when the material of the galactic

disk first becomes virialized. Before that point, we refer to the clumping and

collapsing mass as a protogalaxy.
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Time

−43 −35
Inflation Begins

27
T=10   − 10   K

28
10   s

−33
Inflation Ends

Baryogenesis

T=10   K
13

Matter/Antimatter Anihilation0.0001 s

T=10   K
10

10
10

Weak Interaction Freezes out1 s

T=10  K
9Electron/Positron Anihilation 

and Formation of D and He
100 s

1 month CMB Blackbody Spectrum fixed

Energy Densities
56,000 y T=9000 KEquivalence of Matter and Radiation

1000380,000 y T=3000 KRecombination

First Stars Form, Reionization Begins18100−200 My

6 Reionization Complete

First Supernovae

Galaxies Form5

Solar System and Sun Form9.1 Gy

Present Day013.7 Gy T=2.725 K

Clusters of Galaxies Form

Big Bang0 8

Cosmological Timeline
Redshift Event

10    − 10   s

Figure 1.1: Cosmological timeline of of significant events in the history of the
universe [191].
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1.2 Magnetic Fields in the Early Universe

In this section, evidence for cosmological magnetogenesis is reviewed. Proposed

mechanisms include the possibility that magnetic fields existed in the initial con-

ditions, could be produced through some quantum gravitational mechanism, arose

by battery action driven by plasma vortical motion during the radiation era, were

generated in a quark-hadron phase transition or in an electroweak phase transi-

tion, were created through helicity in the electroweak baryogenesis, came about

during inflation, or were amplified by vorticity generated by the movement of

cosmic strings through the IGM. Grasso and Rubinstein [80] provide a thorough

review of many of these particle-physics inspired mechanisms to produce mag-

netic fields. All of these theories fall within the first category of magnetogenesis

models. Magnetic fields produced by any of these processes, however, may not

have survived on relevant scales through the radiation era; magnetic and photon

diffusion may destroy these fields on comoving scales less than a few megaparsecs

[117, 14].

But whether any of these processes created a significant field by the time of re-

combination is constrained by observations of the Cosmic Microwave Background

(CMB) radiation. The observed isotropy of this radiation suggests an upper limit

for the field at recombination of a few times 10−9 G [2, 11, 180, 53]. This limit is

not a strict constraint on a cosmological magnetic field; isotropic compression of a

field at this magnitude would yield microgauss strength fields at galactic densities.

The next generation of CMB radiation measurements promise the exciting possi-

bility of a direct determination of the magnetic fields at recombination through
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an examination of Faraday rotation in the polarization of the CMB [101]. These

more sensitive measurements are needed to determine or rule out a cosmological

origin for magnetic fields in the universe.

1.3 Intergalactic Magnetic Fields

Perhaps one of the most important unanswered questions in the study of as-

trophysical magnetic fields is whether the intergalactic voids are permeated by

magnetic fields. The discovery of a pervasive magnetic field in the IGM would

provide strong evidence that magnetic field strengths had reached a dynamically

significant level before the formation of the first galaxies [195]. Indeed, if these

voids have been untouched by structure formation they provide a relic of the pre-

recombination plasma and field. A direct measurement of the IGM field, however,

has not yet been accomplished; only upper limits for the IGM field have been

established. Null results from Faraday rotation measure (RM) studies of dis-

tant quasars constrain the magnitude of a cosmologically aligned magnetic field

to BIGM < 10−11 G. If the analysis posits not a cosmological field but a field

with a reversal scale of about 1 Mpc, the constraint is eased to allow a field of

BIGM < 10−9 G [104, 109]. Unfortunately, because of the need for independent

estimates for the electron column density and magnetic field reversal scale in the

IGM, only model-dependent upper bounds can be derived from these extragalactic

measurements of RM [80].

The high conductivity of the IGM means that magnetic flux and magnetic

helicity are nearly conserved during the evolution of the universe [80, 43]. This
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approximate conservation means that a large-scale magnetic field generated during

a cosmologically early epoch would persist throughout the age of the universe and

would likely influence structure formation at all scales, from cluster to galaxy to

star formation.

One end of the spectrum of thoughts on the magnetic history of the universe

suggests that all structure formation occurred in a highly magnetized environ-

ment (this corresponds to the first or possibly the second general categories of

magnetogenesis theories). A useful yardstick in evaluating the magnetic field in

the IGM is to estimate the magnitude of BIGM necessary to produce the observed

fields in the ISM of galaxies purely through isotropic compression. Given a den-

sity ratio to a galaxy of ρIGM/ρISM ∼ 10−6 and a galactic magnetic field strength

of BISM = 10−6 G, then using (1.4) we require BIGM = 10−10 G. These values

coincide roughly with the model-dependent upper bounds currently available from

observations; the next generation of more sensitive measurements of the magnetic

field in the IGM will undoubtedly impact evaluations of the four categories of mod-

els. A field strength of a microgauss or stronger would influence the formation of

the galactic disk. Since a field of BIGM = 10−10 G would yield a microgauss field

upon compression to galactic densities, the existence of a significant IGM field

will have profound implications for galaxy formation.
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1.4 Creating Magnetic Fields During Large Scale

Structure Formation

If no magnetic fields existed after recombination, the creation of a seed magnetic

field can be accomplished by several mechanisms during structure formation. The

anisotropies evident in the CMB radiation reveal density fluctuations present at

recombination that seeded the formation of structure in the universe through grav-

itational collapse. This collapse is likely to have driven both multiple shocks and

vortical Kolmogorov turbulence throughout the protogalactic medium. Kulsrud

et al. [112] argue that the gravitational collapse from structure formation, driven

by the small seed fluctuations in the density, leads to supersonic turbulence in the

protogalactic medium. Intersections of the resulting shocks can generate small

scale magnetic fields through battery action. Numerical simulations employing

a cosmological hydrodynamic code produced seed fields up to 10−21 G in magni-

tude by redshift z ∼ 2–3. Gnedin, Ferrara, and Zweibel [76] performed detailed

numerical simulations to verify a suggestion by Subramanian, Narasimha, and

Chitre [181] that the propagation of cosmological ionization fronts through den-

sity irregularities during reionization would be a fertile ground for the generation

of magnetic fields by the Biermann battery mechanism. Simulations found seed

field strengths up to 10−19 G, ordered on megaparsec scales, by redshift z ∼ 4.

Davies and Widrow [59] extended the work by Kulsrud et al. [112] to follow the

collapse of a protogalaxy, leading to coherent seed fields on the scale of the galaxy

of magnitude up to 10−17 G by the time the galactic disk has formed. Collectively

these arguments suggest that a minute seed field at least of order 10−21–10−18 G
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with a coherence on at least a scale of tens of kiloparsecs, existed by redshift

z ∼ 3–4.

The seed field created in the protogalactic plasma can also be amplified by the

vortical turbulence created by gravitational collapse. Kulsrud et al. [112] showed

in an analytic calculation that amplification by the isotropic dynamo, for which

the growth rate is on the order of the turn-around time for the smallest eddies in

the Kolmogorov turbulent cascade, is probably capable of bringing the magnetic

field energy to a saturated state in equipartition with the turbulent kinetic energy.

The largest eddy in the turbulence in this tenuous protogalactic medium has a size

of megaparsec scale; the mean free path has the scale of hundreds of kiloparsecs

[113]. A seed magnetic field, presumably produced either before recombination

or during structure formation, will be exponentially amplified by the isotropic

dynamo to saturation with the turbulence. The isotropic dynamo, however, is

known to amplify the magnetic energy primarily at small (resistive) scales [162].

It has been suggested that collisionless plasma processes can change the generation

of magnetic fields at scales below the mean free path [113], but more research is

needed before this can be determined. As the protogalactic medium cools, the

mean free path decreases, leading to the generation of fields on smaller and smaller

scales.

The generation of magnetic fields by the isotropic dynamo during structure

formation in the universe depends heavily on the details of the structure formation

model. The range of scales of the turbulent energy spectrum in the protogalactic

IGM, the robustness of incompressible Kolmogorov-like turbulence during the

extremely compressible gravitational collapse of structure formation, the length
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of time during which this turbulence persists, and the effectiveness of collisionless

plasma processes in inhibiting small-scale magnetic field production are all highly

uncertain. This second category of magnetogenesis model clearly merits further

investigation. Key observations that would help clarify the issues are:

1. More sensitive observations of the IGM magnetic field. Fields of magnitude

10−10 G or greater would be significant.

2. Measurements of fields in objects at redshifts of z ∼ 5.

3. Measurements of Faraday rotation in the polarization of the CMB to detect

fields of magnitude 10−10 G or greater.

1.5 Cluster Magnetic Fields

Observations of magnetic fields in galaxy clusters consistently find magnitudes

on the order of 1–10 µG and coherence lengths on the order of 10 kpc; these

magnetic fields are seen to extend out to at least 0.5 Mpc from the cluster cores

[43]. Cooling flow clusters yield local values of the magnetic field up to 10–40 µG

[105]. The spatial distribution of RM observations of the Hydra A cluster implies

a 6 µG magnetic field coherent on a scale of 100 kpc; the total strength appears

to be about 30 µG coherent on scales of 4 kpc [182]. Comparison of hard X-

ray emission interpreted as inverse Compton scattering and synchrotron radiation

provides evidence against the existence of significantly stronger cluster magnetic

fields on scales below the resolution of RM observations [43].
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The evidence of ubiquitous, microgauss strength magnetic fields in galaxy

clusters raises the key question: where did they come from? More specifically,

there are three possible origins of cluster fields: the first is that fields existed prior

to cluster formation and were frozen into the cluster, the second that they were

generated by dynamo processes in the ICM itself, the third that these fields were

ejected from galaxies or compact objects into the cluster medium.

1.5.1 Evidence Against a Pre-Cluster Origin for Magnetic
Field

If the observed cluster magnetic fields existed before the formation of the cluster,

we can estimate the strength of the IGM field necessary to explain the field in the

ICM. Assuming the magnetic field is frozen-in to the IGM and that the collapse

occurs isotropically, (1.4) gives the relation between the magnitude of the field and

the medium mass density. The ratio of the mass densities is ρIGM/ρICM ∼ 10−3,

so for a cluster field strength of BICM ∼ 10−6 G, this yields an intergalactic field of

BIGM ∼ 10−8 G. Constraints on the magnetic field at recombination suggest that

the present day field from a cosmological source could be no greater than a few

times 10−9 G. Additionally, the observations discussed in Section 1.4 exclude an

intergalactic field of BIGM > 10−9 G, although observational constraints on IGM

fields are rather weak. Hence, it appears that the present magnitude of magnetic

fields in galaxy clusters is difficult to explain by the cosmological mechanisms of

category one.
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1.5.2 Evidence for and against Dynamos in Cluster Plas-
mas

The second possibility is that the ICM magnetic fields are generated within the

ICM itself through some dynamo process. Without strong rotation or another

source of anisotropy in the cluster dynamics, the amplification of this field must

be due to the isotropic turbulent dynamo. This dynamo could have been driven

by turbulence excited during the formation of the cluster. Before virialization

of the cluster, ample gravitational binding energy is released during the collapse

of the cluster to fuel the isotropic dynamo. The cluster fields could have been

amplified from an existing field to the present levels; as the gravitational collapse

halted and ceased to drive turbulence, the isotropic dynamo could have shut off.

The turbulence in clusters now is believed to be driven by the motion of

galaxies through the ICM; the observed velocity dispersion is σ ∼ 103 km/s

[179, 8]. To estimate the volume filling fraction of the turbulence in the clus-

ter, we compare the total cluster volume to the volume stirred up by all of the

cluster galaxies. Using the estimated values given in Table 1.1, the volume of

the cluster is Vc ∼ l3c ∼ 3.4 × 109 kpc−3. We approximate the volume stirred

by an individual galaxy by Vg ∼ 5l3g ∼ 4 × 104 kpc−3, so the total turbulent

volume is Vt ∼ ngVg ∼ 4 × 107 kpc−3, or about 1% of the total cluster volume.

The time for the galaxies to sweep through the entire volume of the cluster is

given by τ ∼ Vc/(5l2gvgng) ∼ 109 years, or about 10% of the lifetime of the clus-

ter. The total magnetic energy contained in the ICM magnetic field is given by

EB ∼ VcB
2
ICM/(8π) ∼ 9.1×1061 ergs; the total kinetic energy in the observed ICM

turbulence is given by EK ∼ ngmHv2
gVt ∼ 8.6 × 1060 ergs. The energy released
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Cluster size lc 1.5 Mpc
Galaxy size lg 20 kpc
Number of galaxies Ng 1000
Velocity of galaxies vg 1000 km/s
ICM Magnetic Field BICM 5 µG
Cluster Number Density nc 10−3 cm−3

Cluster Age τc 1010 years

Table 1.1: Typical astrophysical quantities for clusters of galaxies.

during gravitational collapse however is of order 1062 − 1064 ergs. Thus on ener-

getic grounds, a turbulent dynamo driven by the flows during formation is highly

likely but dynamo action is probably currently inactive. It is not known if fields

created by this dynamo could unwind during turbulence free periods (resistive

decay is negligible). (See [160] for a different perspective on turbulent dynamos

in galaxy clusters.) But the isotropic dynamo generates a spectrum of magnetic

energy that peaks at small scales [111, 123, 162], so one must explain the apparent

lack of observed small-scale magnetic fields. One possible way of accomplishing

this is to begin with a magnetic field that is within a few orders of magnitude of

the observed upper bound of IGM fields, BIGM < 10−9G. The isotropic dynamo

driven by the cluster collapse would only need to amplify the field a few orders

of magnitude in the short time of the collapse; and, the strength of the initial

magnetic field could be enough to prevent tangling of the field at small scales.

1.5.3 Evidence for Fields Ejected Into Cluster Plasmas

The third possibility is that the magnetic fields in the ICM were generated in a

galactic dynamo and subsequently ejected into the ICM. The metallicity of the
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cluster plasma is estimated to be about 30% of the solar value, suggesting that

the material comprising the ICM has been polluted by material from galaxies

[3]. If this material was cycled through galaxies and compact objects, it could

certainly have brought the magnetic field with it. A low metallicity in the ICM

would have discounted an origin for the ICM fields by ejection from galaxies

or compact objects. However, both the magnitude and the coherence length of

cluster fields are difficult to explain from a galactic origin. Specifically given

a frozen-in field related to the density by (1.4) and a typical galactic number

density of nc ∼ 1 cm−3, fields from a galactic origin would have a magnitude

of BICM ∼ 10−8 G, two orders of magnitude smaller than the observed cluster

fields. Galactic fields are coherent on kiloparsec scales, so the expansion of the

magnetic field coherence length according to (1.5) could explain ICM fields on

scales of 10 kpc. But the observations of Hydra A, demonstrating tangled fields of

strength up to 30 µG and large-scale coherence up to 100 kpc [182], suggest that

a galactic origin for the ICM magnetic field is unlikely without some additional

dynamo amplification of the ejected field. One alternative viewpoint is that of the

modified galactic dynamo proposed by Parker [146], described later in Section 1.6,

whereby magnetic buoyancy causes loops of field to rise from the galactic disk; the

frozen-in ISM can drain down along the field line allowing the magnetic field to rise

further and to expand in an anisotropic manner that does not follow (1.4). Some

topological reconnection is then necessary to release this expanding magnetic field

loop from its tie-down points in the galactic disk. Again, the question of scale is

difficult to answer by this mechanism since these reconnected field loops would

likely form on subkiloparsec scales.
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The possibility that cluster magnetic fields were created in and ejected from

compact objects inside galaxies has received much recent attention. Active galac-

tic nuclei (AGN) and their associated extragalactic jet and radio lobe systems

have been proposed as possible sites for magnetogenesis. Observations of these

systems suggest that magnetic fields are critical to the operation of these systems

[42]. The magnetized accretion disk around the massive black hole at the center

of an AGN can tap the energy of the black hole to produce a highly collimated

outflow of magnetized plasma into the ICM [55]. Models suggest that Kelvin-

Helmholtz instabilities in a shear layer in such an astrophysical jet can yield fast

amplification of the magnetic field [192, 52]. The megaparsec scale magnetized

radio lobes in the rarefied IGM are estimated to be overpressured in their environ-

ment and to continue expanding even after the source galaxy has passed its active

phase; Kronberg et al. [107] claim that the subsequent expansion and diffusion can

magnetize large volumes of the IGM. They also argue that the magnetic energy

ejected from cluster embedded AGNs is sufficient to account for the observed ICM

fields beyond the inner core of the host cluster. Jet and radio lobe systems can

yield dynamo amplification of magnetic fields on time scales τ < 108 years; this

can explain observations of magnetic fields in high redshift quasars [105].

Starburst regions are another possible site for magnetic field generation from

compact objects. Observations of starburst galaxy M82 demonstrate significant

outflow from the starburst region as well as significant large-scale magnetic field

directed out of the galactic plane [105]. This outflow appears to be expelling both

ISM plasma as well as magnetic field at greater than the escape velocity for the

galaxy. The timescale of the α–Ω dynamo for the out-of-plane field component is
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on the order of 1010 years yet these outflows occur on a timescale of 108 years; the

expelled magnetic fields, therefore, must be produced by the outflow phenomenon.

A galactic scale version of the Biermann battery has been proposed to explain the

dynamo properties of the starburst outflow in M82 [118]. Another theory suggests

that a volcanic stage of starburst activity in dwarf galaxies at an early epoch could

seed the universe with strong magnetized outflowing winds [108].

An important issue in the discussion of cluster magnetic fields is what process

is responsible for limiting the cluster field strength. If galaxies or compact objects

are continually injecting magnetic energy into the ICM, what limits the field

strength to the order of magnitude of 1 − 10 µG that is broadly seen across

cluster observations? One possible explanation of the uniformity of observed field

strengths is that the magnetic field is limited by magnetic buoyancy; if the field

strength exceeds an equilibrium value, it rises buoyantly against the gravitational

forces of the cluster. This sets the plasma β = 4πp/B2 to be of order one and the

time to rise through the cluster to be of order 3 × 109 years. Stronger fields are

effectively boiled off into the IGM.

The arguments for a compact object origin for the cluster magnetic fields are

based on energetic grounds. The calculations and modeling of the process of

field ejection are crude and suspect. For example, it is not clear exactly how the

field “diffuses” into the IGM and ICM; it certainly cannot be resistive diffusion.

Another important point issue is the scale of the observed magnetic fields in the

ICM. A convincing argument for the production of a coherent field over 100 kpc

from compact objects has not been given.
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1.6 Galactic Magnetic Fields—Observations

Observations of magnetic fields in spiral galaxies show a uniform field component

of strength 3–4 µG ordered on kiloparsec scales [17, 195]. The ratio of uniform,

or large-scale, magnetic field strength to random, or small-scale, magnetic field

strength is typically around 0.5, but can drop to about 5% in regions of vigor-

ous star formation [195]. Since polarized synchrotron emission and Faraday RM

measurements depend differently on the magnetic field volume filling factor, the

near equivalence of coincident measurements by each method suggests that the

filling factor is not very small [17]. Magnetic field intensities typically increase

towards the galactic center and within spiral arms with a larger proportion of

magnetic energy at smaller scales in these regions. The field appears to be more

well-ordered in interarm regions and in the outer parts of the galactic disk [105].

Strength of the ISM magnetic fields appear to decline more slowly than disk mat-

ter density with galactocentric radius [137, 13]. Magnetic field strengths appear

to correlate with the neutral hydrogen column densities in galactic disks and in

molecular clouds [82].

Coherence scale measurements within the Milky Way are not consistent in

the estimation of the size and magnitude of the small-scale magnetic field. For

a total magnetic field given by B2
t = B2

u + B2
r , where Bu is the largest scale

component and Br is the magnitude on smaller scales, polarization measurements

of synchrotron radiation suggest B2
u ∼ 0.5B2

r [177] while pulsar RM data yield

B2
u ∼ 0.1B2

r [155, 140]. A variety of measurement techniques have found evidence

for fluctuation over distance scales from less than a parsec [129] to 50–100 pc
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[155, 140] to 1 kpc [93]. Each of these methods samples only a limited range of

fluctuation sizes, and each measurement finds a fluctuation at least as large as

the uniform field; in some cases it is possible the measurement samples a localized

fluctuation atypical of the Galactic disk as a whole. Howard and Kulsurd [88]

argue that the belief that the magnetic field in the galaxy does not reverse on

small scales is based on the analyses [155] of rotation measures of pulsars [81] that

employed only models with fields that changed on scales of the order of 1 kpc.

The dominant energy density is the kinetic energy of the galactic rotation in

balance with the gravitational potential energy of the galaxy. Below these, the

energy density of the magnetic field is typically in equipartition with the thermal

energy density, the cosmic ray energy density and the kinetic energy density of

the small-scale turbulent motions [105, 80]. In the Magellenic Clouds and M82,

however, the magnetic fields seem to be stronger than equipartition with the

turbulent kinetic energy [195].

The geometry of the galactic magnetic field is typically a global field orga-

nized on a grand scale, often similar to spiral structure of the ISM density. The

azimuthal structure is typically characterized as an Axisymmetric Spiral Structure

(ASS) or a Bisymmetric Spiral Structure (BSS); the vertical structure is charac-

terized as odd (dipolar) or even (quadrupolar). Observations show examples of

galaxies with field of each type and some galaxies show a mixed structure [17].

A Fourier decomposition of annular rings of the magnetic field are usually well

fit by a combination of only the m = 0 and m = 1 components, indicating a

genuine global structure [17]. The pitch angle of the magnetic field is typically

about p = −(10◦–35◦) inclined to the azimuth [17]. RM data give an indication of
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two reversals of azimuthal field direction within the solar orbit in the Milky Way

[154]; there is also evidence for two more reversals outside of the solar circle [54].

Magnetic field reversals have also been observed in M81 [103]. At Galactic Cen-

ter of the Milky Way, a strong vertical magnetic field of approximately 1 mG is

inferred from observations of nonthermal radio filaments [134]; this strong central

field is estimated to contain a significant fraction of the total vertical magnetic

flux in the Galaxy [48].

Some galaxies show an extensive radio halo indicating large scale heights for

the magnetic field [195]. The magnetoionic scale height of the Milky Way is

1.4 kpc [172] and the scale height of the hot gas is approximately 1 kpc [110, 156].

External edge-on galaxies show full synchrotron widths of 2–4 kpc [99, 90]. Larger

halos are typically observed in galaxies with increased star formation activity.

Halo magnetic fields are typically associated with outflowing winds driven by

supernovae and related stellar activity [87].

1.7 Galactic Magnetic Fields—Theory

Since discovery of the ordered kiloparsec-scale magnetic field in our Galaxy [60],

debate on the origin of the Galactic magnetic field has focused on whether a

microgauss field existed when the Galaxy was formed or whether the field was

generated by some dynamo process during the lifetime of the Galaxy. Recent

observations of cluster magnetic fields require a broader view of astrophysical

magnetism, but a review of the present view on the galactic dynamo is worthwhile.

Much has been written about the origin of Galactic magnetic fields—most of
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this literature has concentrated on the growth of magnetic field in the galactic

disk by dynamo action [145, 159, 17]. In many of these theories the galaxy is

assumed to have formed with nothing but a miniscule seed field. The subsequent

kinematic growth of field due to the α–Ω dynamo has been studied extensively

and related to observations. There has been relatively little consideration of the

possibility that the field that we observe is the relic of a significantly strong field

present at the time of galaxy formation [152, 88]. In this section we will consider

the theoretical arguments given for both possibilities.

The field is shaped by the turbulent flows and the galactic rotation. Let us

briefly consider the approximate sizes of the flows in our galaxy. The shearing

time of the galactic rotation is 2× 108 years and it has a kinetic energy density in

the ISM equivalent to a 300 µG field. Turbulence in the galaxy comes from many

sources but the dominant energy input in the disk is from supernova explosions—

this energy input is consistent with the observed turbulence levels. The explosions

produce flows of order 10 km s−1 with scale sizes of order 100 pc. The largest

turbulent eddies have energy density equivalent to a 3 µG field and a turnover

time of 107 years. The smallest turbulent eddies (assuming a Kolmogorov cascade

to small viscous scales) have a scale of order 0.1 pc in the warm ISM [123]. These

small eddies have an energy density equivalent to a 0.1 µG field and a turnover

time of 105 years.

Maron et al. [123] consider the evolution of a small seed field in the galactic

flows. There are three obvious stages:

• Stage 1. While |B| ≪ 0.1 µG the small viscous eddies amplify the field via
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an isotropic dynamo on a timescale of 105 years. The field is highly folded

on small sub-viscous scales.

• Stage 2. When 3 µG > |B| > 0.1 µG the supernova scale eddies amplify the

field via an isotropic dynamo on a timescale of 107 years. Simulations show

that the field remains on the sub-viscous scales and amplifies to equipartition

with the turbulence [162].

• Stage 3. When |B| ∼ 3 µG the disk geometry, galactic rotation, helicity

in the turbulent flows can play a role on the galactic rotation timescale

2× 108 years. On this timescale the field must be shaped into the observed

field.

Detailed numerical studies resolving the resistive dissipation scales with large

magnetic Prandtl number have indeed demonstrated that the magnetic energy

spectrum peaks in the subviscous range in Stages 1 and 2 [123, 162]. These

simulations did not involve any anisotropy, so without the resulting helicity in the

turbulence (or effects from disk geometry), no mean-field dynamo action occurs;

but the dynamics at the small scales, which are the critical dynamics underlying

the idea of turbulent diffusivity, should be unchanged in the absence of helical

forcing. There is no convincing evidence, however, that Stage 3 does produce the

observed field structure. Simulations of Stage 3 (even simplified ones) have not

been done. Some of the work described in this dissertation is the preparation of

simulation tools to perform simplified Stage 3 simulations.

The application of the kinematic mean-field dynamo to galactic disks (see for

example [159, 17]) is hard to justify. The timescale for this dynamo is long and
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as demonstrated above the field will have attained rough equipartition (the re-

sult of Stages 1 and 2) before the mean-field dynamo gets going. The kinematic

approximation is thus incorrect. However it is possible (although unproven) that

the mean-field dynamo approach is approximately correct for Stage 3. Indeed

this debate has a long contentious history. Piddington [152] first suggested that

at high magnetic Reynolds number the magnetic field generated at small scales

would be strong enough to suppress turbulent diffusion, a necessary ingredient

for the operation of the dynamo. Parker [144] countered this argument claiming

that reconnection would limit the growth of the magnetic field at small scales.

Subsequent numerical simulations called Parker’s claim into question by demon-

strating reduced turbulent diffusivity even at weak mean-field values [46]. Ar-

guments have been made that the growth of strong small-scale fields will halt

the dynamo before large-scale fields can develop [111, 113]. Several researchers

attempted to model this effect as quenching of the α-effect and of turbulent dif-

fusivity [46, 187, 135, 71, 29]. In these studies the effect of the small-scale field is

modelled by a dependence of α and turbulent resistivity on the mean field. Such

models implicitly assume that the small-scale field is somehow proportional to the

mean field. This is not true for example in Stages 1 and 2 where the small-scale

field, but not the mean field, grows on the fast timescales. In recognition of this

suppression of turbulent diffusivity, Parker [146] proposed a modified α–Ω dy-

namo model where inflation of field loops vertically out of the disk by cosmic ray

pressure and magnetic buoyancy could (he claimed) yield fast reconnection and

hence solve the diffusivity problem. More recent work has focused on dynamical

quenching models constructed to conserve magnetic helicity [71, 29]. The difficult
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problem of the quenching of the α-effect and turbulent diffusivity remains con-

troversial. It must be emphasized that it is not clear that the nonlinear Stage 3

dynamo can be modelled via some modified mean-field approach. There is clearly

a need for a detailed numerical study of Stage 3 dynamics.

Despite the above reservations about its applicability, the mean field α–Ω dy-

namo model has been applied to explain the observed magnetic fields in galaxies.

It has had some success in reproducing qualitative and some quantitative aspects

of observed galactic magnetic fields; here we present a broad overview of dynamo

model results to date. The fastest growing mode in the linear dynamo theory is

assumed to dominate; realistic dynamo models produce prominent modes of low

order, in agreement with the global design seen in observations, a result that is

not a priori obvious [105]. Dominant field geometries are typically axisymmet-

ric spiral structures with a vertical component that is even across the galactic

plane; the fields are predominantly azimuthal due to the strong shear caused by

differential rotation. The pitch angles of the magnetic field also lie within the

observed range. These large scale field structures are qualitatively consistent with

observations. The timescale for α–Ω dynamo amplification is τ ∼ 108 −109 years.

At small galactocentric radii, where differential rotation is weak, the α2 dynamo

[102] operates, leading to a predominantly dipolar field structure in the central

region [17, 195].

Observations of microgauss magnetic fields in high redshift objects cast doubt

on the ability of the “slow” galactic dynamo operating on the galactic rotation

timescale of 108 years to yield such large fields when the galaxies at that epoch

would only have rotated a few times [105]. Also, slowly rotating galaxies, such
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as the Large and Small Magellenic Clouds, demonstrate saturated fields of the

same magnitude as larger spiral galaxies, whereas the α–Ω dynamo would suggest

weaker equilibrium fields [120, 100, 98, 105]. As well, observations of M82 suggest

strong outflows of poloidal (vertical) magnetic field from the disk, occurring on

a timescale of 108 years; the timescale for replenishment of out-of-plane vertical

fields by the galactic dynamo is on the order of 1010 years, so it appears that the

strong outflows must include some mechanism for fast dynamo action to produce

these fields [105]. In addition, both M82 and the Magellenic Clouds appear to

contain fields stronger than equipartition with the turbulence, a result that the

galactic dynamo cannot accomplish [195]. The strong outflows observed in M82

may also disrupt the standard α–Ω dynamo, preventing the necessary recycling

of magnetic field to achieve amplification [105]. Finally, although the cosmic

ray energy density appears to be in equipartition with both the magnetic energy

density and the turbulent kinetic energy density, the effect of the cosmic rays are

neglected in the α–Ω dynamo formalism.

The alternative to a galactic dynamo that generates microgauss magnetic fields

within the lifetime of the galaxy is that such a strong field already existed at the

formation of the galaxy (regardless of its origin). Such a strong field would have

certainly affected the formation of the galactic disk. Therefore, it is useful to ex-

amine the consequences of a previously existing field. As well, it is not inconsistent

with observation that galaxies have evolved in a magnetized environment of mi-

crogauss strength over most of cosmic lookback time [105]. In this case, resistivity

is negligible and the field evolves through advective motions in the ISM.
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If a significant large-scale magnetic field exists at the point where the galac-

tic disk has formed, most configurations of the initial field will be wrapped into

a bisymmetric spiral by the differential rotation in the radial direction with all

components displaying an even symmetry about the galactic plane; if the field

is initially nearly vertical, differential rotation in the vertical direction will cause

the azimuthal field to become an odd function in the vertical direction [194]. The

magnitude of the azimuthal component increases linearly with time while the ra-

dial distance between reversals decreases as t−1. The number of reversals observed

in the Galaxy is about one tenth of the number expected under this scenario. Ver-

tical transport of the field, however, can reduce the number of expected reversals

by several processes: a galactic fountain can produce localized hot upflow [168]

and cool downflow [36]; also, ambipolar diffusion may cause the magnetic field

(frozen-in to the ionized component of the ISM) to drift with respect to the neu-

trals [88] along the magnetic pressure gradient vertically away from the galactic

plane [145]. Turbulence in the ISM is not an important ingredient in this model,

so the apparent equipartition of magnetic energy with turbulent kinetic energy

appears to be unexplained. However one possibility is that the magnetic field may

rise through a magnetic buoyancy instability [145] when the total field strength

becomes too large [197]. Indeed such buoyant instabilities arise when the field

reaches the observed level where the plasma β is of order one. Since the ISM

heating and the turbulence are fed by supernova explosions it is not surprising

that the thermal energy density of the plasma and energy density of the turbu-

lence is similar. Thus the equipartition of the magnetic energy with the turbulent

kinetic energy can be explained.
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Howard and Kulsrud [88] performed a more careful study of the existing field

hypothesis to arrive at a more refined model of the field evolution. For a magnetic

field threading vertically through the disk, stretching of the field by the galactic

differential rotation is limited by magnetic buoyancy and ambipolar diffusion in

the vertical direction; both forces tend to tilt the line towards vertical when the

field becomes strong. This tilting of the magnetic field out of the plane of the disk

reduces the horizontal length of the field in the disk (decreasing both the radial and

azimuthal components). The amplification of the field decreases gradually since

the radial extent of the field line is reduced. The resulting magnetic structure is

primarily azimuthal, but its direction reverses rapidly with radius on a scale of

about 100 pc and it slowly decays as the amplification decreases. If the strength

of the initial field varies across the galactic disk, the regions of stronger field will

dominate, yielding a net Faraday RM when viewed at scales much greater than

the reversal scale; additionally, at these scales the field would appear to have an

axisymmetric spiral structure. Parker objected that a primordial field would be

expelled from the disk through flux expulsion [130] either by ambipolar diffusion

[142] or by turbulent diffusion [144, 143]. These objections are incorrect since the

vertical field threading the galactic disk cannot be expelled from the disk without

unphysical radial motions outward [88].

Regardless of some of the finer details above, it is conclusive that if the mag-

netic field lines are frozen into the plasma component of the ISM, the field lines

must wrap up tightly, reversing direction on a short radial scale. Beck [17] claimed

that this argued for the existence of an effective turbulent diffusion in the ISM,
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for without it the field would wind up so tightly that it would resemble no ob-

served galaxy. But Howard and Kulsrud [88] countered that this conclusion is

not necessarily at odds with observational data, only that an assumed coherence

scale of about 1 kpc has generally been used to analyze Faraday RM data. One

consequence of a rapidly reversing field would be occasional large fluctuations in

the RM data but little Faraday depolarization of the background radio emission.

The widely held belief that the geometrical structure of galactic magnetic

field can distinguish between an existing magnetic field and a dynamo generated

magnetic field [175] is found to be false in detailed studies of dynamo theory

and existing field theory: appropriate tweaks of dynamo models and quenching

prescriptions have produced BSS fields [16], while the appearance of an ASS field

may indeed be created by an existing field [88]. The symmetry of the vertical

field may be more useful in distinguishing the field origins, but the much smaller

magnitude of the vertical component of the field makes conclusive observations

elusive [195].

Both dynamo and existing field theories are somewhat incomplete. Although

it appears that the cosmic ray energy density, the magnetic energy density, and

the turbulent kinetic energy density are all in equipartition, standard mean field

dynamo theory neglects the effects of the cosmic rays, and existing magnetic field

theory generally neglects the effects of the turbulence in the ISM. Nor does dynamo

theory include any connection to the spiral arm structure of the ISM density; and,

the prediction of the behavior of a frozen-in field as it passes through the spiral

arm density wave, that the field will bend to be more parallel to the spiral arms,

has not been observed.
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One point of view from which to examine the problem of galactic magnetic

fields is to look for any evidence for or against field strength evolution in galaxies

since the time of galaxy formation [105]. The microgauss magnetic fields observed

in a number of high redshift objects suggests the possibility that galaxies formed

in an environment of microgauss fields. If the vertical flux inferred to exist at the

Galactic Center of the Milky Way [134] does indeed exist, the total vertical flux in

the disk—a conserved quantity in the absence of unphysical motions that remove

flux outward radially from the disk—points to an initial vertical field spread out

across the disk of strength of order 0.1 µG. If a field of 0.1 µG did exist at the

time of galaxy formation, this removes the necessity of the dynamo to explain

the microgauss fields in the Galaxy. And such a strong field certainly would have

influenced the formation of the galactic disk. Any model proposed to explain the

global geometry of the galactic magnetic field must necessarily be a global model.

For either a dynamo generated field or an existing field, it is clear that the global

geometry of the galactic disk and the boundary conditions of the magnetic field

play significant roles in determining the morphology of the large-scale magnetic

field.

Although the kiloparsec-scale magnetic fields in the galaxy originally stirred

the controversy about their origin, the field at much smaller scales may provide

important clues as to this origin. Both theories depend critically on the nature of

magnetic diffusion and reconnection in interstellar conditions [195]. The dynamo

requires destruction of the magnetic field at a rate which is virtually independent of

the ohmic resistivity [197]. One key observation is the pitch angle of the magnetic

field in galaxies. Because of the dominance of differential shearing in the flow
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of the ISM in the galaxy, any initial field will asymptote in time to a purely

azimuthal alignment unless diffusion allows the field to move relative to the flow. It

appears difficult to achieve a magnetic pitch angle of 10◦–20◦ in the face of strong

differential shearing without a magnetic diffusivity many orders of magnitude

greater than ohmic resistivity. And the effect of the vertical structure, including

vertical shear in the rotation, may have a significant impact on this issue.

Underlying this discussion of magnetic diffusion is the nature of the interaction

between the ISM and the magnetic field. The magnetic field is generally considered

to be frozen-in to the ISM because of the small molecular resistivity, and due to

limited numerical resolution, the ISM is often modeled simply as a homogeneous

fluid with averaged properties. The ISM is, however, an extremely heterogeneous

fluid with a vast range of temperatures and densities. The key to this problem of

diffusion may lie in the complex interaction of a magnetic field with such a varied

medium as the ISM. Clearly this problem cannot be solved without a detailed

analysis of the dynamics of field in the full galactic geometry.

1.8 General Discussion

Although much of the historical discussion about astrophysical magnetism has

focused on the production of kiloparsec-scale fields in galaxies, recent observations

of cluster fields suggest a more unified approach to the examination of magnetic

fields in the universe is appropriate. Although more than one mechanism may

indeed be involved in the generation of magnetic fields, a more likely and satisfying

conclusion would demonstrate that one mechanism is primarily responsible for the
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ubiquity of magnetic fields in the universe.

Adopting a more broad approach to examining magnetism in the universe

opens up the possibility of focusing on alternative issues that may provide new

insight into the problem. Two questions that one can ask about each of the four

categories of theories may lend some insight into the more subtle differences: by

what mechanism does the magnetic field strength saturate, and how does the

spectrum of magnetic energy behave at small scales?

Magnetic fields strengths in similar environments are reasonably uniform across

the spectrum of observations. The magnetic fields in galaxies and clusters are

likely to have reached equilibrium as the field amplification mechanism saturates

in competition with field destruction mechanisms; or perhaps the field amplifi-

cation mechanism has ceased and field destruction is negligible, leaving a steady

value for the field strength. Possible saturation mechanisms include the nonlinear

back reaction of a strong magnetic field on the turbulent velocity spectrum, mag-

netic diffusivity balancing amplification mechanisms, or magnetic buoyancy and

ambipolar diffusion allowing strong fields to float away from the galactic plane or

out of a galaxy cluster. Each theory, even a cosmological or protogalactic mecha-

nism, must determine some field limiting mechanism to balance the amplification

of magnetic field through the strong shear of the differential rotation in galaxies.

The current controversy surrounding quenching mechanisms for the α-effect and

turbulent diffusivity testifies to the importance of the saturation mechanism.

Another critical issue which may distinguish theories is the production, behav-

ior, and destruction of small-scale magnetic fields. There is a surprising lack of
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observational evidence for significant magnetic energy at small scales. Although

some observational techniques are insensitive to small-scale fields, other methods

capable of detecting magnetic energy at small scales see little evidence of it. It

appears that many mechanisms exist, such as the isotropic dynamo, that copi-

ously produce tangled magnetic fields, so to explain the lack of magnetic energy

at these scales is a challenge for each theory. It may be critical to find a satu-

ration mechanism that preferentially destroys small-scale magnetic fields. Some

possible ways of preventing the tangling of magnetic fields to small scales include

anamolously large magnetic diffusivity and initializing with a strong field that will

resist bending into small structures.

Beyond evaluating all four categories of theories with a fresh perspective in

light of all of the observational data available, the only other way forward is

through new observations. A number of critical observations will hopefully be

possible in the next decade. More sensitive microwave background maps hope to

limit or detect the magnetic field strength at recombination, allowing a more cer-

tain judgment on the importance of cosmological mechanisms for field generation.

Also, a direct determination or stricter limit on the IGM field will shed light on

whether magnetic fields are truly ubiquitous throughout all regions of the uni-

verse or have more likely been produced in the more dense structures that formed

clusters and galaxies. More observations of galactic and cluster fields at higher

resolutions will provide better statistics and perhaps identify trends in magnetic

field evolution that will discriminate between the various categories of magnetic

field generation mechanisms.
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1.9 Aims of this Dissertation

As part of the effort to understand the origin and evolution of magnetic fields

in the universe, this dissertation focuses on the evolution of magnetic fields in

the Galaxy. The evolution of the magnetic field in a galactic disk is undoubtedly

strongly influenced by the geometry and boundary conditions of the disk. There-

fore, a global simulation of the galactic disk is likely to provide the most insight

into the magnetic field evolution over the lifetime of the disk. High resolution

is critical to realistically capturing the high-aspect ratio of the galactic disk in

a realistic model. The computational cost of these global simulations will neces-

sarily push the boundaries of current facilities, so efficient algorithms should be

chosen to maximize the return from numerical models. For this reason, the new

computational algorithm of Gradient Particle Magnetohydrodynamics (GPM) is

developed here to perform these global simulations. This Lagrangian method

for MHD simulation boasts a natural resolution enhancement in regions of com-

pression, yielding better resolution in the higher density central regions of most

interest. To maximize the efficiency of the algorithm and to attain better com-

putational stability, an adaptive framework called Adaptive Particle Refinement

(APR) is developed to eliminate wasted computational effort in quiescent regions

and to improve resolution in active regions. A Galactic model of the Milky Way is

constructed as a basis for simulations of the magnetic evolution of the Galaxy in

both two and three dimensions.The new GPM algorithm is then used to perform

preliminary 2-D MHD Galactic disk simulations to examine the evolution of an

existing field under realistic dynamical motion. This dissertation represents the
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beginning of a simulation program that to be continued in future work.

The key achievements of this dissertation are:

• The analysis of buoyancy instabilities in shear flows

• The development and validation of a new MHD simulation algorithm

• The construction of a general adaptive framework for the new algorithm to

maximize use of computational resources

• The analysis of preliminary, 2-D MHD Galactic disk simulations

In Chapter 2, the stability of magnetic fields in shear flows is examined an-

alytically and a stability diagram is determined for the growth rate of buoyant

instabilities in the Boussinesq limit vs. the Alfvén Mach number. Chapter 3

describes the new GPM algorithm for Lagrangian particle MHD simulation. Vali-

dation tests for the GPM algorithm are presented in Chapter 4. In Chapter 5, the

Adaptive Particle Refinement (APR) framework for adaptive GPM simulations is

laid out and discussed. The Galactic model used for simulations is presented in

Chapter 6. Finally, results of Galactic simulations are presented in Chapter 7 and

the achievements of this dissertation are summarized in Chapter 8.

37



Chapter 2

Local Buoyant Instability of
Magnetized Shear Flows

2.1 Introduction

The stability of a fluid against convective motion has been extensively studied

over the past century. Pioneering examinations of the stability of unmagnetized

and magnetized compressible fluids have been conducted by Schwarzschild [166],

Newcomb [139], and Parker [145]. These papers have had a profound influence on

diverse subjects from the dynamics of astrophysical objects to the confinement of

plasma in a fusion device. Here we examine the effects of shear in the magnetic

field and of an applied shear plasma flow on stability against gravitational inter-

change. These effects change the stability properties and our results are important

for many applications.

The most general investigation of an astrophysical stability problem should

include the effects of differential rotation (including both shear flow and the Cori-

olis force), gravity, gradients in the equilibrium fluid quantities, and shear within

the magnetic field. The inclusion of magnetic shear precludes the possibility of
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solving the problem quickly by Fourier transformation; hence, most studies avoid

the mathematical complications of modeling a shear magnetic field by idealizing

to a parallel, but not necessarily straight, magnetic field. We choose to analyze a

more general case in which the magnetic field may have a component of shear. We

also include a linear shear flow to approximate the effects of differential rotation

and gravity to drive instability.

We neglect the Coriolis force in our stability analysis because the stability

boundary of the most unstable mode will be unaffected by rotation for most ge-

ometries of astrophysical interest. According to Newcomb [139], in a system with

a horizontal magnetic field, the most unstable modes have wavenumber k → ∞

in the direction perpendicular to the plane defined by the magnetic field and

gravity (this is the direction B̂ × ĝ). When there is shear in the magnetic field,

the analogous surface is the magnetic shear (constant y′) surface depicted in Fig-

ure 2.1. In the transformed coordinates described in Section 2.2.1 of the paper,

we Fourier transform in y′ such that all perturbed quantities vary as eiky′
and

take the limit that k ≫ 1. This selects the most unstable mode, retaining only

the terms necessary to describe this mode. For most geometries of astrophysical

interest, including galactic and accretion disks, the Coriolis term in the momen-

tum equation drops out to lowest order, a consequence of the fact that the most

unstable mode of the system occurs at the smallest allowable scale in the problem.

Although the Jeans’ instability is indeed stabilized by rotation [185, 77], Shu [170],

Zweibel [196], and Terquem [183] state that the stability threshold for the Parker

instability is not affected by rotation. This insensitivity to rotation occurs be-

cause the Coriolis force does not couple to the problem in the absence of fluid
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Figure 2.1: The geometry of the shear magnetic field as well as the applied shear
flow (shown as v0) is shown. The magnetic shear (constant y′) surface is repre-
sented by the magnetic field lines (solid lines) and the dashed lines.
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motions; the margin of stability is necessarily the limit that the velocity pertur-

bation δv → 0. The Coriolis force does reduce the growth rate of the Parker

instability in an unstable region of parameter space, but it cannot alter the sta-

bility boundary [170, 196, 183]. Although here we eliminate the Parker instability

through the Boussinesq approximation, the remaining entropy gradient driven

interchange-like modes have the same characteristic as the Parker modes: the

most unstable modes have a large wavenumber in the direction perpendicular to

the magnetic shear surface. Hence, it is not surprising that the stability threshold

is unaltered by rotation.

We find, however, that magnetic shear does alter the boundary of marginal

stability in parameter space. The stabilization gained by magnetic shear can

be understood by examining the characteristic twisting geometry of the unstable

mode. The geometry of the magnetic field line perturbation due to this instability

is sketched in Figure 2.2. An unstable entropy gradient drives an interchange

mode where dense fluid from x > 0 drops and light fluid from x < 0 rises. But,

in the ideal MHD approximation, the field lines are frozen to the fluid and may

not cross through each other. To facilitate interchange, a rising (or dropping)

section of field line must twist to become parallel to the magnetic field at that

height; effectively, the perturbed field line moves only along the magnetic shear

surface shown in Figure 2.1. In Figure 2.2, a section of the field line from x > 0

twists counter-clockwise as it falls and a section of the field line from x < 0

twists clockwise as it rises; this twist occurs about the point where the shear

field lines cross (z = 0 in this case). Twisting allows these sections to become

locally parallel, enabling interchange of the sections. Inclusion of a linear shear
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Figure 2.2: The characteristic geometry of the magnetic field line perturbation due
to the entropy gradient driven instability. Here we view Figure 2.1 from above (in
the −x̂ direction). The long-dashed magnetic field lines lie above the x = 0 plane,
the short-dashed field lines below. A section of field line from x > 0 must twist
counter-clockwise as it falls and a section from x < 0 must twist clockwise as it
rises; interchange can only occur if the two sections of magnetic field are locally
parallel.

flow simply causes this twisting mode to propagate with the intersection of the

field lines in the z direction. The energy consumed by work done against magnetic

tension in twisting the field lines is the root of the stabilization by magnetic shear.

The results of the model described here can help us understand qualitatively

the behavior in more complicated geometries. The localized nature of the insta-

bility inspires a WKB approach: the growth rate depends on the local value of

42



parameters and may change as those values vary in space. When there exists a

shear flow, the unstable mode travels with the intersection of shear field lines and

may move in and out of unstable regions, the disturbance growing or decaying

depending on the local conditions.

We construct a simple model to study the effects of magnetic shear and shear

flow on the stability properties of a magnetized plasma in a gravitational field. We

derive the equations which determine the behavior of this model in the Boussi-

nesq limit. The equations depend on two parameters, the plasma flow Alfvén

Mach number and the entropy gradient. We conduct a numerical study of the

normal modes of instability and summarize the behavior of the unstable modes

by a stability diagram. The stability diagram demonstrates three important char-

acteristics. First, the entropy gradient must exceed a threshold value for unstable

mode growth to occur. Therefore, the shear magnetic field can stabilize a nonzero

entropy gradient. Second, as expected, shear flow does act to suppress unstable

mode growth when the system is at a substantially unstable point in parameter

space. But, surprisingly, near marginal stability, shear flow actually enhances

the growth rates of the instability and also lowers the threshold entropy gradient

necessary for instability. The effect of magnetic shear—to stabilize the plasma

and increase the threshold entropy gradient—is diminished by the addition of

shear flow. The system can extract energy from the shear flow to further drive

the system to instability. Third, as the Alfvén Mach number approaches one,

the unstable growth rate is suppressed; the normal modes of the instability are

completely stabilized when the plasma flow exceeds the Alfvén speed. Here, the
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unstable region in space where a mode can grow moves faster than any perturba-

tion in the system; any disturbance will be swept downstream out of the unstable

region, leaving behind a stable plasma.

Analytical work helps us to understand the mechanisms responsible for these

characteristics. First, the stability criterion for the case without shear flow is

derived demonstrating that a shear magnetic field can support a positive entropy

gradient. Next, asymptotic solutions demonstrate analytically that stabilization

occurs as the Alfvén Mach number approaches one, yet the threshold entropy gra-

dient for instability goes to zero in the same limit. In addition, a complete WKB

solution in the limit of a large growth rate demonstrates both the stabilization

by flow at large growth rates and destabilization near marginal stability. Then,

a bounded straight field case is solved exactly to show that the lowering of the

threshold entropy gradient with increased shear flow is a characteristic of plasma

flow along the field lines and not dependent on the magnetic shear in the general

model. Finally, energy conservation relations are derived and analyzed.

In Section 2.2, we describe the model under consideration and derive the gov-

erning system of equations. The numerical stability analysis for the general model

and the stability diagram are presented in Section 2.3.1. Section 2.3.2 contains

the analytical results illuminating the characteristics of the stability diagram. We

describe an exactly soluble, bounded, straight-field case in Section 2.3.3. Finally,

in Section 2.4, the implications of this work on galactic physics, accretion disk

physics, solar physics, and tokamak confinement are discussed.
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2.2 Derivation of Equations

In this section, we derive the equations for linear perturbations of a vertically

stratified atmosphere with shear magnetic field and shear flow in the high-β, or

Boussinesq, limit. We motivate and apply a coordinate transformation which casts

the problem in its most natural form. Investigating the limit of the most unsta-

ble modes, we derive a system of three coupled first-order ordinary differential

equations which capture the lowest order behavior of the model.

2.2.1 Setup and Coordinate Transformation

Consider a stationary state for an ideal plasma with mass density ρ(x) and thermal

pressure p(x) and an embedded horizontal shear magnetic field given by

B0 = B0

(

ẑ +
x

lB
ŷ
)

. (2.1)

We then impose a shear flow on this plasma given by

v0 = v0

x

lv
ŷ, (2.2)

and include gravitational acceleration in the vertical direction given by g = −g x̂.

Equilibrium force balance yields

∂

∂x

(

p +
B2

8π

)

= −gρ. (2.3)

Figure 2.1 shows the geometry of this shear magnetic field as well as the imposed

shear flow on the system.

The instabilities of this plasma are expected to have a short perpendicular

wavelength and a long parallel wavelength (with respect to the magnetic field) so
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as to maximize motion in the vertical direction and minimize field line bending

[139]. Short perpendicular wavelengths, however, are rapidly sheared apart by the

perpendicular shear flow. We would thus like to transform to a coordinate system

with two properties: first, that the flow is along the magnetic field lines; and, sec-

ond, that field lines are coordinate lines. The application of sheared coordinate

systems to simplify a problem of this nature is well documented. Roberts and

Taylor [158] employed a coordinate system in which the field lines are coincident

with the coordinate lines to describe the Rayleigh-Taylor instability of a fluid sup-

ported by a shear magnetic field; Goldreich and Lynden-Bell [78] used a shearing

coordinate system to attack the problem of local gravitational instabilities in a

system with shear flow arising from differential rotation.

We transform the shear velocity to a parallel velocity by transforming to a

frame moving in z

z′ = z + vf t. (2.4)

where vf = lB
lv

v0. In this transformed frame, the velocity becomes

v′ = vf + v0 = vf

(

ẑ +
x

lB
ŷ
)

,

i.e. parallel to B0. We construct field line coordinates by transforming the y

coordinate to

y′ = y − xz′

lB
. (2.5)

The x coordinate is left unchanged, x′ = x. It is easy to verify that x′ and y′ are

constant along field lines (B0 · ∇x ′ = B0 · ∇y ′ = 0 ) and that B = B0∇x ′ ×∇y ′.

The surfaces of constant y′ (magnetic shear surfaces) twist from vertical at z′ = 0

to almost horizontal as z′ → ±∞. This geometry is shown in Figure 2.1.
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At first, introducing the field line coordinates seems unhelpful since it intro-

duces explicit z′ dependence into the equations. The problem also has x depen-

dence that arises from the variation of B, p(x), and ρ(x). Indeed, one way to

tackle this problem is to Fourier transform in y and z and solve for the x depen-

dence. However, the lowest order solution in the twisting coordinate system is a

superposition of these Fourier modes, or, complementarily, a Fourier solution can

be constructed by a superposition of these twisting modes [158]. We summarize

the relationship between these representations in Appendix A.1. We consider the

solutions in the twisting coordinates to be more physically relevant since they are

localized in z′.

2.2.2 Application of Ideal MHD

The basic equations of ideal MHD include the momentum equation written in

terms of the gradient of total pressure (thermal and magnetic), the magnetic

tension force, and the gravitational force,

ρ
Dv

Dt
= −∇

(

p +
B2

8π

)

+
B · ∇B

4π
+ ρg, (2.6)

the induction equation in the limit of zero resistivity,

∂B

∂t
= ∇× (v × B), (2.7)

the continuity equation,

Dρ

Dt
= −ρ∇ · v, (2.8)

and the adiabatic equation of state,

D

Dt

(

p

ρΓ

)

= 0. (2.9)
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Here D
Dt

= ∂
∂t

+ v · ∇ denotes the Lagrangian derivative, v represents the plasma

velocity, and Γ is the adiabatic index. These equations must be evolved subject

to the constraint that

∇ ·B = 0. (2.10)

Taking (2.6)-(2.9), linearized about the equilibrium ((2.1)–(2.3)), yields:

(

γ′ + vf
∂

∂z′

)

δv+δv·∇v0 = − 1

ρ0

∇
(

δp +
B0δB‖

4π

)

+
B0

4πρ0

∂δB

∂ z′
+

δB · ∇B0

4πρ0

−gδρx̂

ρ0

(2.11)
(

γ′ + vf
∂

∂z′

)

δB + δv · ∇B0 = B0

∂δv

∂z′
+ δB · ∇v0 − B0∇ · δv (2.12)

(

γ′ + vf
∂

∂z′

)

δρ = −δv · ∇ρ0 − ρ0∇ · δv (2.13)

(

γ′ + vf
∂

∂z′

)

δp = −δv · ∇p0 − Γp0∇ · δv, (2.14)

where we have taken all quantities to vary in time as eγ′t.

In a straight field [139] and a shear field [158] without flow, the most unsta-

ble perturbations are incompressible to lowest order and have a small horizontal

perpendicular wavelength. Such perturbations maximize vertical motion which

extracts energy from the gravitational potential energy and minimize horizon-

tal motions which extract no energy. To isolate these motions, we impose the

ordering

∂

∂y′ = ik ∼ O
(

ǫ−1

lB

)

(2.15)

∂

∂x′ ∼ O
(

ǫ−1/2

lB

)

(2.16)
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∂

∂z′
∼ O

(

1

lB

)

(2.17)

x′

lB
∼ O

(

ǫ1/2
)

. (2.18)

where ǫ = (klB)−1 ≪ 1 is the ordering parameter or our problem. Clearly, all

perturbed quantities vary as eiky′
. It is also convenient to define the vectors,

b =
B0

B0

(2.19)

e∧ = ∇y′ (2.20)

e⊥ =
∇y′ × B0

B0
. (2.21)

The perturbed plasma velocity and magnetic field are projected along these di-

rections, i.e.

δv = δv⊥e⊥ + δv∧e∧ + δv‖b

δB = δB⊥e⊥ + δB∧e∧ + δB‖b.

Note that the basis vectors e⊥, e∧, and b are neither unit vectors nor constant in

space—e.g., B0 · ∇e∧ = −B0

lB
x̂. We expand all perturbed quantities in powers of

ǫ1/2 and denote order as a superscript—for example, δv⊥ =
∑∞

n=0 δv
(n)
⊥ ǫn/2. The

ordered, perturbed quantities and operators are substituted into (2.11)–(2.14).

(2.12)–(2.14) at O(ǫ−1) and the e∧ projection of (2.12) yield

δv
(0)
∧ = δB

(0)
∧ = 0. (2.22)

Thus, the dominant motion is along the magnetic shear (constant y′) surfaces in

the e⊥ direction. (2.12)–(2.14) at O(ǫ−1/2) produce

∇ ·
(

δv
(0)
⊥ e⊥ + δv

(1)
∧ e∧

)

= 0. (2.23)
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Thus, the perpendicular motion is incompressible to lowest order. At O(ǫ−1), the

e∧ component of (2.11) gives

δp(0) +
B0δB

(0)
‖

4π
= 0. (2.24)

(2.24) expresses the fact that, on the time scales of interest, pressure balance

is achieved across the convective eddies (in the e∧ direction). In a subsidiary

expansion, we take the high-β, or Boussinesq, limit (β = 4πp0

B2 ). Thus, (2.24)

reduces to δp(0) = 0, and we find from (2.14) that

δv(0) · ∇p0 = −Γp0(∇ · δv)(0). (2.25)

At O(ǫ−1/2), the e∧ component of (2.11) yields δp(1) +
B0δB

(0)

‖

4π
= 0, or taking

the high-β limit, δp(1) = 0. The final stability equations are obtained from the

sum and difference of the e⊥ projections of (2.11) and (2.12) at O(1) and from

(2.13) using (2.25) to substitute for ∇·δv. After some tedious but straightforward

algebra, we obtain

−(1 − M)
dA+

dz
= −γA+ + (1 + M)

z

1 + z2
A− − s

(1 + z2)1/2
(2.26)

(1 + M)
dA−
dz

= −γA− − (1 − M)
z

1 + z2
A+ +

s

(1 + z2)1/2
(2.27)

M
ds

dz
= −γs − 1

2

A+ − A−
(1 + z2)1/2

s′0, (2.28)

where A+ and A− are the Elsässer variables defined by

A+ =
1

(1 + z2)1/2

(

δB⊥
B0

+
δv⊥
vA

)

(2.29)

A− =
1

(1 + z2)1/2

(

δB⊥
B0

− δv⊥
vA

)

(2.30)
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and the entropy is given by

s =
glB
v2

A

(

δρ

ρ0

)

. (2.31)

We have normalized so that z = z′/lB and γ = γ′lB/vA. (2.26)–(2.28) contain

two parameters: the Mach number of the plasma flow with respect to the Alfvén

speed (vA = B0

(4πρ)1/2 ),

M =
vf

vA
, (2.32)

and the entropy gradient,

s′0 =
gl2B
v2

A

(

ρ′
0

ρ0
− p′0

Γp0

)

, (2.33)

where the primes denote differentiation by x. With the boundary conditions that

A+ → 0, A− → 0, and s → 0 as | z |→ ±∞, (2.26)–(2.28) define an eigenvalue

problem for γ. Solution of the stability equations yields γ(M, s′0).

(2.26)–(2.28) have a simple physical interpretation. A+, the Alfvén wave going

in the negative z (upstream) direction, travels at the (normalized) speed 1 − M .

The A+ wave is coupled to the A− wave by magnetic and velocity shear (the A−

term in (2.26)). The A+ wave is driven by gravity via the s term in (2.26). A−,

the Alfvén wave going in the positive z (downstream) direction, travels at speed

1 + M , is coupled to A+, and is driven by s. The variable s is proportional to the

density or entropy perturbation and it is driven by both Alfvén waves, as seen in

(2.28).
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2.3 Stability Analysis

In this section, we discuss the unstable eigenvalues (Re γ > 0) and eigenfunctions

of (2.26)–(2.28). We have not examined the stable part of the spectrum in detail

although numerical results indicate a continuum along the imaginary γ axis. Two

properties of (2.26)–(2.28) show that it is sufficient to examine stability in the

region 0 ≤ M ≤ 1. First, note that γ(−M, s′0) = γ(M, s′0) since we can map

(2.26)–(2.28) onto themselves by the changes M → −M , A+ → A−, A− → A+,

z → −z, and s → s. Second, note that the three asymptotic solutions as |z| → ∞

are:

A+ ∼ e
γz

1−M s, A− ∼ O
(

1

z
e

γz
1−M

)

(2.34)

A− ∼ e
−γz
1+M s, A+ ∼ O

(

1

z
e

−γz
1+M

)

(2.35)

s ∼ e
−γz
M A+, A− ∼ O

(

1

z
e

−γz
M

)

. (2.36)

If M > 1, there are no acceptable (decaying) asymptotic solutions as z → −∞

for Re γ > 0. Thus, M > 1 has no unstable eigenmodes. Physically, this is

because all solutions, even the upstream propagating Alfvén wave A+, are swept

downstream.

Without flow, MHD stability equations are self-adjoint [21] and γ2 is real.

With flow, no such property is known and γ2 can be complex. However, in all

our solution methods, γ2 has been found to be real for this problem, although we

have not been able to prove that this is rigorously true. The discrete positive real

values for γ correspond to unstable growing modes, and the continuum along the

imaginary γ axis represents traveling Alfvén waves.
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In Section 2.3.1, we present the numerical solution of (2.26)–(2.28). Various an-

alytical limits that illuminate the numerical solutions are treated in Section 2.3.2.

An exactly soluble model with a straight magnetic field that demonstrates qual-

itatively similar behavior is presented in Section 2.3.3. Finally, in Section 2.3.4,

energy constraints on the instability are discussed.

2.3.1 Numerical Solutions

We looked for normal mode growth in the system defined by (2.26)–(2.28) using

three different numerical methods. We directly solved for the eigenvalues γ of this

system by matrix solution of the corresponding finite difference equations using the

commercial numerical routine package LAPACK. We also found the eigenvalues

of the equations to high precision using a 1-D shooting code in z driven by an

adaptive step-size, fourth order Runge-Kutta method with fifth order correction

(RK45). Finally, for (2.26)–(2.28) with γ replaced by ∂/∂t, an initial-value code

employing Barton’s method [47] for second order accuracy in time was written to

determine the fastest growing mode for any choice of parameters. Results from

all three codes were consistent.

A stability diagram of unstable normal-mode growth rates and stable regions

over the parameter space defined by M and s′0 is presented in Figure 2.3. As we

have already noted, no growing mode exists for M > 1. As well, it is obvious

that for the non-positive values of the entropy gradient, s′0 ≤ 0, there can be

no unstable mode growth since the atmosphere is stably or neutrally stratified;

this is demonstrated by the energy arguments presented in Section 2.3.4. Hence,
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Figure 2.3: Stability diagram for the Boussinesq limit: Contours of constant
normalized growth rate γ are plotted over the space of entropy gradient s′0 vs.
Alfvén Mach number M . The stable parameter regime is denoted by hashing.
The diagonal dotted line denotes γ = 1−M , separating unstable region (I), where
flow enhances instability growth, from unstable region (II), where flow suppresses
the instability.

Figure 2.3 need only cover the region of (M, s′0) parameter space defined by 0 ≤

M ≤ 1 and s′0 > 0 to include all possible unstable mode growth.

Several features of Figure 2.3 are important to emphasize. First, for a system

without plasma flow (along the line M = 0), we see that the entropy gradient must

exceed a threshold value, s′0 > 1/4, in order to become unstable when the fluid is

supported by a shear magnetic field. Second, the qualitative effect of increasing

the plasma flow (increasing M) on the instability growth rate depends on both
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the growth rate and the plasma flow. Away from marginal stability (γ ≥ 1), an

increase of the plasma flow—equivalent to moving along a horizontal line to the

right on the stability diagram—decreases the instability growth rate as one may

expect. Here, the growing perturbation is sheared out horizontally so that less

gravitational potential energy is extracted by motions along the magnetic shear

(constant y′) surface, reducing the instability growth rate. But near marginal

stability (γ < 1), an increase in the shear flow effects the instability growth rate

differently depending on the relative orders of the growth rate, γ, and of one minus

the Alfvén Mach number, 1 − M . The diagonal dotted line in Figure 2.3 denotes

γ = 1 − M . In region (II) of the diagram, γ > 1 − M and flow suppresses the

instability. But, in region (I), where γ < 1 − M , an increase in the flow actually

enhances the instability growth. This unexpected result can be explained with

some physical insight. The point where the instability can grow is localized at

z′ = 0 in our transformed coordinates; this is where the magnetic shear (con-

stant y′) surface is vertical and motions along that surface can extract the most

gravitational potential energy with which to drive the instability. When a shear

plasma flow is introduced into the system, this is manifested in our transformed

system by a plasma flow along the field lines in the +z′ direction. This causes

the Alfvén modes in the +z′ and −z′ directions to propagate at different speeds

in our transformed system. The counter-propagating mode (A+ in our model)

is slowed down, spending more time in the region around z′ = 0 where unstable

mode growth occurs. Hence, the instability is enhanced by a shear flow in the

plasma. The final point to be gleaned from Figure 2.3 concerns the behavior as

M → 1, or as the Alfvén Mach number approaches one. In this region, every
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contour corresponding to a finite growth rate asymptotes to s′0 → ∞; hence, the

instability is stabilized as the Alfvén Mach number approaches one.

2.3.2 Analytical Limits

The stability diagram, Figure 2.3, prominently displays the three main character-

istics discussed in Section 2.3.1: a threshold entropy gradient, s′0 > 1/4, necessary

for instability in the system without plasma flow; for increasing plasma flow, a

reduction of the unstable growth away from marginal stability, but an enhance-

ment of that unstable mode near marginal stability including a decrease in the

threshold entropy gradient necessary for instability; and the stabilization of un-

stable normal modes as the Alfvén Mach number approaches one. Each of these

characteristics is relevant in a different region of the (M, s′0) parameter space of

the diagram. By examining the model in each of these regions of parameter space,

we can confirm and explain our results analytically.

First, we examine the criterion for instability in the absence of plasma flow;

this corresponds to the left vertical axis of the stability diagram where M = 0.

Next, we conduct an asymptotic analysis in the M → 1 limit—region (II) of the

stability diagram—to show that the plasma is indeed stabilized as the Alfvénic

Mach number approaches one. Then we investigate the reduction of the threshold

for instability with plasma flow; this covers the lower, right-hand side of region (I)

of the stability diagram. Finally, a WKB analysis for a large instability growth

rate yields the behavior of the system in the central and upper portion of the

stability diagram; the suppression of the growth rate by flow in region (II) and
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its enhancement in region (I) are verified by the eigenvalue condition γ(M, s′0)

obtained in this analysis.

Stability Criterion without Flow

Here we obtain the stability criterion for a magnetized fluid supported by a shear

magnetic field in the Boussinesq limit with no shear flow. By using the substitution

v = δv⊥/(1 + z2), the equations without plasma flow (M = 0) can be simplified

to a Sturm-Liouville equation of the form

d

dz

[

(1 + z2)
dv

dz

]

−
[

γ2(1 + z2) − s′0
]

v = 0 (2.37)

over the interval (−∞, +∞). The boundary conditions on this system necessitate

that v → 0 as z → ±∞. From Sturm’s First Comparison Theorem [91], we know

that, as the eigenvalue γ2 is increased, the solution will oscillate less rapidly with

zeros of the function v leaving the interval −∞ < z < ∞ at the boundaries.

Thus, if the solution with γ2 = 0 oscillates, we can increase γ2 until the boundary

conditions are satisfied, so there will be an unstable solution. Note also that the

fastest growing mode has no zeros in the interval and must be even in z.

Let w(z) satisfy (2.37) with γ2 = 0. Substituting a series solution of the form

w(z) =
∞
∑

n=0

an(1 + z2)−(n+α). (2.38)

in (2.37) (with γ2 = 0), we obtain the recurrence relation,

an

an−1
=

4(n + α − 1)2

4(n + α − 1/4)2 + s′0 − 1/4
, (2.39)
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with

α =
1

4
± 1

4

√

1 − 4s′0. (2.40)

When s′0 > 1/4, solution (2.38) oscillates for z → ∞, and clearly an unstable

solution exists. Let us therefore consider stability when s′0 < 1/4. We take the

positive sign in (2.40); then w2 is integrable for z → ∞. We note that all an

are positive if a0 is positive. We choose a0 > 0 such that w > 0. The series

solution for w(z) given by (2.38) is non-differentiable at z = 0 (as we see below).

Thus, we cannot use the solution from (2.38) over the whole interval and must

restrict its use to z > 0. Let us suppose (for contradiction) that there exists

at least one unstable solution of (2.37). Further, let v0(z) be the most unstable

solution—as noted above, v0(z) must be even in z and have no zeros in the interval

−∞ < z < ∞. We therefore choose v0(z) > 0 everywhere. It is straight forward

to show that

v0(0)
dw

dz

∣

∣

∣

∣

∣

0+

= γ2
0

∫ ∞

0+
wv0(1 + z2)dz, (2.41)

where the limit 0+ is infinitesimally above z = 0. Since the integral and v0 in

(2.41) are positive, we have stability, γ2
0 < 0 (a contradiction), if dw

dz

∣

∣

∣

0+
< 0.

Since every term in the series (2.38) is a monotonically decreasing function of z

we expect dw
dz

∣

∣

∣

0+
< 0, but since the limit is nonuniform we take a more careful

approach. We determine the sign of the limit dw
dz

∣

∣

∣

0+
from an examination of the

convergence of the series. It is straightforward to show that

an ∼ A

n3/2
(2.42)

as n → ∞ with A a positive constant. Thus, the series for w(z) (see (2.38))

converges for z ≥ 0. However, the series for dw
dz

converges for z > 0 but not for
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z = 0. Let us write for z → 0

dw

dz
=

∞
∑

n=0

−2z(n + α)an

(1 + z2)(n+α+1)
≃ −Cz − 2

∞
∑

n=N

Azn−1/2

(1 + z2)n
, (2.43)

where C is a positive constant and N is a large number in the range 1 ≪ N ≪ z−2.

Using (1 + z2)−n ≃ e−nz2
, we obtain

dw

dz
≃ −Cz − 2A

∑∞
n=N n−1/2ze−nz2 ≃ −Cz − 2A

∫∞
N n−1/2ze−nz2

dn

= −Cz − 2A
∫∞√

Nz e−p2
dp ≃ −Cz − 2A

∫∞
0 e−p2

dp = −Cz − A
√

π. (2.44)

Thus, the limit of dw
dz

as z → 0+ is −√
πA, i.e. negative. From (2.41) we conclude

that γ2
0 < 0 and there are no unstable modes for s′0 < 1/4. Thus, the necessary

and sufficient condition for instability is s′0 > 1/4.

This criterion can also be written

ρ′
0

ρ0
− p′0

Γp0
>

1

4

v2
A

gl2B
. (2.45)

This confirms the result in Figure 2.3—that a threshold value of the entropy gra-

dient, given by (2.45), must be exceeded in order to cause instability when the

fluid is supported by a shear magnetic field. Clearly, without magnetic shear

(lB → ∞), the usual criterion, s′0 > 0, holds and the motion is the simple inter-

change of field lines. With magnetic shear, the field lines must be bent since the

interchange of field lines is impossible with finite displacements—thus magnetic

shear is stabilizing.

Asymptotic Solution in the M → 1 Limit

An asymptotic, boundary layer analysis can be carried out in the limit that M →

1. This asymptotic expansion is described in Appendix A.2. The eigenvalue
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condition derived for this limit in that appendix is

γ2 ≃ s′0(1 − M2).

This relation explains the upturn towards infinity of the constant growth rate

contours in region (II) of Figure 2.3 as M → 1.

Solution in the γ → 0, M → 1 Limit

We demonstrate that the threshold entropy gradient for instability (the limit that

γ → 0) decreases as the plasma flow velocity is increased and that the threshold

value of s′0 approaches zero linearly as M → 1. Letting 1−M ∼ ǫ, we can redefine

the following variables in terms of ǫ: γ = ǫγ, A− = ǫA−, s = ǫs and s′0 = ǫs′0. For

M → 1, we can drop terms of order ǫ2 and cancel ǫ from each remaining term to

yield the simplified set of equations

−dA+

dz
= −γA+ + 2

z

1 + z2
A− − s

(1 + z2)1/2
(2.46)

2
dA−
dz

= − z

1 + z2
A+ +

s

(1 + z2)1/2
(2.47)

ds

dz
= −1

2

A+

(1 + z2)1/2
s′0. (2.48)

These equations are now independent of ǫ, or, equivalently, are independent of

M . The equations will hold true for constant values of γ and s′0. In this case, if

we have a negligibly small value γ → 0, we obtain the corresponding threshold

value of s′0 = s′0(1 − M), where s′0 is a constant. Thus, the threshold entropy

gradient for stability must linearly approach zero as M → 1 , as seen in the lower

right-hand corner of Figure 2.3.
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WKB Analysis

A complete solution of the model for a large growth rate γ can be constructed if we

assume an ordering, for a small parameter ǫ, such that γ ∼ O(ǫ−1), d
dz

∼ O(ǫ−1),

s ∼ O(ǫ−1), and s′0 ∼ O(ǫ−2). In this case, we can neglect the second term on

the right hand side of both (2.26) and (2.27). Converting back from Elsässer

variables to δB⊥ and δv⊥ notation, combining the three equations into a single

second order equation, and neglecting the term Ms d
dz

(

1
(1+z2)1/2

)

(which can be

shown to be small), yields

(1 − M2)
d2δv⊥
dz2

− 2γM
dδv⊥
dz

−
[

γ2 − s′0
1 + z2

]

δv⊥ = 0. (2.49)

Changing variables with an integrating factor to v = exp
(

γMz
1−M2

)

δv⊥, we obtain

d2v

dz2
− 1

(1 − M2)2

[

γ2 − s′0(1 − M2)

1 + z2

]

v = 0. (2.50)

We assume a WKB solution of the form ei
∫

k(z)dz and find

v = v exp



± i

1 − M2

∫ z
[

s′0(1 − M2)

1 + z′2
− γ2

]1/2

dz′



 . (2.51)

The turning points are at z = ±z0 where

z2
0 =

s′0(1 − M2)

γ2
− 1. (2.52)

For | z |> z0, the WKB solutions are decaying exponentials; in the region −z0 <

z < z0, the WKB solution is an oscillatory function.

In the usual way [18], we obtain the Bohr-Sommerfeld quantization condition

∫ z0

−z0

[

s′0(1 − M2)

1 + z2
− γ2

]1/2

dz = 2nπ(1 − M2). (2.53)
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The growth rate of the nth mode is then given, for small z0, by

γ2 =
[

s′0 − 2n(s′0)
1/2(1 − M2)1/2

]

(1 − M2). (2.54)

For a large growth rate γ ∼ O(ǫ−1) and the lowest, nontrivial eigenmode n = 1,

we can solve this eigenvalue condition for s′0 to obtain

s′0 =
γ2

1 − M2
+ 2γ. (2.55)

This condition agrees with the behavior of the constant growth rate contours in

region (II) of Figure 2.3. Although we do not expect the eigenvalue condition in

the WKB approximation to be precise in the limit of small growth rate, γ ∼ O(ǫ),

we do find to lowest order the qualitatively correct form,

s′0 ∼ 1 − M2, (2.56)

that the contours in region (I) decrease like 1 − M2.

2.3.3 Bounded, Straight-Field Case

The general model defined by this paper has the characteristic that the shear in the

magnetic field localizes the region of instability around where the magnetic shear

(constant y′) surface is vertical (this corresponds to z′ = 0 in our transformed

coordinate system). With this characteristic as our guide, an exactly soluble,

simplified model can be constructed which demonstrates the same qualitative

behavior displayed in Figure 2.3. We construct a case with a straight magnetic

field and a plasma flow along the field lines which has boundaries at z = ±L.

Since the explicit z dependence drops out of the equations in the straight-field
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limit (lB → ∞), we Fourier transform in z to obtain the algebraic dispersion

relation

(γ + iMkz)
[

(1 − M2)k2
z + 2iγMkz + γ2 − s′0

]

= 0. (2.57)

If we remove the plasma flow from the system by setting M = 0, this dispersion

relation agrees with the results of Newcomb [139] for a straight-field without flow

in the Boussinesq limit.

We solve for the three solutions for kz from (2.57) and find the eigenvectors

corresponding to each kz. Constructing general solutions for δB⊥, δv⊥, and s

from these eigenvectors, we find the eigenvalue condition γ(M, s′0) that must hold

in order to satisfy the three necessary boundary conditions on the system. The

boundary conditions we apply are δv⊥ = 0 at z = ±L and the upstream boundary

condition s = 0 at z = −L. The eigenvalue condition thus obtained is

γ2 =

[

s′0 −
(

nπ

2L

)2

(1 − M2)

]

(1 − M2) (2.58)

for the nth order unstable mode where n = 1, 2, 3, . . ..

A plot of constant γ contours is displayed in Figure 2.4. Note that the qual-

itative behavior pointed out in the text in Section 2.3.1 is demonstrated by this

simplified model. Therefore, the magnetic shear is not responsible for the un-

expected decrease in the stability threshold with shear flow; only a localization

of the instability is necessary to demonstrate this characteristic. A quantitative

comparison of Figure 2.3 and Figure 2.4 shows that, to yield equivalent growth

rates, a much larger entropy gradient must be supplied in the unbounded case with

magnetic shear than in the bounded, straight-field model. We can understand the
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Figure 2.4: The stability diagram for the straight-field case as described by equa-
tion (2.58) in section 2.3.3. Note that the qualitative features of the diagram are
similar to those in figure 2.3. A value of L = π was chosen to plot this diagram.

difference as follows. The energy required to bend the magnetic field lines slows

the growth of the instability. In the bounded case, this energy is needed to bend

the field line only within the bounded domain. But, in the unbounded model,

the bending of the field lines occurs over a larger extent in z, thus requiring more

energy and so more effectively suppressing the instability.

2.3.4 Energy Conservation

In the standard way, (2.26)–(2.28) can be combined, replacing γ with the time

derivative ∂
∂t

, to obtain an energy integral for the model. Converting back to δv⊥
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and δB⊥ using (2.29) and (2.30), we find

∂

∂t

{

1

2

∫ ∞

−∞

[

δB2
⊥ + δv2

⊥
1 + z2

− 2MδB⊥δv⊥
1 + z2

− s2

s′0

]

dz

}

= M
∫ ∞

−∞

sδB⊥
1 + z2

dz. (2.59)

Adopting the terminology of Hayashi and Young [86], we define the integral on

the left-hand side of (2.59) as the wave energy of the perturbation. Note that, in

the absence of flow (M = 0), the wave energy is constant in time. (2.59) supplies

a limit on the value of s′0 necessary for instability: since the δB2
⊥ and δv2

⊥ terms

are both positive definite, an instability can only develop for s′0 > 0. In this case,

gravitational potential energy from the s2 term can be harnessed to drive the

kinetic energy and field line bending of the instability.

By the same method as above, we find that the wave energy integral for the

straight-field model bounded at z = ±L, in Section 2.3.3, has the form

∂

∂t

{

1

2

∫ L

−L

[

δB2
⊥ + δv2

⊥ − s2

s′0

]

dz

}

=
M

2

{

δB2
⊥(−L) − δB2

⊥(L) +
s2(L)

s′0

}

. (2.60)

Without flow, again, we find that the necessary condition for instability to de-

velop is s′0 > 0 and that the wave energy integral is constant in time. In the

presence of flow, we interpret the terms on the right-hand side of (2.60) as fol-

lows: δB2
⊥(−L) represents the flow of magnetic energy into the region, −δB2

⊥(L)

represents the flow of magnetic energy out of the region, and s2(L)
s′0

represents the

flow of gravitational potential energy out of the the region.

2.4 Discussion

To study the effect of magnetic shear and shear flow on local buoyant instabilities,

we have constructed a simple model in the Boussinesq limit of ideal MHD. Nu-
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merical solutions to this model yield a stability diagram of the (M, s′0) parameter

space. This stability diagram has three important characteristics. First, there

exists a threshold entropy gradient for unstable mode growth, demonstrating that

magnetic shear is a stabilizing influence. Second, flow serves to suppress mode

growth in a substantially unstable regime, but near marginal stability it lessens

the stabilizing effect of magnetic shear, enhancing unstable mode growth rates

and lowering the threshold entropy gradient necessary for instability. Third, nor-

mal modes of instability are stabilized completely as the Alfvén Mach number

approaches one because the disturbance is swept downstream out of the unstable

region. Analytical work corroborates these characteristics in the different regions

of (M, s′0) parameter space.

In a shear magnetic field without flow, the characteristic shape of the unstable

mode is such that the field lines remain on the magnetic shear (constant y′) surface

shown in Figure 2.1; hence, in the lab frame, the field lines must twist as they

fall under gravity to remain on this surface. This occurs because the perturbed

field line at any vertical height x must align with the direction of the unperturbed

field at that height to facilitate interchange. Unlike the ordinary interchange

of straight field lines, if magnetic shear is present, the field line must be bent to

allow interchange; this is the root of the stabilizing influence of the shear magnetic

field. Energy extracted from gravitational potential energy as the field line falls

must supply both the kinetic energy of the moving plasma, which is frozen to the

field line, and the energy required to bend the field line. Unstable motions are

localized about the point where the magnetic shear (constant y′) surface is vertical

(z = 0 in Figure 2.1), because this point is where motions on that surface extract
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the most gravitational potential energy while minimizing field line bending. When

plasma shear flow is included in the problem, this unstable region moves in the lab

frame with the flow velocity vf in the −ẑ direction. Therefore, this characteristic

twisting geometry propagates along z at a speed vf = v0
lB
lv

determined by the local

flow speed v0, flow shear length lv, and magnetic field shear length lB. Typical

eigenfunctions for an entropy gradient of s′0 = 0.6 and Alfvén Mach numbers

M = 0 and M = 0.8 are displayed in Figure 2.5.

The modifications of the stability of a magnetized plasma due to the pres-

ence of magnetic shear and shear flow impact several diverse subjects. In solar

physics, one of the key processes necessary for the success of the interface dynamo

[147, 51] is the storage of an intense toroidal field in the solar tachocline [176]

until an instability causes an isolated flux tube to rise into the base of the con-

vection zone [1, 40, 41, 89, 45, 44, 165, 39, 73, 10]. Shear flow is present due to

the large differential rotation of the sun in the tachocline region [184, 164], and

some magnetic shear probably exists here as well; the impact of shear flow and

magnetic shear may alter stability within this region. There are two regions in

galactic physics where the conditions in our model may apply: near the center

of the galaxy, where there likely exists a region of magnetic shear in which the

large-scale magnetic field changes from primarily azimuthal to primarily vertical

[195] and shear flow is present through differential rotation, and in the disk of the

galaxy, where both magnetic shear and shear flow may be present in the vertical

direction away from the mid-plane. In examining the mechanisms for turbulence

in accretion disks, Balbus and Hawley [9] pointed out that a previously discov-

ered [188, 49, 50] but unappreciated linear MHD instability, driven by differential
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Figure 2.5: Eigenfunctions for entropy gradient s′0 = 0.6 and M = 0 (left plot)
and M = 0.8 (right plot). The three functions are A+ (solid line), A− (dotted
line), and s (dashed line). Note that for the M = 0.8 case, where the plasma flow
is in the +z direction, the eigenfunctions grow quickly with steep gradients and
diminish slowly as you move from left to right.
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rotation coupled with magnetic tension, would occur if the accretion disk were

threaded by a weak magnetic field. But the Balbus-Hawley instability bends the

magnetic field lines extensively; thus, it is stabilized by magnetic tension for large

magnetic field strengths [30, 186, 97]. Although the twisting interchange insta-

bility studied here depends not on rotation but on an entropy gradient, it has a

characteristic geometry that minimizes field line bending and so may be important

in regions of large field strength. As is well-known within the fusion community

[158], employing a sheared toroidal magnetic field in a tokamak can help to stabi-

lize, or at least suppress, ballooning instabilities (buoyant interchange instabilities

driven by pressure and curvature forces). The idea of employing shear flow to fur-

ther stabilize ballooning instabilities has gained much attention in the past decade

[190, 83, 84, 85, 128]. Our work demonstrates that, near marginal stability, shear

flow actually lessens the stabilizing effect of magnetic shear, lowering the threshold

entropy gradient required for instability and enhancing the unstable mode growth

rate. Full stabilization of the plasma will occur only if the Alfvén Mach number of

the plasma flow (as defined in our transformed coordinates) exceeds one. The lo-

cal nature of the instability examined in this work means that our treatment may

apply locally in more complicated environments. The instability may behave as a

traveling “wave packet” which moves with the intersection of shear magnetic field

lines (where the magnetic shear surface is vertical); the disturbance may move in

and out of unstable regions, with the perturbation growing where conditions are

unstable and decaying in stable regions.

We have extended the model to include compressibility. In this case, the

behavior is governed by a system of five coupled, first-order ordinary differential
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equations. Five parameters are necessary to describe the system: the Alfvén

Mach number, the plasma β, the density gradient, the pressure gradient, and the

magnetic field gradient. Over some portions of this five-dimensional parameter

space, the growth rate eigenvalue γ does indeed become complex. Producing a

simple answer from this more complicated model is quite difficult. Our current

research is addressing this difficulty. But, the magnetic-buoyancy instability [145],

which depends on compressibility, cannot be investigated without employing this

more detailed treatment. We will then be able to relate our work quantitatively

to applications such as the stability of magnetic fields in the solar tachocline.

One final possible extension of this research is an investigation of the nonlinear

behavior using an initial-value code.
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Chapter 3

Gradient Particle
Magnetohydrodynamics

3.1 Introduction

From the recognition, over a half century ago, of the role of magnetic fields in the

confinement [127] and acceleration [70] of cosmic rays and of the realization that

astrophysical magnetic fields can be detected through synchrotron emission, the

importance of magnetic fields in astrophysics has become increasingly apparent.

Early numerical work focused primarily on the gravitational and hydrodynamical

forces influencing astrophysical settings, but more recent studies have demon-

strated that magnetic fields cannot be neglected in investigations of astrophysical

jets [31], accretion disk dynamics [9], molecular cloud collapse and star forma-

tion [136]. New observations have found microgauss strength magnetic fields in

galactic clusters [43], suggesting that magnetic fields of this strength are far more

ubiquitous in the universe than previously believed. Additional observations have

shown that extragalactic gaseous systems with redshifts up to z = 2 and very early

galaxies up to z = 6 appear to harbor microgauss or stronger magnetic fields [106],
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suggesting that magnetic fields of this strength existed much earlier in the his-

tory of the universe than previously thought. In the face of this evidence, the

importance of including magnetic fields in numerical work in astrophysics cannot

be understated.

Numerical methods for astrophysical fluid simulation can be broadly catego-

rized as either Eulerian or Lagrangian: in the Eulerian approach, a fixed grid is

constructed in space and the fluid flows through that grid; and, in the Lagrangian

approach, grid points are embedded in and flow with the fluid, so as the fluid

flows the mesh connecting the grid points is deformed. These two approaches

have complementary strengths and weaknesses. Eulerian codes tend to exhibit

higher precision and better conservation properties than Lagrangian codes, but

Lagrangian algorithms are usually less diffusive. Computer models of astrophysi-

cal problems often require the accurate representation of densities and other fluid

quantities that vary over several orders of magnitude, so a method with some

means of selective resolution enhancement is desirable. To implement such a res-

olution enhancement in an Eulerian code using a strategy such as Adaptive Mesh

Refinement [20, 19] entails a great deal of complexity. Lagrangian codes, on the

other hand, are inherently adaptive: when a fluid is compressed to a high density,

the Lagrangian grid points flow with the fluid, yielding increased resolution in

the compressed region. This characteristic of Lagrangian methods makes them

attractive choices for the simulation of astrophysical phenomena.

Lagrangian numerical methods either employ a deformable mesh or simply

follow the paths of unconnected particles (often denoted meshless); I shall refer to

these different strategies as Lagrangian mesh codes and Lagrangian particle codes.
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Lagrangian mesh codes face the difficult obstacle of handling severe distortions of

the mesh; many mesh-based implementations, in fact, resort to a partial use of

Eulerian grids to overcome this difficulty. Lagrangian methods have historically

been used to investigate problems of hydrodynamics, the dynamic response of

solids, and magnetohydrodynamics (MHD); here we will briefly review existing

Lagrangian approaches.

Most Lagrangian numerical methods for MHD are mesh techniques. In particle-

in-cell methods [115, 35], fluid quantities are carried by particles, but forces be-

tween particles are calculated by interpolation onto a grid. Arbitrary Lagrangian-

Eulerian codes [75, 150, 5] include a wide variety of techniques that use Eulerian

grids to relax the tangled Lagrangian mesh or to remap the magnetic field for the

calculation of the magnetic forces on the particles.

Development of Lagrangian particle methods has traditionally aimed specif-

ically at problems in hydrodynamics or in engineering studies of the dynamic

response of materials; the preservation of zero magnetic divergence makes the con-

struction of particle codes for MHD particularly challenging. Smoothed Particle

Hydrodynamics (SPH) [122, 74] is the most widely used particle method for hydro-

dynamic and materials engineering research. Recent variations of SPH to improve

performance include Moving Least Squares Particle Hydrodynamics [63, 64] and

Renormalized Meshless Derivative [114]. Dilts et al. [66] have also proposed the

Tuned Regression Estimation technique for hydrodynamics based on a local re-

gression estimator of the fluid. Attempts to extend the SPH method to include

magnetic fields begin nearly two decades ago [151]. Smoothed Particle Magne-

tohydrodynamics (SPMHD) [178] and Regularized SPH [33] have met with some
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success, but have either neglected the issue of accumulated magnetic divergence

or been limited to one or two dimensions.

This chapter presents the Gradient Particle Magnetohydrodynamics (GPM)

algorithm for 3-D Lagrangian particle simulation of MHD. The implementation

of the GPM algorithm for astrophysical MHD simulation is discussed and results

from validation tests are presented. The relation of GPM to the technique of local

polynomial regression in statistics is explored.

3.2 Lagrangian Particle Methods for MHD

The Lagrangian equations of ideal MHD, written in terms of the vector potential

and allowing for an external magnetic field, are

dv

dt
= −1

ρ
∇P +

1

4πρ
(∇× B) × B (3.1)

dA

dt
= v ×Bext + (∇A) · v (3.2)

dρ

dt
= −ρ∇ · v (3.3)

de

dt
= −P

ρ
∇ · v. (3.4)

B = Bext + ∇×A (3.5)

The system of MHD equations is closed using the adiabatic equation of state

P = (γ − 1)ρe. (3.6)

MHD simulation by a Lagrangian particle method begins with the distribution of

“particles”, which represent fluid elements, throughout the simulation domain. At
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the position of each particle, all of the fluid quantities—velocity, vector potential,

density, and energy—are known. To advance one particle forward in time, the

rates of change of these fluid quantities must be calculated at the position of that

particle; these rates of change are given by the left-hand sides of (3.1)–(3.4). To

calculate these rates of change, we must know the values and the gradients of the

fluid quantities at the particle position. Since the values are already known, MHD

simulation by a particle method boils down to the determination of gradients of

the fluid quantities at all particle positions.

When only the value of a fluid quantity, and not its gradient, is known at

each particle position, the determination of the gradient requires knowledge of

the values at other particle positions. A radially symmetric smoothing kernel

is used to ensure that only nearby particles influence this gradient; the kernel

drops to zero at some specified smoothing radius so that only particles falling

within the smoothing sphere are considered. Particles within the smoothing sphere

are denoted neighbors. The number and distribution of neighbors within the

smoothing sphere may vary; the smoothing radius must be chosen to include

enough neighbors to adequately sample the local fluid environment but not so

many neighbors that physically relevant variations are smoothed out. The heart

of any numerical method for particle simulation of MHD is an algorithm capable

of determining an accurate gradient from a disordered distribution of neighbors.
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3.3 Gradient Particle Magnetohydrodynamics

We introduce here the Gradient Particle Magnetohydrodynamics (GPM) algo-

rithm for particle simulation of MHD. This simple algorithm efficiently calculates

a least squares polynomial fit of the spatial profile of a given fluid quantity around

a chosen particle. Consider a distribution of particles with positions given by ri;

the value of an arbitrary fluid quantity q at particle i is denoted by qi = q(ri). A

simple 1-D example most clearly demonstrates the GPM algorithm. We want to

perform a local polynomial fit of the spatial profile of q around a position x; for a

linear fit, we assume a spatial profile q(x) = A0 +A1x. We evaluate the quantities

Q0(x) and Q1(x) given by

Q0(x) =
∑

i

qimiW (|xi − x|, h) (3.7)

Q1(x) =
∑

i

(xi − x)qimiW (|xi − x|, h). (3.8)

Here, mi is the mass of particle i, W (|xi − x|, h) is a symmetric smoothing kernel

of characteristic smoothing radius h, and the sum is performed over all neighbors

i. Replacing qi in (3.7) and (3.8) with our assumed linear profile q(x) yields the

matrix equation
(

Q0

Q1

)

=

(

S0 S1

S1 S11

)(

A0

A1

)

, (3.9)

where we define the quantities S0, S1, and S11 by

S0(x) =
∑

i

miW (|xi − x|, h) (3.10)

S1(x) =
∑

i

(xi − x)miW (|xi − x|, h) (3.11)
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S11(x) =
∑

i

(xi − x)2miW (|xi − x|, h). (3.12)

Inversion of the 2 × 2 matrix in (3.9) yields consistent estimates for the mean

and gradient of the fluid quantity q at position x in terms of the calculated sums

Q0 and Q1. In three dimensions, an analogous procedure can be followed assuming

a spatial profile q(x1, x2, x3) = A0 + A1x1 + A2x2 + A3x3 and solving the resulting

4 × 4 matrix. The GPM algorithm can be further extended to second order by

solving the 10×10 matrix resulting from q(x1, x2, x3) = A0+A1x1+A2x2+A3x3+

A11x
2
1 + A22x

2
2 + A33x

2
3 + A12x1x2 + A13x1x3 + A23x2x3.

The GPM algorithm thus extracts the gradients of the fluid quantities at the

position of each particle from the fluid quantities of its neighbors. Combining

these gradients with the values of the fluid quantities at each particle allows for the

calculation of the rates of change of the fluid quantities at that particle. Hence, this

algorithm enables the fluid quantities—including the position—at each particle to

be stepped forward in time. The particle method resulting from implementation

of the GPM prescription enables stable simulation of MHD systems.

3.3.1 Relation to Local Polynomial Regression

As pointed out to the authors by Dilts [65], the idea of a local polynomial fit to

a disordered set of data is not new: local polynomial regression has been devel-

oped and practiced in the field of statistics for the past twenty five years [69].

Appendix C demonstrates that the GPM algorithm is nearly the same as local

polynomial regression. Hence, we can glean a wealth of knowledge from the statis-

tics literature on the subject.
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The monograph by Fan and Gijbels [69] succinctly reviews two decades of

study of the properties of local polynomial regression; the key points relevant to

MHD numerical simulation are summarized here. Local polynomial fitting adapts

to any distribution of points, from uniform distributions to random or highly

clustered distributions. As well, the error of the method remains of the same order

at boundaries without the use of specific boundary kernels. The Epanechnikov

kernel, defined by

W (t, h) =

{

3/4[1 − (t/h)2] |t/h| ≤ 1
0 |t/h| > 1

, (3.13)

is the optimal kernel in the sense that it minimizes the Mean Squared Error of the

regression function. Fan and Gijbels [69] recommend always using an odd order

fit when performing local polynomial regression. (The order of the fit, if the aim

of the regression is the recover the νth derivative using a polynomial of order p, is

defined as p−ν.) Using odd order fits is preferable because, when increasing from

a fit of even order 2m to a fit of odd order 2m + 1, the extra parameter allows

the reduction of error without increasing the variability of the solution. But

increasing the order of the fit from 2m+1 to 2m+2 causes variability to increase,

thus somewhat negating the benefit of a higher order fit. MHD simulation requires

a determination of the first derivatives, or ν = 1, so this rule of thumb suggests

a quadratic fit (p = 2) is best; the tests presented in Chapter 4 thus employ the

second-order GPM algorithm. Local polynomial regression is, in fact, nearly 100%

asymptotic minimax efficient among all linear smoothers. Fan and Gijbels [69]

present a proof of the local truncation error of local polynomial regression: for

a smoothing radius h, the error of an odd order fit is O(hp+1−ν). Therefore, the
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local truncation error of the second-order GPM algorithm for fitting the gradients

of fluid quantities (p = 2, ν = 1) is O(h2).

Statisticians are, of course, concerned with the fit of the regression function

to a set of unchanging data; for the numerical evolution of an MHD system, the

computational stability of repeated local polynomial fits must be determined.

3.4 Physical Implementation Issues

Physical implementation problems that must be addressed for the practical imple-

mentation of the GPM numerical method for the simulation of a physical model

include maintaining zero magnetic divergence in MHD simulation, using artificial

viscosity for capturing shocks, applying boundary conditions, modeling diffusive

processes, and preventing density and energy from becoming negative.

3.4.1 Magnetic Divergence

One of the major difficulties in developing a Lagrangian particle code for MHD

is the preservation of zero magnetic divergence. It is possible to construct a

numerical scheme using the GPM algorithm that evolves the MHD equations using

only the magnetic field by replacing (3.2) and (3.5) with the induction equation

dB

dt
= B · ∇v − B∇ · v. (3.14)

In this case, however, non-zero magnetic divergence builds slowly but steadily,

eventually becoming dynamically significant and corrupting the system behavior.

To eliminate this problem, we choose to evolve the vector potential, calculating
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the magnetic field from the vector potential at each step. Due to the varying

number and distribution of neighbors for a given particle, the magnetic divergence

is not held at exactly zero, but the magnetic divergence remains dynamically

insignificant and does not grow with time during a simulation.

In the implementation described here, we have chosen to calculate the mag-

netic field from the curl of vector potential as an intermediate step, subsequently

determining the magnetic force on the particles from the gradients of the magnetic

field. We made this decision so that a first-order GPM method can still be used

for MHD problems. An attractive alternative is to eliminate the magnetic field

(except for the external field) from the MHD equations entirely by substituting

(3.5) into (3.1). In this case, (3.1) depends on second derivatives of the vector po-

tential, so a second-order GPM method would be required for at least the vector

potential. This alternative method, however, is computationally unstable.

3.4.2 Artificial Viscosity

Artificial viscosity both accomplishes the damping of high-frequency oscillations

and prevents particle interpenetration and free streaming, all potential hazards for

Lagrangian codes. A common treatment of artificial viscosity in finite difference

calculations involves the addition of a viscous pressure term q that enhances the

pressure when ∇ · v < 0 [157]. In the momentum and energy equations, the

pressure P is replaced by P + q, where

q =

{

−αρhcs∇ · v + βρh2(∇ · v)2 if ∇ · v < 0
0 if ∇ · v > 0.

(3.15)
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Here α and β are dimensionless constants, h is the smoothing length, ρ is the

local density, and cs is the local sound speed. The term linear in the velocity

divergence produces a shear and bulk viscosity [131]; the quadratic term is similar

to the von Neumann-Richtmeyer viscosity [189] and prevents the free streaming

of particles in strong shocks.

Monaghan and Gingold [133] suggested that for SPH, which is significantly

less diffusive than grid-based methods, artificial viscosity is always necessary but

that the above formulation smears out shock fronts excessively because ∇ · v is

averaged over all particles in a smoothing radius. They found a more effective

artificial viscosity based on interparticle velocity differences [131, 132]. A similar

approach to Monaghan [132]—estimating ∇·v by the velocity differences between

particles—performed well under a first-order Eulerian timestepping scheme but

was unstable when using a second-order leapfrog timestep.

Although using a GPM calculation of ∇·v in (3.15) does smear out the shocks

somewhat, it suppresses post-shock oscillations effectively and yields the correct

Rankine-Hugoniot jump conditions. To eliminate the necessity of passing through

all particles twice at each timestep, we have found that using the ∇ · v for each

particle from the previous step is satisfactory; the dissipative term q is introduced

for purely mathematical reasons, so its precise form is not critical so long as it

reproduces shocks correctly [189].
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3.4.3 Boundary Conditions

The treatment of particles at the edge of the simulation domain is one of the key

challenges for a Lagrangian particle code. The application of specific boundary

conditions delineates assumptions about the nature of the physical model beyond

the simulation domain and can affect the behavior of particles deep within the

domain. Two typical boundary conditions are periodic and open.

Simple and widely used, periodic boundary conditions simply wrap the simula-

tion domain around onto itself. These boundary conditions are easily implemented

for a Lagrangian particle code: the neighbors for a particle near the edge of a peri-

odic box will include particles from the opposite edge of the box, and any particle

moving beyond the limit of the domain in a given dimension is simply wrapped

around to the opposite limit of the same dimension. Taking these two measures,

the GPM algorithm behaves in the same manner near the domain boundaries as

it does within the bulk of the domain.

But for large-scale astrophysical phenomena in which the system geometry

may play an important role—exactly the type of problems for which GPM was

developed—periodic boundary conditions are inadequate and more sophisticated

open boundary conditions must be used. Specifying a given choice of open bound-

ary conditions is equivalent to making an assumption about the nature of the

physical model beyond the domain boundaries. Consider the problem of model-

ing the Galactic disk. If any interaction with extragalactic objects is neglected,

we can specify that all fluid quantities such as density, energy, and velocity drop

towards zero with distance from the Galactic center. Such a model conserves en-
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ergy and angular momentum. But, a numerical simulation will necessarily cover

a finite domain, so we must allow for the transport of energy and momentum

through the domain boundaries. This choice leads to radiation boundary condi-

tions: although waves may exit the simulation domain, no wave energy is allowed

to enter the domain through the boundaries. Achieving boundary conditions of

this nature presents a challenge for Lagrangian particle codes.

The GPM algorithm for the recovery of fluid gradient information suffers a

systematic error at the boundary of the domain. A simple 1-D graphical example

demonstrating this problem is presented in Figure 3.1. In numerous astrophysical

problems, including the isolated Galactic disk, the fluid quantities such as the

density decrease exponentially as you move away from the center in the direction

normal to the simulation domain boundary. Figure 3.1 shows the particle at

the edge of the domain (open circle) and its neighbors within the domain (filled

circles); all of the neighbors necessarily lie on one side of the particle. The first-

order GPM determination for the gradient of a function in 1-D is simply a weighted

sum of two-point slope determinations, as demonstrated by (B.3). The profile

shown in Figure 3.1 is an exponentially decreasing function given by the thick solid

line. The two-point gradients due to all the possible pairs of points correspond

to the slopes of the thin solid lines connecting the neighbors and the particle; the

actual gradient of the function at the particle is given by the dashed line. Note

that the slopes for all of the two-point gradient determinations are greater than

the actual slope of the function at the particle; hence, the gradient at this particle

is systematically overestimated. For the simple case of hydrostatic equilibrium in

one dimension, the result is that, even if the force due to the pressure gradient
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Figure 3.1: Demonstration of the error in GPM gradient determinations at bound-
aries. If all particles lie on one side of the test particle, it is possible to overestimate
the gradient at that point. The exponentially decreasing function (thick solid line)
has a gradient at the test particle (open circle) given by the dashed line. The two-
point slope determinations for all pairs of neighbors (solid circles) are denoted
by the thin lines. The weighted sum of these two-point slope determinations
overestimates the actual gradient.
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exactly balances other forces in the problem, a stable hydrostatic equilibrium is

not achieved because of the error in the pressure gradient—the imbalance leads

to an unphysical expansion normal to the boundary.

To rectify this difficulty with open boundary conditions, fixed Eulerian bound-

ary points are placed to specify the domain boundary. Because these boundary

points do not move, adjustments of the fluid quantities near the edge compen-

sate for the systematic error in the gradient at the boundary without leading to

an unphysical expansion. This hybrid approach, employing an Eulerian grid of

points at the boundary to contain the Lagrangian particles within the boundary,

affords great flexibility in exerting boundary control. Specification of reflecting

boundary conditions is easily accomplished by setting the normal velocity of the

boundary points to zero and reflecting any particles that attempt to pass through

the boundary. Radiation boundary conditions are more difficult to achieve. For

situations in which the behavior near the boundaries is relatively quiescent, al-

lowing the fluid quantities at the boundary points to adjust freely to changes in

the fluid allows outgoing waves to leave the system; the fluid quantities at the

boundary points are simply updated using the GPM algorithm according to the

MHD equations including the advective term. If shock waves cross the boundary,

however, this treatment often fails. If one sets the normal velocity to zero at the

boundary points but allows particles to pass through the domain boundary and be

removed, the boundary more easily handles shocks. This more heavy handed ap-

proach still allows the transport of momentum and energy through the boundary

with particles, but caution must be taken to ensure that the boundary conditions

do not affect the evolution of the bulk of the simulation.
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3.4.4 Diffusion

Viscosity, resistivity, and thermal conductivity are diffusive processes that can

have an important effect on the evolution of the velocity field, magnetic field, and

energy distribution. Although the second-order GPM algorithm can calculate the

Laplacian of any fluid quantity, the inclusion of a Laplacian diffusion term in

the evolution equations is unconditionally unstable when used with an explicit,

second-order timestepping scheme. Hence, an alternative method for applying a

physical diffusion process is desirable.

The GPM algorithm returns values not only for the first (and possibly higher

order) derivatives, but also for the mean value of a quantity at the particle posi-

tion. The effect of a physical diffusion is to smooth out the higher order spatial

fluctuations of a given field; adjusting the value of that field at a given particle

towards the GPM smoothed mean value accomplishes a similar end. A new dif-

fused value can be computed from the old value and the GPM smoothed mean

value according to qnew = qold + fdiff (qGPM − qold), where the fractional effect of

the diffusion is given by 0 ≤ fdiff ≤ 1. This effective diffusion can be applied every

Ndiff timesteps. This prescription for incorporating diffusion into a GPM numeri-

cal scheme is stable and adequately reproduces the effects of viscosity, resistivity,

or thermal conductivity.

The scale over which a chosen diffusive process is applied can be specified inde-

pendently, yielding a minimum scale for structure in the associated fluid quantity

unrelated to the average particle separation in the region. In regions where few

particles fall within the diffusive scale length, the effect of the diffusion is negligi-
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ble; in regions where many particles fall within the scale length, diffusive effects

can be dominant. Hence, the physical processes of viscosity, resistivity, and ther-

mal conductivity are applied consistently to the entire simulation domain, rather

than varying according to the local number density of particles. This is important

since the effective numerical diffusivity, related to the number density of particles

in a given region, will vary throughout the simulation domain; specifying a scale

for a given diffusive process ensures that the resulting structure at that scale is

not affected by the unphysical numerical diffusivity. This prescription also has the

advantage, for example, that the viscous and resistive scale lengths can be varied

independently to explore a range of magnetic Prandtl numbers.

3.4.5 Logarithmic Updates for Density and Energy

Density and energy should remain greater than zero throughout the simulation;

but, in an astrophysical situation where both quantities approach zero at the outer

boundaries, it is possible for the value to become negative as it is advanced in

time. We can prevent this problem by choosing to advance these quantities using

the logarithm of the value, rather than the value itself. For example, instead of

updating the density using (3.3), we can use

d ln ρ

dt
= −∇ · v. (3.16)

We replace the standard second-order leapfrog advancement for density

ρn+1 = ρn−1 + 2∆t
dρ

dt

∣

∣

∣

∣

∣

n

, (3.17)
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by the formula for the logarithmic case

ρn+1 = ρn−1 exp

(

2∆t
d ln ρ

dt

∣

∣

∣

∣

∣

n

)

. (3.18)

The energy is treated similarly.

3.5 Computational Implementation Issues

Computational implementation issues deal with the suppression of computational

instabilities that arise from the accumulation of errors as the simulation progresses;

these include maintaining a particle distribution that ensures good sampling of

the local environment, ensuring that behavior of particles remains fluid, and elim-

inating leapfrog timestep splitting instabilities.

3.5.1 Particle Distribution Control

The greatest threat to long-term computational instability that a Lagrangian par-

ticle code faces is the maintenence of a “good” particle distribution. “Good”

means that enough neighbors are distributed throughout the smoothing sphere

for the least squares fit to recover an accurate value for the mean and gradient

of each fluid quantity. Because particles flow through the simulation domain fol-

lowing the local fluid velocity, after many timesteps it is possible for a number of

particles to become clumped together or for a substantial region to become devoid

of particles. Clumps of particles waste computational effort by oversampling of a

region; voids endanger the accuracy of the GPM results due to undersampling of

a region. Additionally, since the maximum allowable timestep for stability under
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the Courant criterion is related to the particle spacing, simulations with clumps of

particles will require smaller timesteps to ensure computational stability. Hence,

some control of the particle distribution as the simulation progresses is desirable.

The particle distribution is controlled by implementing particle separation, parti-

cle removal, particle addition, and void filling.

The local average particle separation is closely related to the smoothing length

of a given particle. The separation between any two particles, however, can be

significantly smaller than the average particle separation. Particles that come too

close together yield redundant information about the fluid at the location, low-

ering the effective simulation resolution for a given number of particles. Particle

separation eliminates this potential problem by separating two particles that have

come closer together than a specified fraction of the smoothing length. The par-

ticles are separated along the line joining them to conserve momentum and other

conserved quantities. This separation acts as a diffusion on small scales; the scale

of this diffusion, however, is well below the minimum resolved scale given by the

smoothing length.

Applications such as astrophysical accretion disks characteristically demon-

strate radial inflow of material towards the center driven by a variety of mech-

anisms for angular momentum transport. Since Lagrangian particles move with

the fluid flow, this will lead to an accumulation of particles in the central region.

Each particle contributes to the computational cost of a timestep, so if the res-

olution enhancement in the central region is not needed, removing particles in

regions of high particle number density will improve the computational efficiency.

Particle removal is implemented by eliminating a particle whose smoothing length
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has dropped below a certain threshold. Physical quantities are conserved by com-

bining the offending particle with its nearest neighbor in a conservative manner.

Continuing with the example of an astrophysical accretion disk, the net radial

inflow of material means that more particles must be added at the boundaries to

prevent a depletion of particles in the outer regions. This particle addition rep-

resents an inflow of material through the boundary. To maintain good sampling,

the criterion for particle addition ensures that the average particle spacing of the

particles near the boundary remains similar to the average particle spacing of the

fixed Eulerian boundary points.

Finally, random fluctuations in the particle number density as well as certain

flow patterns may lead to the development of significant voids in the particle

distribution within the bulk of the simulation volume. The undersampling in

a void region may result in poor least squares fitting of the local fluid profile;

in the worst cases, this undersampling can drive computational instability. To

detect voids, the distance from the particle position to the center of its neighbor

distribution is calculated; if the distance exceeds some threshold fraction of the

particle smoothing length, then a significant void exists. A new particle can be

placed in the void, taking the values for its fluid quantities from an interpolation

of the local environment.

The four processes of particle separation, particle removal, particle addition,

and void filling ensure the spatial distribution of particles provides an adequate

sampling of the local fluid environment over the entire domain throughout the

evolution of the simulation.
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3.5.2 Fluid Behavior: Smoothing

Because the GPM algorithm fits the local fluid profile with a linear or quadratic

function, discontinuities in the fluid state can lead to large errors in GPM gradient

determinations due to the significance of higher order derivatives. To prevent

this problem, it is necessary to maintain a smooth fluid profile on the scale of

the smoothing length. This is accomplished in two ways: discontinuous initial

conditions are smoothed before beginning the simulation, and smoothing is applied

periodically as the simulation is evolved in time.

Smoothing of initial conditions always employs a linear smoothing and may

be performed several times to achieve an adequately smooth profile. Periodic

smoothing during the simulation uses either a linear or a quadratic smoothing;

frequent linear smoothing is very diffusive, but a quadratic smoothing preserves

the low diffusivity characteristic of Lagrangian schemes while maintaining locally

smooth conditions. Smoothing is performed using the GPM prescription: the

mean values of the fluid quantities returned by the GPM algorithm provide the

smoothed estimate qsm. The fluid quantity q is updated with a fractional smooth-

ing weight fsm according to the formula qnew = qold + fsm(qsm − qold). All fluid

quantities are smoothed simultaneously when smoothing is performed.

3.5.3 Leapfrog Timestep Splitting

The second-order leapfrog timestepping scheme is susceptible to a splitting insta-

bility where the values at alternate timesteps can drift away from each other [153].

A simple cure for this involves a periodic correction by averaging values at subse-
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quent timesteps. For instance, given values for a fluid quantity q at times tn and

tn−1, a corrected value at time tn−1/2, accurate to second order, can be calculated

by

q(tn−1/2) =
q(tn) + q(tn−1)

2
(3.19)

If this measure is taken for both the current timestep and the last timestep, the

leapfrog splitting instability is cured for the expense of one half of a timestep.

3.6 Conclusion

The importance of magnetic fields in astrophysical phenomena has become in-

creasingly apparent over the last fifty years. Lagrangian methods are well-suited

for numerical investigations in astrophysics. The scientific community has ex-

pended much effort on the development of Lagrangian MHD codes. We present

here a new algorithm for Lagrangian particle simulation of astrophysical MHD,

Gradient Particle Magnetohydrodynamics.

The evolution of an MHD system in a Lagrangian particle code requires the de-

termination of accurate gradients of fluid quantities from a disordered distribution

of neighbors. The GPM algorithm employs a local least squares fit to recover this

gradient information from the particle distribution. Control of magnetic diver-

gence, a serious challenge for any Lagrangian particle MHD code, is accomplished

by evolving the vector potential rather than the magnetic field itself. The GPM

algorithm is nearly identical to local polynomial regression in the field of statistics;

hence, optimization of any GPM code may benefit from the existing literature on
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the properties of local polynomial regression. GPM codes will provide a useful

numerical tool for the next generation of research on astrophysical MHD.
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Chapter 4

Validation of the GPM Algorithm

This chapter presents the results of validation tests performed using the GPM

algorithm described in Chapter 3. Related here are test results for sound waves,

MHD waves, a magnetized vortex, hydrodynamic shocks, MHD shocks, and the

Kelvin-Helmholtz instability.

All of the simulation results here employ the Epanechnikov kernel given by

(3.13) and use a second-order leapfrog timestepping scheme. The adiabatic index

used for all tests is γ = 5/3 unless otherwise noted. For variable smoothing length

runs, the number of neighbors specified includes the particle at which the GPM

algorithm is being applied.

4.1 Sound Waves

Linear and nonlinear sound wave simulations test the ability of GPM to handle

hydrodynamics. Sound wave propagation results, a dispersion relation of the GPM

method for varying spatial resolution, and a solution for the nonlinear steepening

of a finite amplitude sound wave are presented here.
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Figure 4.1: First-order 32×8 (triangles) and 64×8 (squares) GPM results for the
propagation of a linear sound wave moving in the +x direction with amplitude
δv = 0.001cs at time t = 10.0. The analytical result is the solid line and the boxes
indicate the GPM results with a connecting line to assist in comparison.
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Figure 4.1 shows the propagation of a linear acoustic wave for two spatial reso-

lutions using first-order GPM. In these 2-D periodic runs, particles are initialized

with uniformly spaced positions: 32 × 8 particles in a box of size 1.0 × 0.25, and

double the resolution with 64 × 8 particles in a box of size 1.0 × 0.125. Initial

conditions impose a single eigenmode moving in the +x direction with a velocity

perturbation of δv = 0.001cs, where the sound speed cs = 1.0. Both runs use

a Courant fraction of fCFL ∼ 0.5; smoothing lengths and timesteps are fixed at

h = 0.0625 with ∆t = 0.015625 and h = 0.03125 with ∆t = 0.0078125. The

results are plotted at t = 10.0, after 10 sound crossing times across the box.

The analytical result, given by the solid line in Figure 4.1, includes the effect of

nonlinear steepening. Two empirical observations have been made from GPM

test simulations of linear sound waves: the phase error, or wave velocity error,

is controlled primarily by the spatial resolution, or the number of particles per

wavelength; and the amplitude error, or stability, is controlled primarily by the

timestep size. The relation of the phase error to the spatial resolution is easily

seen in Figure 4.1.

Figure 4.2 presents the dispersion relation for linear sound waves. Parameters

are chosen analogously to those specified in the simulations presented in Figure 4.1.

These first-order GPM runs use 8, 16, 32, 64, and 128 uniformly spaced particles

in the x direction and always 8 particles in the y direction. Smoothing lengths

are fixed at twice the uniform particle spacing and timesteps are chosen using a

Courant fraction of fCFL = 0.5. The sound speed is measured from the results

at t = 10.0 for each case. The resolution, or number of particles per wavelength,

is indicated on the figure. A resolution of 32 or more particles per wavelength
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Figure 4.2: Dispersion relation for linear sound wave using the GPM algorithm.
The number of particles per wavelength is noted next to each point.
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Figure 4.3: The propagation and steepening of a nonlinear sound wave of am-
plitude δv = 0.05cs using first-order GPM with 64 × 8 particles. The analytical
solution from an inviscid method of characteristics is given by the solid line and
the boxed line shows the GPM results. The analytical solution forms a shock at
t = 1.74.

produces excellent agreement with the analytical value. The spatial resolution

appears to determine the phase error of the propagating wave; amplitude errors

are negligible as long as the Courant condition for stability is satisfied.

Figure 4.3 shows the first-order GPM solution of the nonlinear steepening of

a finite amplitude sound wave compared to an inviscid method of characteristics

solution. 128 × 8 uniformly spaced particles in a box of size 1.0 × 0.0625 are

used with a variable smoothing length adjusted to include 9 neighbors. The

unperturbed sound speed is cs = 1.0 and a timestep of ∆t = 0.00390625 yields
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a Courant fraction of fCFL ∼ 0.5. A single sinusoidal eigenmode moving in the

positive x direction of amplitude δv = 0.05cs is imposed. The analytical formation

of a shock in an inviscid fluid occurs at t = 1.74; the GPM solutions at t = 1.0

and t = 1.7 are plotted and compared to the inviscid method of characteristics

solutions. Without any artificial viscosity, the GPM results show the onset of post-

shock oscillations at t = 1.7; therefore, a small artificial viscosity, with α = 0.05

and β = 0.10, is used to suppress this behavior.

4.2 MHD Waves

To test the ability of the GPM algorithm to accurately simulate MHD phenomena,

simulations of slow, Alfvén, and fast MHD waves probed the full range of angles

between the wave propagation direction k and the direction of the unperturbed

magnetic field Bext. The results of these tests are easily summarized on a polar

plot of MHD linear wave propagation as shown in Figure 4.4; for further expla-

nation of this polar plot, see Shu [171]. In this plot, the direction of the magnetic

field is along the ordinate and the angle between the magnetic field Bext and the

wave propagation direction k is the polar angle measured from the ordinate to the

abscissa; the radial coordinate corresponds to the magnitude of the wave velocity.

The analytical solutions are plotted as solid lines and the boxes represent values

obtained by the GPM code. We ran second-order GPM simulations with 32×8×8

particles on a uniform lattice in a periodic box of size 1.0 × 0.25 × 0.25 cm. The

density was set to a uniform ρ = 1.0 g/cm3 and the mean energy and mean mag-

netic field were chosen to yield a sound speed cs = 1.0 cm/s and an Alfvén speed

vA = 2.0 cm/s. We specified a variable smoothing length with 33 neighbors in

99



Figure 4.4: Polar plot of the MHD wave speeds vs. the angle between the magnetic
field Bext and the wave propagation direction k. The analytical solutions for slow,
Alfvén, and fast MHD waves are indicated by the solid lines; second-order GPM
results for 32 × 8 × 8 simulations are given by the boxes.
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the smoothing sphere for this fully 3-D calculation and chose a uniform timestep

∆t = 0.007 s (corresponding to Courant number of 0.5 for the fast MHD wave).

We initialized each run with the lowest wavenumber eigenmode for each of the

three wave types with the amplitude of the velocity perturbation δv · k̂ = 0.001cs

for the slow and fast waves and δvz = 0.001cs for the Alfvén wave. The angles

between B and k were 0◦, 15◦,30◦, 45◦,60◦, 75◦, and 90◦. The wave velocity of the

chosen eigenmode was determined after 10 full periods (the period is defined as

the time for the wave to return to its original position in the simulation domain).

The GPM algorithm gives an excellent agreement with theory for all three MHD

waves over the entire range of propagation directions.

The elimination of magnetic divergence is key issue for any proposed La-

grangian particle scheme for MHD. Figure 4.5 compares the effect of evolving

vector potential (according to (3.2) and (3.5)) with that of evolving magnetic

field directly (using (3.14)) on the evolution of magnetic divergence in our GPM

code. To estimate the magnitude of the unphysical magnetic divergence we use

|∇ · B|, and to estimate the magnitude of the physical magnetic effects we use

|ẑ ·∇×B|. To monitor magnetic divergence, we calculate the mean and maximum

of both of these quantities over all particles at each timestep. Figure 4.5 plots the

ratio of the means and the ratio of the maxima for the cases with and without vec-

tor potential for a fast MHD wave traveling at θ = 45◦ with respect to the mean

magnetic field. The case without vector potential demonstrates growth of mag-

netic divergence with time; the case with vector potential inhibits the growth of

magnetic divergence, maintaining the maximum magnetic divergence to less than

0.2% of the physical magnetic effects. As a side note, the growing variability of our
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Figure 4.5: The time evolution of the magnetic divergence for a fast MHD wave
propagating at an angle θ = 45◦ with respect to the magnetic field. This plot com-
pares the approach using magnetic field directly with that using vector potential
(VP). Two ratios for each case are plotted: mean(|∇ ·B|)/mean(|ẑ · ∇ ×B|) and
max(|∇ ·B|)/ max(|ẑ ·∇×B|). The magnetic divergence for the case using vector
potential remains at a negligible level throughout the simulation.
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measure of magnetic divergence between t = 8.0 s and t = 10.0 s is caused by the

growth of a leapfrog timestep splitting instability that can be easily controlled by

the technique described in Section 3.5.3. In conclusion, Figure 4.5 demonstrates

that the vector potential implementation of GPM maintains magnetic divergence

at a negligible level.

4.3 Magnetized Vortex

To test the GPM evolution of magnetic field in an advective problem, we simulated

a 2-D vortex flow superimposed with an initially uniform weak magnetic field. The

flow is initialized with an azimuthal flow profile of the form

vφ = v0
r

r0

e(1−r2/r2
0) (4.1)

with the values v0 = 0.1 cm/s and r0 = 0.1667 cm in a 2-D periodic box of size

1.0 × 1.0 cm. The initial weak magnetic field is Bext = 0.00354 G x̂. Second-

order GPM is used with a fixed smoothing length h = 0.123 cm and artificial

viscosity parameters α = 0.05 and β = 0.1. The 322 particles are placed on a

quasi-random grid and the Courant number is 0.0125 (calculated assuming all

particles are separated by a distance s = 0.03125 cm). The sound speed is cs =

1.0 cm/s. The radius at the peak of the azimuthal velocity will have undergone

one full rotation in a time t = 10.47 s. Figure 4.6 shows the GPM results at

time t = 10.0 s. For comparison, we simulated the same vortex with a spectral

MHD code [124]; viscosity and resistivity values of ν = 3.0 × 10−4 and η = 3.0 ×

10−4 produced a result comparable to the GPM results. Figure 4.6 shows good

agreement between the GPM and spectral codes for both evolved magnetic field
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Figure 4.6: GPM (left) and spectral MHD (right) simulation results for the 2-
D magnetized vortex. The spheres represent particle positions and the arrows
represent magnetic fields. A spectral code does not have particles, and so the
particles shown here serve only as markers for the magnetic field arrows.
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topology and magnitude. For the GPM calculation, the magnetic field evolution

is stable and magnetic structures are resolved to two interparticle radii. The

effective viscosity of the GPM code is, in fact, almost as low as that of the spectral

simulation.

4.4 Hydrodynamic Shocks

To test the ability of GPM to capture shocks, we used the standard 1-D shock

tube test [173] . This test begins with an initial pressure and density discontinuity

at an interface and no initial motion; a shock wave propagates to the right into

the less dense medium and a rarefaction fan to the left into more dense medium,

with a contact discontinuity visible in the density and energy profiles only. We

choose the same initial conditions as the Sod [173] paper: p = 1.0 and ρ = 1.0 to

the left of the discontinuity, p = 0.1 and ρ = 0.125 to the right, and zero velocity

everywhere. For this problem, we employ the adiabatic index γ = 1.4 to retain

consistency with the original paper. We run a first-order GPM calculation using

512 × 8 uniformly spaced particles in a periodic box of size 2.0 × 0.03125. The

x range of the box is [−0.5, 1.5] with the initial discontinuity at x = 0.5, but we

show only the region [0.0, 1.0]. We specify a variable smoothing length with 21

neighbors, a timestep ∆t = 0.0009765625, and an artificial viscosity with α = 0.5

and β = 1.0 for shock capturing. The initial discontinuous profile was smoothed 4

consecutive times using a first-order GPM smoothing algorithm and a smoothing

fraction of fsm = 1.0. The resulting profiles for density, pressure, energy, and

x-component of the velocity are shown in Figure 4.7 at time t = 0.245.
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Figure 4.7: The profile results of the standard [173] 1-D shock test for density
(upper left), pressure (upper right), energy (lower left), and x-component of ve-
locity (lower right) for the time t = 0.3. Note the contact discontinuity visible
only in the density and energy profiles. The approximate analytical solution is
given by the solid line.
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4.5 MHD Shocks

A suitable test of the performance of the GPM method for MHD shocks is the

MHD Riemann problem first proposed by Brio and Wu [37]. Because the MHD

equations are nonconvex, compound waves (waves consisting of a shock followed by

a rarefaction wave of the same family), which do not occur in hydrodynamics, can

indeed exist in MHD [37]. The coplanar Riemann problem presented here tests

the ability of the scheme to represent shocks, rarefaction fans, and compound

waves in MHD flows.

The initial state of the problem involves two discontinuous states at rest in

contact at x = 0. To the left of the discontinuity, ρl = 1.0, vl = 0, pl = 1.0,

and (By)l = 1.0; to the right, ρr = 0.125, vr = 0, pr = 0.1, and (By)r = −1.0.

Everywhere, Bx = 0.75, Bz = 0, and the adiabatic index γ = 2. Please note that

the units of B here are chosen to eliminate the factor of 4π in (3.1) to facilitate

comparison with the results of Brio and Wu [37] since there is no known analytical

solution to this problem. The simulation includes one spatial dimension and all

components of velocity and magnetic field. The domain is given by x = [−50, 50]

with 800 particles initially uniformly spaced with separation s = 0.125. The cho-

sen timestep is ∆t = 0.015625 (equivalent to a Courant number of approximately

0.5). The second-order GPM algorithm is used with a variable smoothing length

set to include 7 neighbors. In shock problems, artificial viscosity and smooth-

ing are needed by GPM to prevent unphysical particle interpenetration and free

streaming; the details of these procedures are discussed in sections 3.4.2 and 3.5.2.

For this MHD Riemann problem, we use artificial viscosity parameters α = 3.0 and
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β = 4.0, we smooth the initial profile twice with a smoothing fraction fsm = 1.0,

and we apply a first-order smoothing every 16 timesteps with a smoothing fraction

fsm = 0.5.

Figure 4.8 shows the results at time t = 10. The solution consists of the

following waves: a fast rarefaction wave (FR) and a slow compound wave (SC)

moving to the left; and a contact discontinuity (CD), a slow shock (SS), and a fast

rarefaction wave (FR) moving to the right. The foot of the left-moving rarefaction

fan is rounded and the states between waves are not entirely constant, but the

GPM method recovers the variety of waves in good agreement with results of Brio

and Wu [37].

4.6 Kelvin-Helmholtz Instability

The stability of a stratified, heterogeneous fluid when different layers are in relative

motion is examined analytically by Chandrasekhar [50]. In this 2-D problem in

a square periodic domain defined by −0.5 ≤ x ≤ 0.5 and −0.5 ≤ y ≤ 0.5, the

x-component of velocity and density are given by vx1 = −0.5 and ρ1 = 1 for

|y| > 0.25 and vx2 = 0.5 and ρ2 = 2 for |y| ≤ 0.25. The pressure is p = 2.5

and y-velocity is zero everywhere; the adiabatic index is γ = 1.4. To compare

the instability growth rate with that predicted from theory, 256 × 256 particles

are placed on a uniform grid initially to reduce noise and an initial sinusoidal

perturbation of magnitude δvy = 0.001 and wavenumber kx = 2πnx/Lx with

nx = 8 is applied to the y-velocity.
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Figure 4.8: Results of the magnetic Riemann problem at t = 10. The (a) density,
(b) pressure, (c) x-component of velocity vx, (d) y-component of velocity vy, and
(f) y-component of magnetic field By are shown. On the density plot are labelled
each wave (from left to right): fast rarefaction wave (FR), slow compound wave
(SC), contact discontinuity (CD), slow shock (SS), and fast rarefaction wave (FR).
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Figure 4.9: The growth of the kinetic energy in the y direction, Eky = ρv2
y ,

vs. time. The analytical calculation for energy growth in an inviscid fluid is given
by the thin solid line. Four runs are plotted with increasing levels of smoothing:
no smoothing (thick solid line), smoothing every 128 steps with fsm = 0.125
(dotted line), smoothing every 64 steps with fsm = 0.25 (short-dashed line), and
smoothing every 32 steps with fsm = 0.5 (long-dashed line).

110



The growth rate of the instability in its linear phase [50] for an inviscid fluid

is given by

γ = kx|vx1 − vx2|
√

ρ1ρ2/(ρ1 + ρ2)2. (4.2)

Figure 4.9 presents the energy due to motion in the y direction, Eky = ρv2
y, with

time. The analytical solution is given by the thin solid line. Four runs are plotted

with increasing levels of smoothing: no smoothing (thick solid line), smoothing

every 128 steps with fsm = 0.125 (dotted line), smoothing every 64 steps with

fsm = 0.25 (short-dashed line), and smoothing every 32 steps with fsm = 0.5

(long-dashed line). For all runs but the one with the most smoothing, the growth

rate of Eky—the slope of the line—matches that of the theory. The smoothing in

the last simulation, however, is great enough for the effective viscosity to diminish

the instability growth rate; the theoretical growth rate is determined for an inviscid

fluid, so it is reasonable that a non-negligible viscosity would decrease the growth

rate.
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Chapter 5

Adaptive Particle Refinement

5.1 Introduction

The behavior of certain astrophysical problems, such as the long term evolution

of the large-scale magnetic field in the Galactic disk, is likely to depend critically

on the global geometry and boundary conditions. The Fourier decomposition of

annular rings of the observed magnetic field in external galaxies is typically dom-

inated by the m = 0 and m = 1 components [17]: the large-scale structure of the

magnetic field is genuinely global. Only a global model of the system can possibly

capture such structure. But limits in computational power inhibit the ability of

numerical methods to resolve fine localized structure in global computations. In

a barred galaxy, for instance, the dynamics in the shocked regions induced by the

bar dominate the rate of mass accretion towards the galactic center [6]; resolving

this localized phenomenon is essential to accurately following the magnetic field

evolution in the galactic disk [48]. Adaptive numerical methods can overcome the

limitations on local resolution imposed by the need to evolve the entire system in

a global disk simulation.

112



The most well developed avenue for introducing adaptivity to a standard nu-

merical method is the technique of Adaptive Mesh Refinement (AMR) [20, 19].

This technique is based on a simple principle. Consider a uniform mesh con-

structed across the computational domain at low resolution. At each step of the

simulation, the truncation error at each grid point is estimated. If this error ex-

ceeds a chosen threshold at a grid point, the mesh is refined to smaller scale in

the vicinity of that point. The higher resolution of the refined mesh can capture

smaller scale structure. This refinement is allowed to compound up to a speci-

fied number of levels. Conversely, if the truncation error at a point is below the

threshold for a more coarse grid, the mesh can be unrefined there. The achieve-

ment of the AMR technique is that computational effort is focused in regions

where smaller scale structure in the solution leads to large truncation error.

A path less traveled to realize adaptivity is to adopt a Lagrangian numerical

method. In a Lagrangian method, the grid points—often called particles if they

represent entities with mass—move at the local velocity. In a fluid simulation,

these points represent fluid elements flowing with the local fluid velocity. In regions

of compression the local mass density increases; but since the computational points

are embedded in the fluid, the local number density of points increases as well.

The result is that resolution is enhanced in regions of increased mass density; the

Lagrangian approach is inherently adaptive.

The implementation of a simple Lagrangian method is much less complicated

than the implementation of a simple AMR method. The Lagrangian approach,

however, adapts only to mass density in the problem; the AMR technique is more

general in that it adapts based on error in any of the evolved fields. For problems

113



in which the regions of interest are coincident with regions of compression, the

more simple Lagrangian approach is well suited. In studies of molecular cloud

collapse, for instance, enhanced resolution is desired in the collapsing cores where

the mass density increases. But for other problems, the density based adaptivity of

Lagrangian methods does not suffice. In problems involving shocks or the tangling

of a magnetic field, the regions where resolution enhancement is desired are not

necessarily coincident with regions of increased mass density. In these cases, the

more general adaptivity of AMR is superior.

This paper presents Adaptive Particle Refinement (APR), a truly adaptive

Lagrangian scheme. Based on the same basic principle as AMR, the aim of this

scheme is to wed the simplicity of the Lagrangian approach with the general

adaptivity of the AMR method. APR adds or removes particles—in this case

the “particles” carry no intrinsic mass, they are simply computational points at

which we know information about the fluid—based an estimate of the truncation

error at each particle. This eliminates the dependency of the adaptivity on mass

density that plagues most Lagrangian techniques, yielding a generally adaptive

method. Yet it retains the more simple computational bookkeeping characteristic

of Lagrangian codes compared to that required by AMR schemes.

Section 5.2 describes the basic scheme underlying the adaptivity of APR. The

additional problem of disconnection for Lagrangian particle methods is described

in Section 5.3. Specific issues for the implementation of the APR scheme are dis-

cussed in Section 5.4. Control of magnetic divergence using Lagrange multipliers

is given in Section 5.5. In Section 5.6, results from the adaptivity scheme pro-

posed here are presented. Finally, a summary of our achievements to date and a
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discussion of directions for further refinement of the APR method are contained

in Section 5.7.

5.2 Basic Refinement Scheme

The Adaptive Particle Refinement scheme is constructed on the foundation of

Gradient Particle Magnetohydrodynamics (GPM) [125], a general algorithm for

Lagrangian fluid simulation. See Chapter 3 for a complete description of this

algorithm. GPM employs local polynomial regression to find the local gradients of

fluid quantities needed to calculate rates of change at each particle. The spatial fit

of the gradients can be computed to arbitrary order, although the computational

efficiency diminishes rapidly for greater than second order. The ability of GPM to

recover fluid gradients to second order, not possible in all Lagrangian schemes, is

the particular characteristic that makes possible the construction of an adaptive

scheme.

The basis of AMR is truncation error estimation by Richardson extrapolation

[20]. I will briefly review the details of the truncation error estimate here. Consider

a grid with spacing ∆x and a timestep algorithm with timestep ∆t. Let Q∆x,∆t

denote a two-level explicit difference operator of order p in both space and time.

For a smooth solution u(x, t), the local truncation error τ is found by

u(x, t + ∆t) − Q∆x,∆tu(x, t) = τ + ∆tO((∆t)p+1, (∆x)p+1) (5.1)

where

τ = ∆t[(∆t)pf(x, t) + (∆x)pg(x, t)]. (5.2)
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Here the functions f and g depend on the details of the difference operator. Coars-

ening the mesh and timestep by a factor of two, we can find the analogous relation

based on the same value of τ ,

u(x, t + 2∆t) − Q2∆x,2∆tu(x, t) = 2p+1τ + ∆tO((∆t)p+1, (∆x)p+1). (5.3)

The truncation error can be solved explicitly by comparing the result of two

timesteps of ∆t on the grid with spacing ∆x with that of a single timestep of 2∆t

on the coarser grid with spacing 2∆x,

τ =
Q2

∆x,∆tu(x, t) − Q2∆x,2∆tu(x, t)

2p+1 − 2
+ ∆tO((∆t)p+1, (∆x)p+1). (5.4)

Hence, this error estimation by Richardson extrapolation provides the AMR mech-

anism with an absolute determination of the truncation error that conveniently

combines both spatial and temporal errors.

For example, consider the evolution of the equation

∂q

∂t
=

∂p

∂x
(5.5)

and let the difference operator Q∆x,∆t be a second-order leapfrog timestep, cen-

tered space derivative so that

qn+1
j = Q∆x,∆t(q

n
j ) = qn−1

j +
tn+1 − tn−1

xj+1 − xj−1
(pn

j+1 − pn
j−1). (5.6)

For a mesh spacing of ∆x and a timestep of ∆t, the position and time are denoted

by xj ≡ j∆x and tn ≡ n∆t; abbreviated notation for p and q is pn
j ≡ p(j∆x, n∆t).

Let p̃(x, t) and q̃(x, t) denote the exact solutions. Taylor expanding for p and q

about (xj , t
n) for this difference operator produces

q(xj , t
n+1) − Q∆x,∆t(q(xj, t

n)) = τ + ∆tO((∆t)3, (∆x)3) (5.7)
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where the truncation error τ takes the form

τ = ∆t



(∆t)2

(

1

3

∂3q̃(x, t)

∂t3

∣

∣

∣

∣

∣

tn

)

+ (∆x)2





1

3

∂3p̃(x, t)

∂x3

∣

∣

∣

∣

∣

xj







 . (5.8)

Subtracting the result from a single timestep of 2∆t on a grid with spacing 2∆x

from the result of two timesteps of ∆t on the grid with spacing ∆x gives the

truncation error

τ =
Q2

∆x,∆t(q(xj , t
n)) − Q2∆x,2∆t(q(xj , t

n))

23 − 2
+ ∆tO((∆t)3, (∆x)3). (5.9)

For this specific difference operator, the functions f and g from (5.2) are given by

f(x, t) =
1

3

∂3q̃(x, t)

∂t3

∣

∣

∣

∣

∣

tn

(5.10)

and

g(x, t) =
1

3

∂3p̃(x, t)

∂x3

∣

∣

∣

∣

∣

xj

. (5.11)

Specifying another difference operator would result in different forms for these

functions.

Such a method of determining the truncation error is desirable for an adaptive

Lagrangian scheme, so let us consider this possibility. The GPM analogue of this

scheme involves taking two successive steps with smoothing length h and timestep

∆t and comparing to a single step with smoothing length 2h and timestep 2∆t.

Consider initially a 2-D distribution of particles on a uniform grid as shown in

Figure 5.1. For the two small steps, the smoothing sphere of radius h is indicated

by the dashed circle; the five neighbor particles, including the test particle at which

the gradient is being computed, are enclosed by circles. For the large single step,
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2h

h

Figure 5.1: Particles distributed on a uniform grid to be used for truncation error
estimation by Richardson extrapolation. The two small timesteps employ the
smoothing sphere of radius h, given by the dashed circle, and the five neighbors
enclosed by circles. The single large timestep must then use the smoothing sphere
of radius 2h, given by the solid circle, and only the five neighbors enclosed by
squares.
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the smoothing sphere of radius 2h is given by the solid circle. But, in order for the

subtraction in (5.4) to yield the truncation error correctly, the functions f and g

in the truncation error as determined by (5.1) must be identical to the functions

f and g in the truncation error from (5.3). These functions depend on the precise

explicit difference operator used. In particular, the stencil for the operator Q used

in both equations must be identical (apart from the scaling). Hence, only the five

neighbors enclosed by squares may be used for the calculation of the single large

timestep. (Note that a standard GPM calculation with smoothing radius 2h would

have used all 13 neighbors within the smoothing sphere, denoted in Figure 5.1 by

all the particles enclosed by either circles, squares, or triangles). So, for this

prescription for computing the truncation error to succeed, the large timestep

must use the same number of neighbors as the small timesteps and must employ

the same “stencil”—this amounts to requiring that the scaled particle distribution

used for the large timestep to be identical to the particle distribution for the small

steps. This is possible only for the special case of particles on a uniform grid. But

for a random particle distribution, this prescription for truncation error estimation

will fail. Even for a particle distribution initially on a grid, this computation

will fail because the particles will move with the flow away from their uniformly

distributed positions.

To construct an adaptive Lagrangian scheme, a new technique for error esti-

mation must be devised. The chief difficulty with any idea related to Richardson

extrapolation is that increasing the smoothing length—the GPM equivalent of

coarsening the grid—necessarily involves a lot of variation due to the somewhat
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random nature of the particle distribution in a Lagrangian code. Since GPM per-

forms an order p least squares fit over all particles in the smoothing sphere, it is

more natural to reduce the order of the fit than to increase the smoothing length.

The AMR technique is based on repeating a calculation at the same order but

with varying resolution. A particle code more naturally performs the complemen-

tary task: the basis of APR scheme error estimation is to repeat the calculation

at the same spatial resolution but with differing order of convergence.

Consider the exact solution u(x) and the local, pth-order GPM solution u(p)
x0

(x)

centered at point x0. The weighted error in the fit for a pth-order solution is given

by

χ2
p =

N
∑

i=1

[u(xi) − u(p)
x0

(xi)]
2W (xi, h) (5.12)

where the sum is over all N neighbors in the smoothing sphere of radius h and

W is the weighting function. Since u(p)
x0

(x) is the solution of the weighted least

squares fit problem of local polynomial regression, it is certain that χ2
p+1 ≤ χ2

p.

The behavior of the adaptive scheme is controlled by the ratio of the error in the

second-order GPM solution to that of the zeroth- and first-order solutions, χ2/χ0

and χ2/χ1.

The results of two successive tests, based on these two ratios, define which

of the four possible actions the adaptive scheme takes: refine, smooth, unrefine,

or nothing. A diagram demonstrating example situations in which each of these

actions would occur is presented in Figure 5.2. The value of the fitted function at

each particle is plotted as a point on this figure; linear fits to this set of particles

are given by the dashed lines, quadratic fits by the solid lines. The first test com-
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Good Fit

Refine Nothing

Smooth Unrefine

Poor Fit

Figure 5.2: The Adaptive Particle Refinement scheme chooses from four potential
actions based on the relative error in solutions of varying spatial order. An exam-
ple calling for each of these actions is shown. The values of the fitted functions at
each particle are given by the points, the first-order (linear) fit by dashed lines,
and the second order (quadratic) fit by solid lines. Examples of poor fits are given
in the left column: in the upper case the particle distribution is refined, in the
lower it is smoothed. Good fits are shown in the right column: in the upper case
nothing is done, in the lower the particle distribution is unrefined.
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pares the quality of the second-order fit, χ2/χ0, to a threshold for the maximum

acceptable error, fχmax
. If χ2/χ0 > fχmax

, the fit is poor; the scheme will either

refine, do nothing, or smooth at that point. If χ2/χ0 < fχmax
, the fit is good; the

scheme will either do nothing or unrefine.

If the first test determines that the fit is poor, the second test examines the

difference in the fit between a first- and second-order method. The left column in

Figure 5.2, labeled “poor fit”, demonstrates two extreme situations that result in

different actions taken by the adaptive scheme. If the second-order solution gives a

substantial improvement in error over the first-order solution, the value of χ2/χ1 is

small. In the upper left box of Figure 5.2, the linear fit (dashed line) is significantly

worse than the quadratic fit (solid line). In this case, the adaptive scheme chooses

to refine so that increased resolution yields a lower truncation error. A threshold

for refinement, fr, is specified so that the scheme refines for χ2/χ1 < fr. On the

other extreme, the lower left box of Figure 5.2 displays a second-order fit (solid

line) that yields no marked improvement over the first-order fit (dashed line).

In this case, the value of χ2/χ1 approaches the value 1. This typically signifies

that there exists some noise in the data causing a poor fit but that there is no

meaningful variation in scatter of particle values; smoothing of the values at the

current particle retains the local fluid information but diminishes the noise. A

threshold for smoothing, fsm ≥ fr, is defined such that the scheme smoothes

when χ2/χ1 > fsm. If fsm > fr, then there exists a window fr < χ2/χ1 < fsm

within which the scheme does nothing.

If the first test determines that the fit is good, the second test chooses whether

to do nothing or to unrefine. The right column in Figure 5.2, labeled “good fit”,
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First χ2/χ0 > fχmax
⇒ Poor Fit χ2/χ0 < fχmax

⇒ Good Fit
Test

Second χ2/χ1 < fr ⇒ Refine χ2/χ1 < fu ⇒ Nothing
Test

fr < χ2/χ1 < fsm ⇒ Nothing χ2/χ1 > fu ⇒ Unrefine

χ2/χ1 > fsm ⇒ Smooth

Table 5.1: Summary of the Adaptive Particle Refinement scheme based on the
relative error in solutions of varying spatial order. The first test evaluates the
quality of second-order solution by comparing it to the zeroth-order solution. The
second test judges the improvement of the fit when increasing from first to second
order.

provides an example for each of these cases. In the upper right corner of the figure,

the quadratic fit (solid line) yields a much better approximation to the particle

values than the linear fit (dashed line). In this case, χ2/χ1 is small. But if the

second-order fit does not significantly improve over the first-order fit, as displayed

in the lower right corner of Figure 5.2, the value of χ2/χ1 nears 1. In this case,

little is gained by the extra computational work required to calculate the second-

order solution; therefore, the adaptive scheme may unrefine in this region. The

unrefinement threshold, fu, is chosen so that, if χ2/χ1 > fu, the adaptive scheme

unrefines; otherwise, nothing is done.

The adaptive scheme for APR, based on estimates of the error in the spatial fit,

is summarized in Table 5.1. The behavior of the adaptive scheme is controlled by

setting the four threshold values, fχmax
, fr, fsm, and fu; each of these parameters
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takes a value between 0 and 1. This error estimation scheme determines when

to refine or unrefine the spatial resolution; the separate question of how to refine

or unrefine the resolution is addressed in Section 5.4. A simple answer is that

particles are added when refining and particles are removed when unrefining. The

scheme effectively adds particles locally whenever the fit is poor and a higher order

fit leads to a reduction in the error; conversely, it removes particles if the fit is

good and the error in the solution is not substantially worsened by dropping from

second to first order. Generally, this minimizes the number of particles needed for

a second-order fit to meet the established error threshold.

The scheme must also elegantly handle the occasion that the χ0 = 0 or χ1 = 0.

To achieve this simply, a minimum error threshold, χfloor , is chosen below which

the adaptive scheme takes no action. The case that χ0 < χfloor or χ1 < χfloor will

occur only when the value of the function is constant or varies perfectly linearly

over the smoothing sphere, or when the fluctuations away from constant or linear

behavior are very small. Adjustment of χfloor allows adjustment of the minimum

sensitivity of the adaptive scheme. For a highly nonlinear problem, it is often

desirable to prevent the adaptive scheme from adjusting to linear variations, so

χfloor can be set above the magnitude of linear fluctuations. Note that since this

value is not normalized, the absolute magnitude must be set independently for

each field that is fit by the GPM algorithm.

Note that although the error estimation by Richardson extrapolation used

by AMR neatly folds in the timestep errors with the spatial errors, the APR

error estimates are strictly spatial. Hence, the timestep must be controlled by
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a separate constraint. A suitable choice for timestep constraint is a Lagrangian

Courant-Friedrichs-Lewys (CFL) constraint.

|vrel |∆t

∆x
≤ 1, (5.13)

where the vrel is the maximum of the local wave speed or the relative particle

velocity and the particle spacing ∆x is related to the smoothing length h, for

example ∆x = h
√

π/N in the 2-D case. The error in the timestepping algorithm

is not computed, but tests of the adaptivity have not demonstrated any problems

arising from error in the timestep as long as CFL condition is met.

5.3 An Additional Problem: Disconnection

There are, in fact, two separate kinds of errors facing Lagrangian numerical meth-

ods: errors arising from the truncation error, and errors arising from the irregular

distribution of particles. The first type of error, which in fact is also affected by

the distribution of particles, can be handled by adaptive schemes as discussed in

Section 5.2. But this adaptivity cannot eliminate all problems that ill-distributed

particles can inflict.

The error arising from the particle distribution occurs because certain irregular

particle distributions can lead to inadequate sampling of the local environment.

Grid-based codes operate using a fixed stencil of grid points, thus ensuring that

the local environment is well sampled. But in the Lagrangian approach, the local

environment is sampled by finding all of the neighbors of a given particle within

a specified smoothing radius. But since the Lagrangian particles move about the

simulation domain, it is possible that all of the neighbors will be on one side of
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the current particle. Under these conditions, there is no information available

within the smoothing sphere about the fluid environment in the region lacking

particles. This can lead to an error entirely independent of the error in the fit of

the function at all of the particles in the smoothing sphere, a problem unique to the

nature of Lagrangian methods. And, worse, in certain circumstances, the error can

positively feedback on itself leading to a computational instability. I refer to this

particle distribution and environment sampling error as the disconnection error

and to the resulting computational instability as the disconnection instability.

Although all Lagrangian methods suffer this disconnection error, not all ap-

proaches are susceptible to the computational instability that can arise from it.

GPM suffers from both the error and the instability, but Smoothed Particle Hydro-

dynamics (SPH) [74, 122], a widely used Lagrangian method for hydrodynamic

simulation, admits the disconnection error but is immune to the instability. A

few simple one-dimensional examples illuminate this issue and demonstrate the

potential for a virulent disconnection instability in the GPM method.

Figure 5.3 illustrates the problem of the disconnection error and how it can

lead to a computational instability under certain conditions in the GPM method.

The figure shows plots of the pressure p vs. the coordinate x, where the solid

line indicates the underlying pressure profile. Values of pressure at each particle

are indicated by the solid and open circles; the open circle is the test particle at

which the calculation of the pressure gradient is to be computed. In this case, the

number of neighbors, including the test particle, is specified at N = 3; the limits

of the smoothing sphere of radius h, adjusted to include only N = 3 neighbors,

are denoted by the dashed lines. The problem of disconnection, or inadequate
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Figure 5.3: Illustration of disconnection in Lagrangian methods. In this 1-D
example, the values of pressure vs. position for each particle are indicated by the
open and solid circles; the underlying pressure profile is shown as a solid line.
The limits of the smoothing sphere of radius h, set to include N = 3 neighbors
(including the test particle denoted by the open circle), are denoted by the dashed
lines. In the SPH cases of the left column, the pressure force is always to the left,
closing the disconnection; the leftward directed pressure force in the upper left
plot, however, is unphysical. In both of the GPM cases, the computed pressure
force agrees in direction with that of the underlying pressure profile. The dynamic
motion of the test particle in the upper right case, though, further opens the
disconnection, leading to a computational instability.
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sampling of the local environment is apparent: all of the neighbors lie on the right

side of the test particle, so there is no information about the fluid environment to

the left of the test particle. Note that although neighbor number of N = 3 is too

small to be suitable for actual computational work, it is chosen to simplify this

illustration of disconnection.

The upper right corner of Figure 5.3 includes a linear fit (dot-dashed line) to

the particles within the smoothing sphere. The error in this linear fit, as would

be measured by χ1 as outlined in Section 5.2, is very small; the resulting gradient,

however, does not match the gradient of the underlying pressure profile (solid line)

at the test particle. This is the disconnection error. This error is independent of

the quality of the fit to the particles within the smoothing sphere; the error exists

because the local environment is not adequately sampled.

The disconnection error, however, does not necessarily lead to a computational

instability. To understand how the instability can occur, we must investigate the

effect of the disconnection error on the dynamics of the system and how those

dynamics can worsen or alleviate the disconnection. In a hydrodynamic fluid,

a gradient in pressure causes an acceleration down the pressure gradient. In a

Lagrangian particle sense, particles will move down the pressure gradient. Let us

consider the forces derived by the SPH and GPM methods in this situation where

disconnection occurs.

The pressure force in SPH is calculated as a particle-on-particle force; this en-

sures conservation of momentum in the scheme. The lefthand column of Figure 5.3

shows the behavior of the SPH method when disconnection occurs. Because the
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pressure force is approximated by a particle-on-particle force, the pressure force

(open arrow) on the test particle will necessarily be to the left. In the lower left

plot of the figure, this is in fact the correct behavior; in the upper left plot, how-

ever, the force from the true pressure gradient is in the opposite direction, so the

leftward directed pressure force is unphysical and represents the manifestation of

the disconnection error in SPH. The dynamic effect on the particle distribution is,

in either case, to close the disconnection and eventually reestablish contact with

the fluid environment to the left of the test particle.

In GPM, the pressure force is calculated from the local gradient of the pres-

sure as determined by a local least squares fit of the values of pressure at the

particles within the smoothing sphere. For simplicity in this example, we consider

a first-order GPM method and examine the linear fit to the values of pressure at

the particles within the smoothing sphere. The righthand column in Figure 5.3

illustrates the behavior of the GPM algorithm in the case of disconnection. The

upper right plot shows the linear fit (dot-dashed line) to the particles within the

smoothing sphere. The gradient of the pressure is overestimated by this linear fit

compared to the true gradient at the test particle of the underlying pressure pro-

file (solid line); this is the manifestation of the disconnection error in GPM. Note

that, using the GPM algorithm, the pressure force (open arrow) is in the same

direction as the true underlying pressure gradient. The lower right plot shows

a pressure force to the left, again agreeing with the direction of the underlying

pressure gradient. But the dynamic effect on the particle distribution is different

between these two cases: in the lower right plot, the test particle is forced in the

direction to close the disconnection and regain contact with the fluid environment
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to the left; but, in the upper right plot, the test particle is moved further away

from the particles to the left, worsening the disconnection. This positive feedback

on the disconnection, in this case, leads to a virulent computational instability.

The best course to handle the error associated with disconnection and to avoid

the pernicious disconnection instability is to prevent disconnection from occurring

in the first place. Verifying connection to a neighbor in each direction along the

coordinate axes is necessary. To achieve this in one dimension is trivial; here I out-

line a strategy that operates at arbitrary dimensionality. For illustrative purposes,

I expound upon the example in two dimensions and touch upon the modifications

necessary for a three-dimensional simulation. To discuss the strategy to prevent

disconnection, I must define the concept of mutual neighbors: mutual neighbors

are two particles for which each is a neighbor of the other. In other words, two

particles are mutual neighbors if they lie within each other’s smoothing spheres.

Consider a 2-D case with a neighbor number N = 5, illustrated in Figure 5.4

where the particles are plotted as filled circles (ignore the squares for the mo-

ment). Particle 2 is a neighbor of particle 1, but particle 1 is not a neighbor of

particle 2; thus, they are not mutual neighbors.

The strategy to prevent disconnection operates by ensuring that there is a

mutual neighbor in both directions along each coordinate axis. When the rates of

change are to be calculated for particle 2 in Figure 5.4, for example, a Lagrangian

method must first determine the N = 5 neighbors within the smoothing sphere

(counting particle 2 itself as a neighbor). To ensure that there is a mutual neighbor

along both directions of each coordinate axis, the smoothing sphere is split into

four quadrants along y = x and y = −x in two dimensions. (In three dimensions,
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Figure 5.4: Sketch of the problem of disconnection in Lagrangian methods. The
smoothing sphere around particle 2 contains no particles (filled circles) in the left-
hand quadrant; it is disconnected from the fluid to its left, having no information
about the fluid environment in the −x direction. Disconnection may be corrected
by a) adding a particle at the center of the empty quadrant (open square) in the
smoothing sphere of particle 2, or b) adding a particle midway between particles
1 and 2 (filled square) because particle 2 is the nearest neighbor in the righthand
quadrant of particle 1 but is not a mutual neighbor of particle 1.
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the sphere is split into 6 “pyramidal” sections along the planes y = x, y = −x,

z = x, z = −x, z = y, and z = −y.) These quadrants are marked in Figure 5.4 by

the diagonal dashed lines in the smoothing sphere of particle 2. These quadrants

are used as the basis for two tests to check for any possible disconnection and

correct the problem if a disconnection is detected.

First one must check to see if there exists a disconnection in the neighbor

distribution, manifested by an empty quadrant of the smoothing sphere. In the

case of the smoothing sphere of particle 2 in the figure, the lefthand quadrant

is devoid of neighbors. To reestablish connection to the fluid in that direction

(the −x direction), a particle can be added in the center of that quadrant at the

position of the open square. The interpolation of the fluid values centered at the

added particle position will certainly include a contribution from particle 1 in the

figure; the new particle reconnects particle 2 to the fluid environment in the −x

direction.

Although in this example the disconnection is eliminated by filling empty quad-

rants, this measure alone may not be sufficient to patch a disconnection. If particle

1 in Figure 5.4 was much further to the left, it would not necessarily be included

in the smoothing sphere centered on the open square for the interpolation of the

new particle values. Particle 2 has no information about the fluid in the −x di-

rection, so it cannot ensure that the problem is corrected. To guarantee that the

disconnection is patched, the new particle must placed by particle 1, a particle is

not yet suffering disconnection.

The second test to correct the disconnection is to verify that the closest neigh-
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bor in each quadrant is a mutual neighbor. In Figure 5.4, particle 1 is not suffering

disconnection because no quadrant within its smoothing sphere is devoid of neigh-

bors. But second test will determine that particle 2, its nearest neighbor in the

righthand quadrant, is not mutual neighbor. Thus, although particle 1 suffers no

disconnection, it can detect if one of its neighbors is disconnected from it. To

strengthen the connection between particle 2 and itself, particle 1 adds a particle

at a position midway between them, located at the position of the filled square.

This measure ensures that the nearest neighbor in each quadrant is a mutual

neighbor, solidifying the connection between the fluid environment at particle 1

and that at particle 2.

In summary, the problem of disconnection in the particle distribution is alle-

viated by a double measure taken when each particle determines the neighbors

within its smoothing sphere:

1. If a quadrant contains no neighbor, add a particle in the center of that

quadrant.

2. If the closest neighbor in each quadrant is not a mutual neighbor, add a

particle midway between.

This disconnection instability is somewhat rare in non-adaptive GPM but does

occur occasionally, rendering the GPM method without disconnection protection

somewhat fragile. But if the APR scheme for adaptivity is employed, the suscep-

tibility to the disconnection instability is heightened dramatically. The addition

of particles under the adaptive scheme leads to a highly non-uniform particle
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distribution; this is, of course, the goal of an adaptive algorithm. But such a

non-uniform particle distribution greatly increases the probability that a given

particle’s neighbors will all lie on one side of the particle, leaving an empty quad-

rant of the smoothing sphere and giving rise to a malignant disconnection.

5.4 Specific APR Implementation Details

Two questions must be answered by any adaptivity scheme: when does the scheme

refine or unrefine, and how does the scheme refine or unrefine? The first question

is answered by the error estimation scheme described in Section 5.2. But how the

adaptivity strategy increases or decreases the local spatial resolution is equally

important.

Lagrangian particle methods boast the characteristic advantage that the data

structure containing the values describing the fluid at each particle can simply

be a list of particles. Some spatial organization of this list is necessary to find

the neighbors of a given particle efficiently, but this issue can be dealt with in-

dependently of the structure containing the particle data. Therefore, increasing

or decreasing the spatial resolution anywhere is as simple as adding or removing

particles from the list. The APR scheme developed here simply adds or removes

a single particle each time refinement or unrefinement is called for by the error

estimation scheme.

At each particle where the error estimation scheme demands refinement, a sin-

gle particle is added within the smoothing sphere. The position within the sphere

is chosen by a weighted, exclusive random procedure. First, a random position is
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chosen within the sphere, weighted in the radial direction by the same smoothing

function used in the GPM algorithm. Second, the distance from this position to

each particle already in the smoothing sphere is calculated; any position within

a specified fraction of the smoothing length from another particle is discarded

and a new weighted random position is chosen. This process continues until an

acceptable position for the new particle is found. This weighted, exclusive ran-

dom procedure is constructed to place new particles preferentially in voids that

exist in the particle distribution within the smoothing sphere. The values of the

local fluid environment are then interpolated by a local least squares fit, using the

same GPM algorithm, centered at the new position; the mean values derived by an

order-p GPM algorithm centered at the new position have an order of convergence

p + 1.

Unrefinement by the removal of a single particle is even more simple. The par-

ticle whose error commands unrefinement is combined with its nearest neighbor.

The average position is chosen and the fluid values at the combined particle are

summed from the constituent particles in a conservative way.

Additionally, any adaptive scheme must have some means of limiting the level

of refinement or unrefinement. This is accomplished simply in the APR frame-

work by specifying a minimum and maximum smoothing length, hmin and hmax.

When the error estimation scheme described in Section 5.2 determines the need

for refinement at a given particle, the addition of new particle is prevented if the

smoothing length at the current particle h ≤ hmin. In a complementary sense, if

unrefinement is desired by the error estimation scheme, a particle is not removed

if its smoothing length h ≥ hmax. The minimum and maximum spatial resolution

135



of the APR scheme is specified easily by setting these smoothing length limits

hmin and hmax.

The adaptive scheme can add, smooth, or remove a particle at each existing

particle as it loops through the list of particles to calculate the rates of change.

Newly added particles are added to the end of the list and can themselves call

for particle addition, smoothing, or removal. Thus, much refinement can occur

in one timestep during a single pass over all the particles. To prevent an expo-

nential runaway in this refinement, the adaptive algorithm can be limited so that

the variation of particle smoothing lengths over the current particle’s smoothing

sphere does not exceed a limiting value, h∇. The implementation of this adaptiv-

ity control finds the minimum and maximum values of the smoothing length, hmin

and hmax, of all the neighbors in the smoothing sphere—note that these values are

local minimum and maximum values of smoothing length within the smoothing

sphere, not to be confused with the global smoothing length limits described in

the previous paragraph. If the ratio hmax/hmin > h∇, then refinement and un-

refinement are inhibited. Exceptions occur in two cases: if the current particle

h = hmin, then unrefinement is allowed, and if the current particle h = hmax, then

refinement is allowed. These exceptions prevent the formation of local minima

and maxima in the particle distribution, yielding a clumpy particle distribution,

unless the error estimation demands it. The h∇ control stabilizes the adaptivity

scheme, preventing any runaway refinement.

Although the measures described here to stabilize the adaptive scheme do

produce a stable method, they represent only the first attempts at developing
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such a scheme. Further development and testing of the adaptivity scheme may

lead to improved performance.

5.5 Magnetic Divergence Control

In the evolution of the magnetic field B for magnetohydrodynamic (MHD) simu-

lation using GPM, the maintenance of zero magnetic divergence, ∇ · B = 0, is a

key issue. If the magnetic field is evolved computationally according to magnetic

induction equation (here in Lagrangian form where d/dt = ∂/∂t + v · ∇)

dB

dt
= B · ∇v − B∇ · v, (5.14)

then the magnetic field may develop a non-zero magnetic divergence due to the

finite truncation error inherent in any numerical method. Special care must be

taken to prevent any non-zero magnetic divergence from corrupting the calcula-

tion.

In a simple application of the GPM algorithm for MHD simulation, each com-

ponent of the magnetic field is fit independently. Therefore, although the un-

derlying magnetic field may indeed be divergence free, the discrete nature of the

computation of gradients of the magnetic field components does not guarantee

that

dBx

dx
+

dBy

dy
+

dBz

dz
= 0. (5.15)

To observe this constraint, the components of the magnetic field must be fit con-

sistently.
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In first-order GPM in three dimensions, the solution of a single component of

the field requires the inversion of a 4×4 matrix. To solve for all three components

simultaneously would require the inversion of an 9 × 9 matrix (the mean is then

calculated only once and the constraint is used to eliminate one of the gradients in

the divergence). Although more expensive computationally, this technique would

not be prohibitive for a first-order calculation. But to solve a single component in

a second-order calculation, a 10× 10 matrix must be inverted. The simultaneous

solution of all three components to second order including the four divergence

constraints requires the inversion of a 24 × 24 matrix; the computational cost of

this inversion is indeed prohibitive.

A far more elegant solution is to fit for the magnetic field by introducing the

divergence constraint into the weighted least squares minimization problem as a

Lagrange multiplier. By this method, each component is solved independently as

before, but a subsequent step calculates the value of the Lagrange multiplier to

correct the initial solutions so that they obey the added constraint.

The first-order GPM algorithm with magnetic divergence control follows these

steps. First, the neighbors in the smoothing sphere are identified and the ma-

trix corresponding to the spatial distribution of particles is constructed (this is

the matrix S of (9) in [125] or (3.9) here). The vectors for each field (Q in the

same equation) are computed at the same time. Next, inversion of the matrix

and operation on the vectors yields the solution—containing the mean and gra-

dient values—for each field component being fit. For the magnetic field, these

solutions represent the best fit to the particle distribution for each component

independently; we desire, though, the best fit for each component subject to the
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constraint that the magnetic divergence is zero. Thus, in the next step, these un-

constrained solutions are used to determine the value of the Lagrange multiplier

used to introduce the divergence constraint. Finally, the computed multiplier is

then used to correct the unconstrained solutions so that the magnetic divergence

criterion is met. The mathematical details of this procedure are presented in

Appendix D.

For the second-order GPM algorithm with magnetic divergence control, there

are four constraints on the solutions that must be satisfied,

∇ · B = 0,
d∇ · B

dx
= 0,

d∇ · B
dy

= 0,
d∇ · B

dz
= 0. (5.16)

Each of these constraints must be added to the weighted least squares minimiza-

tion problem with its own Lagrange multiplier. After the solution of each com-

ponent independently, a subsequent matrix equation must be solved for the four

Lagrange multipliers. In the final step, these values can be used to correct the

unconstrained component fits so that solution for the magnetic field is divergence

free. Appendix D once again provides the details of this calculation.

One important point about this method is that it provides the solution of the

magnetic field with zero divergence that most closely fits the values of magnetic

field at all neighbor particles. It does not, however, affect the values of the mag-

netic field on those particles. If the data on the particles were derived from an

unphysical magnetic field with non-zero divergence, this technique would find the

divergence free solution that most closely fits the data in a weighted least squares

sense. But it does not mean that the field represented by the values on the par-

ticles is divergence free. This means that, to maintain values of magnetic field
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on the particles that represent a divergence free field, some step must be taken

to feed the divergence free solution back to the values on the particles. This is

done by smoothing the values on the particles periodically towards the divergence

free solution computed by this method. This smoothing process is discussed in

section 3.2.2 of Maron and Howes [125] and in Section 3.5.2 here. Without such

smoothing, the field represented by the values on the particles may accumulate a

non-zero divergent component.

5.6 Results

To demonstrate most clearly the ability of the APR scheme to improve efficiently

the spatial resolution in regions of large truncation error we use the standard 1-D

shock tube test [173]. This test comprises a domain over [0,1] with an initial

discontinuity at x = 0.5: to the left of the discontinuity p = 1.0 and ρ = 1.0;

p = 0.1 and ρ = 0.125 to the right; initial velocity is zero everywhere and the

adiabatic index is γ = 1.4. Results are plotted at time t = 0.245.

A comparison of the results of adaptive vs. non-adaptive schemes for a 1-D

shock test [173] is presented in Figure 5.5. The parameters for the adaptive run

were fχmax
= 0.1, fr = 0.45, fsm = 0.45, fu = 0.95, h∇ = 1.8, hmin = 0.0005,

hmin = 0.05, variable smoothing length with N = 7 neighbors, fCFL = 0.125,

and artificial viscosity with α = 0.5 and β = 1.0. For the non-adaptive run, the

parameters were second-order GPM, Np = 400 particles, first-order smoothing

applied every 32 timesteps with fsm = 0.25, variable smoothing length with N =

7 neighbors, ∆t = 0.0001, and artificial viscosity with α = 0.5 and β = 1.0.
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Figure 5.5: Comparison of adaptive and non-adaptive results for the 1-D shock
tube [173] at t = 0.245. Plotted are a Riemann solver solution (solid line), a non-
adaptive GPM solution (triangles), and an APR adaptive GPM solution (circles).
Below are plotted the positions of the particles for both of the GPM runs. The
adaptive solution more highly resolves the shock front while using fewer overall
particles.
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This plot focuses on the shock front propagating into the low density medium to

the right. A Riemann solver solution (solid line), a non-adaptive GPM solution

(triangles), and an adaptive GPM solution (circles) are shown. The shock front

is clearly much steeper, with the corners in the pressure profile more well defined,

in the adaptive run. Also plotted at the bottom are the positions of the particles

for both of the GPM simulations: it is clear that, although the adaptive scheme

uses fewer particles, the spatial resolution in the region of the shock front in much

higher. The adaptive scheme here used approximately 260 particles, whereas

the non-adaptive run employed a constant 400 particles; the adaptive scheme is

therefore more efficient.

A plot of the pressure across the shock front and the particle distribution

resulting under the adaptive scheme for a 2-D simulation of the same shock test

is presented in Figure 5.6. Adaptive run parameters were fχmax
= 0.1, fr = 0.45,

fsm = 0.45, fu = 0.95, h∇ = 1.25, hmin = 0.001, hmin = 0.05, variable smoothing

length with N = 21 neighbors, fCFL = 0.125, first-order smoothing applied every

32 timesteps with fsm = 0.25, and artificial viscosity with α = 0.5 and β = 1.0.

The simulation box size was 1.0 × 0.1. Parameters in the non-adaptive run were

second-order GPM, Np = 4000 particles, first-order smoothing applied every 16

timesteps with fsm = 0.5, variable smoothing length with N = 21 neighbors,

∆t = 0.0001, and artificial viscosity with α = 0.5 and β = 1.0. The upper plot

shows three results: the squared off shock is a Riemann solver solution, the thick

line is the adaptive run which used approximately 4000 particles, and the thin

line is a non-adaptive run that used exactly 4000 particles. The adaptive run

resolves the shock more sharply. The lower plot in Figure 5.6 shows the particle
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Figure 5.6: The upper plot compares three solutions to the Sod [173] shock test:
the squared off line is a Riemann solver solution, the thick line is an adaptive run
employing approximately 4000 particles, and the thin line is a non-adaptive run
using exactly 4000 particles. The lower plot shows the 2-D particle distribution
for the adaptive run.

143



distribution for the adaptive run. Although the resulting particle distribution

across the shock is somewhat clumpy, the spatial resolution has clearly adapted

to a much higher value than in the pre-shock or post-shock regions.

The problem of the magnetized vortex, as described in Section 4.3, provides an

ideal demonstration of the adaptivity of the APR scheme. The initial velocity is

given by (4.1) with the values v0 = 0.2 and r0 = 0.1667 in a 2-D periodic box of size

1.0×1.0. The sound speed is cs = 1.0 and the Alfvén velocity corresponding to the

initial field is vA = 0.02. The azimuthal velocity winds up the weak magnetic field

in the x-y plane, producing a field with reversals in magnetic field direction with

radius. The density and energy remain approximately constant and the scheme

adapts to the rapid reversals in the magnetic field.

Figure 5.7 shows the results for an adaptive simulation of the magnetized

vortex. In the upper panel, the particle distribution displays the development of

a spiral pattern due to the adaptivity responding to the winding up of the magnetic

field. A comparison of the cross-section of By vs. x over −0.005 < y < 0.005 for

an adaptive and a non-adaptive simulation is presented in the lower two panels.

Parameters chosen for the adaptive run are fχmax
= 0.1, fr = 0.45, fsm = 0.8,

fu = 0.95, h∇ = 1.25, hmin = 0.005, hmin = 0.05, variable smoothing length

with N = 21 neighbors, fCFL = 0.25, second-order smoothing applied every 32

timesteps with fsm = 0.25, and artificial viscosity with α = 0.05 and β = 0.1.

The non-adaptive runs employs second-order GPM, Np = 16384 particles, second-

order smoothing applied every 16 timesteps with fsm = 0.5, variable smoothing

length with N = 21 neighbors, ∆t = 0.004, and artificial viscosity with α = 0.05

and β = 0.1. The plots in Figure 5.7 are made at t = 5.0 when the adaptive
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Figure 5.7: For the simulation a magnetized vortex, the upper panel displays the
particle distribution for an adaptive run at t = 5.0; the spiral pattern reveals the
underlying winding up of the weak magnetic field. The lower panels compare the
cross-section of By vs. x over −0.005 < y < 0.005 for an adaptive and a non-
adaptive simulation; the adaptive simulation resolves the magnetic field reversals
more sharply.
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run has Np = 15645 particles and the non-adaptive run has a constant value of

Np = 16384 particles.

The increase in spatial resolution for the adaptive run is clear in the lower two

panels of Figure 5.7. The regions of high curvature in By contain more particles

in the adaptive run than in the non-adaptive run, resolving the magnetic field

reversals much more sharply even for a slightly fewer total number of particles.

5.7 Conclusions

In the face of limitations on computational power, adaptive algorithms are fre-

quently used to achieve high local spatial resolution in global simulations of astro-

physical systems. The adoption of Adaptive Mesh Refinement (AMR) for grid-

based methods is commonly used to realize adaptivity; another choice to take ad-

vantage of adaptivity is to use a Lagrangian numerical method. The Lagrangian

approach is significantly less complicated than the AMR strategy, yet the La-

grangian approach adapts only to mass density and not generally to all evolved

fields as AMR does. The new scheme of Adaptive Particle Refinement (APR) is

introduced here to combine the simplicity of the Lagrangian approach with the

general adaptivity of AMR.

AMR determines the need for refinement according to a truncation error esti-

mate based on an Richardson extrapolation. The nature of Lagrangian methods,

however, excludes the possibility of using this strategy for error estimation. Fun-

damentally, AMR computes this error by varying the resolution while holding
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constant the method’s order of convergence; APR takes a complementary ap-

proach by varying the order of convergence of the method with a constant spatial

resolution. The error estimated by the APR strategy determines the action to

be taken: refine, smooth, unrefine, or nothing. The APR scheme considers the

error in the spatial fit only and does not estimate the timestep related error; the

timestep is determined by the Lagrangian Courant condition for stability.

Lagrangian methods, unlike grid-based methods, suffer from two distinct types

of error: truncation error and disconnection error. The disconnection error can

occur if the distribution of neighbor particles within the smoothing sphere does

not adequately sample the local fluid environment. A strategy is outlined here

that prevents disconnection by ensuring that a mutual neighbor exists within the

smoothing sphere along both directions of each coordinate axis. This reduces the

error due a poor distribution of particles and inhibits the growth of the pernicious

disconnection instability that can occur in GPM codes.

Implementation of the APR scheme requires some mechanism for refining and

unrefining the spatial resolution. This is accomplished by the addition (removal)

of a single particle each time refinement (unrefinement) is needed. Addition or

removal of a particle involves an interpolation of the local fluid quantities or the

conservative combination of the particle with its nearest neighbor. The range

of spatial resolution in a simulation is controlled by setting limits for the mini-

mum and maximum smoothing length. Runaway refinement or unrefinement can

be prevented by limiting the variation of smoothing lengths over the smoothing

sphere.
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The elimination of magnetic divergence in a GPM code can be achieved el-

egantly by the inclusion of the magnetic divergence constraint as a Lagrangian

multiplier in the least squares minimization problem. In practice, this requires a

subsequent step that applies a correction to the independent, unconstrained fits

for each component of the magnetic field.

Results of shock tests demonstrate the ability of the APR scheme to adapt

the particle distribution in one and two dimensions to realize a higher spatial

resolution than a non-adaptive code using the same total number of particles.

Simulation of a magnetized vortex displays clearly the adaptivity responding to

the formation of small-scale structure in the magnetic field. The concentration of

the particle distribution in only the regions of small-scale structure resolves this

structure more clearly than a non-adaptive code.

The potential for a framework for general adaptivity in a Lagrangian parti-

cle code is clearly demonstrated by the APR scheme described here. The APR

scheme is capable of attaining a high local spatial resolution in regions of small-

scale structure while efficiently reducing the number of particles used in more

smooth regions. The computational efficiency of this adaptive method enables

the simulation of global astrophysical systems without sacrificing the spatial reso-

lution in regions of small-scale activity. Currently, the technique requires a mini-

mum of seven adjustable parameters to control the adaptivity—fχmax
, fr, fsm, fu,

χfloor , hmin, and hmax. Another parameter, h∇, can be used to prevent adaptivity

from running away in an unstable manner. Further testing and development of

the scheme may reduce the number of requisite parameters. The current scheme
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is also somewhat sensitive to changes in these running parameters, leading eas-

ily to over- or under-refinement. Fine tuning of the APR scheme will lead to a

method that is less susceptible to variation in the running parameters. But the

initial development of Adaptive Particle Refinement demonstrates the potential

for achieving a significant computational advantage over non-adaptive Lagrangian

schemes.
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Chapter 6

Galactic Model

To study the evolution of the magnetic field in the Milky Way requires a Galac-

tic model that describes the basic dynamics of the ISM in the Galaxy over the

timescale of interest. The age of the Galaxy is on the order of 1010 years. A study

of the magnetic evolution of the Galaxy must cover a minimum of a few 109 years.

On this timescale, the key dynamical feature to be reproduced by the model is the

slow infall of the ISM from large Galactocentric radii toward the Galactic center.

On shorter timescales, the Galaxy should be in an approximately steady state

of motion about the Galactic center. The aim of this chapter is to construct a

simple Galactic model incorporating the minimum number of physical processes

to achieve this goal.

A meaningful study of the evolution of the magnetic field in the Galaxy requires

a three-dimensional treatment. The magnetic energy in a purely two-dimensional

flow must ultimately decay to zero [57, 193]; but in three dimensions, a dynamo

can amplify and maintain a magnetic field indefinitely. A fundamental difference

exists between two-dimensional and three-dimensional magnetic systems. And, as
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suggested by Lubow et al. [121], the vertical structure of the Galaxy may critically

determine the evolution of the large-scale magnetic field. Although the numer-

ical work presented in this dissertation is limited to preliminary models in two

dimensions, the long-term aim of this work is to conduct three-dimensional simu-

lations of the Galactic magnetic field evolution. Therefore, this chapter focuses on

the development of three-dimensional Galactic models; changes appropriate for a

two-dimensional model are noted.

6.1 Elements of a Galactic Model

The evolution of the magnetic field in the Galaxy depends on the dynamics of

the ISM and on the magnetic diffusive properties of the interstellar environment.

The diffusive properties of the ISM are somewhat controversial, so discussion will

be postponed to the end of this section. Here the elements of a Galactic model

needed to produce qualitatively realistic behavior of the ISM are outlined.

The ISM is a very heterogeneous medium that varies spatially over a large

range of densities and temperatures [58]. Limits on computational power mean

that this heterogeneous structure must remain largely unresolved in a global sim-

ulation of the Galaxy. It is necessary to adopt a homogeneous approximation of

the ISM, attempting to maintain fidelity to the gross physical characteristics of

the medium. The properties of this homogeneous approximation to the ISM are

discussed in Section 6.2.

The dynamical motion of the ISM is dominated by the gravitational potential

of the Galaxy due to the distribution of mass in the form of stars, gas, and dark
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matter. Over the lifetime of the Galaxy, this gravitational potential certainly

evolves; but on the shorter timescale of a few 109 years, this change is neglected

and a fixed potential is taken. Although the true gravitational potential of the

Galaxy contains much structure, stellar orbits at galactocentric radii greater than

5 kpc can be accurately modelled by an axisymmetric model [62]. In the central

few kiloparsecs of the Galaxy, however, a non-axisymmetric mass distribution in

the Galactic bulge significantly breaks this axisymmetry [134, 32, 23, 15, 28, 72].

Observations of dust lanes at the center of barred galaxies [161] suggest shocks in

the gas flow at the leading edges of the bar. Numerous studies have demonstrated

that a rotating bar component of the mass distribution leads to strong shocks in

the gas flow and induces trailing spiral arms in the gas density [24, 6, 92, 67, 68].

The shocks and spiral structure transport angular momentum outwards in the

ISM, allowing the gradual infall of material towards the Galactic center. To

effect the desired general behavior of the ISM in a Galactic model, a primarily

axisymmetric gravitational potential with a rotating bar potential within the inner

few kiloparsecs is sufficient. These elements can produce a disk system with

primarily circular motion about the Galactic center on the inner rotation timescale

of 108 years but with slow accumulation of the ISM radially towards the Galactic

center on a timescale of 109 years. This model, necessarily a simplification of the

true Galactic potential, is detailed in Section 6.3.

Even a model with an exact Galactic gravitational potential, however, would

not reproduce the observed characteristics of the Galaxy. A number of other phys-

ical processes that act as sources and sinks of energy and density in the ISM are

necessary. The strong shocks induced by the bar, for example, lead to compression
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of the ISM to high densities and temperatures; additionally, the radial inflow of

the ISM leads to a buildup of mass in the Galactic center. In regions of increased

mass density, the star formation rate tends to increase acting as a sink for mass

density and a source for thermal energy. And, radiative cooling from molecular

clouds becomes more efficient as the temperature increases, behaving as a sink

for thermal energy. These unresolved physical processes must then be incorpo-

rated into the model by prescription, as described in Section 6.5, to reproduce a

reasonable Galactic evolution over time scales on the order of 109 years.

For an investigation of the magnetic field evolution in the Galaxy, the Galactic

model includes these key elements: a homogeneous ISM, a constant axisymmetric

gravitational potential, a rotating bar component of the gravitational potential in

the inner Galaxy, star formation, and radiative cooling of the ISM. This simple

Galactic model neglects a host of other physical effects that affect the evolution of

the Galactic magnetic field. As further development requires, the basic Galactic

model may be enhanced both by using initial conditions that more closely fit

the observations as well as by incorporating more physical processes. Additional

complexities of the initial conditions or the physics that may be added in the

future include:

• the inhomogeneous distribution of the ISM (all phases of the ISM, particu-

larly including molecular clouds)

• the self-gravity of the ISM

• dynamical friction due to stars
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• an evolving, and possibly self-consistent, stellar and dark matter distribution

for the Galactic gravitational potential

• spiral structure in the stellar distribution

• stellar mass loss that recycles gas back to the ISM

• heating of the ISM by cosmic rays

• ambipolar diffusion

• turbulent diffusivity to enhance both viscosity and resistivity

• random forcing of the ISM by supernovae and stellar winds to drive turbu-

lence

• injection of energy into molecular clouds from stellar radiation in regions of

star formation

• a Galactic wind flowing away from the Galactic disk into the intracluster or

intergalactic medium

Equally as important as the dynamics of the ISM to the evolution of the

Galactic magnetic field is the effect of magnetic diffusion. Section 1.1 estimates

the length scale over which diffusion is important for a homogeneous ISM as

L ≤ 10−8 pc. For larger scales, the magnetic field is assumed to be frozen-in

to the ISM. Yet there are several arguments that the effective magnetic diffusion

in the ISM is much greater than the molecular value estimated here. The most

commonly invoked argument is the concept of turbulent diffusion: turbulent eddies
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swirl and mix the magnetic field on small scales on the timescale of the turnover

time for the smallest eddy in the turbulent cascade. This turbulent motion quickly

transports magnetic energy to small scales where the molecular diffusivity destroys

the magnetic flux [144, 143]. Another idea is that the effect of the inhomogeneity

of the ISM may alter the effective magnetic diffusivity. Although the magnetic

field is well frozen to the hot, fully ionized components of the ISM, within colder

molecular clouds ambipolar diffusion enables the magnetic field to move relative to

the mass of the ISM. Alternatively, the large scale magnetic field may simply pass

around, rather than through, the dense molecular clouds, allowing a large relative

velocity between the mass of the ISM and the magnetic field lines. Conclusive

evidence has yet to be provided for any of these arguments, so magnetic diffusion

is not specified in the model.

6.2 The Computational Approximation of the

ISM

Because we cannot resolve the heterogeneous nature of the ISM in a global Galac-

tic disk model, we must make some approximation to its properties. Consider the

physical size of a single computational particle in a simulation employing Np par-

ticles of uniform mass in the case that the number density of particles reflects the

mass density of the ISM (this constraint need not be met in adaptive simulations).

If the ISM density distribution is given by the double exponential law of (6.9), we

can estimate the mean interparticle distance l0 at the Galactic center. The total

mass MD enclosed in a cylindrical simulation domain of radius Rout = 12.0 kpc
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and height zout = 0.20 kpc is

MD = Mism

[

1 − exp
(

− zout

zism

)] [

1 −
(

1 +
Rout

Rism

)

exp
(

−Rout

Rism

)]

(6.1)

In this case, the mean interparticle distance l0 is

l0 =

[

MD

Mism

4πzismR2
ism

Np

]1/3

(6.2)

For the parameter values Np = 1283 particles, Mism = 1010 M⊙, Rism = 4.0 kpc,

and zism = 0.040 kpc, the interparticle distance l0 = 15 pc. Since molecular clouds

have a typical scale of 5–50 pc [79], a single computational particle represents one

or more dense molecular clouds and the intervening diffuse intercloud medium.

Figure 6.1 shows schematically the unresolved structure of the ISM within the

volume of single computational particle.

With the wide variation of densities and temperatures contained within the

physical extent represented by a single computational particle, we pose the ques-

tions: what are the appropriate spatially averaged densities and energies, and

to what do these modelled densities and energies correspond in the physical sys-

tem? The answer to these questions differs depending on whether the dynamic or

energetic characteristics of the ISM are under consideration.

If the small-scale structure (on scales less than or equal to the computational

particle size) of the ISM is not evolving on the dynamic timescales of interest

(i.e. undergoing gravitational collapse as a prelude to star formation), the various

components of the ISM must be in pressure equilibrium with each other. The

diffuse intercloud medium indicated in Figure 6.1 is a spatial average of the warm
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Figure 6.1: This figure shows the unresolved structure of the ISM contained within
a single computational particle. With a particle size l0 ∼ 15 pc, a single particle
may contain one or more cold, dense molecular clouds (size ∼ 5–50 pc) and the
diffuse intercloud medium. This diffuse intercloud medium is itself an average
over the warm ionized medium and the hot coronal component.
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ionized medium and the hot coronal component of the ISM. This yields a two-

phase ISM of cold, dense molecular clouds and the diffuse intercloud medium.

Molecular clouds are typically supported against gravitational collapse by tur-

bulent pressure; for a typical density of n ∼ 100 cm−3 and a turbulent velocity

dispersion of σ ∼ 1 km/s, the turbulent pressure Pturb = ρσ2 ∼ 10−12 erg cm−3.

This turbulent pressure in the molecular clouds is generally balanced by the ther-

mal pressure of the warm intercloud medium; for a density of n ∼ 1 cm−3 and

a temperature of T ∼ 8000 K, the thermal pressure of the diffuse intercloud

medium is Ptherm = nkT ∼ 10−12 erg cm−3. Therefore, the pressure on scales

larger than that of a computational particle relates to the thermal pressure of

the diffuse intercloud medium and not to that of the cold molecular clouds; the

volume averaged thermal energy of the computational particles corresponds to the

temperature of the intercloud medium, approximately T ∼ 104 K. The molecu-

lar clouds and the intercloud medium each have volume averaged mass densities

of order n ∼ 0.5 cm−3 [34]; the appropriate mass density for the computational

particles is simply the total mass over the volume, or the sum of these densities,

yielding n ∼ 1 cm−3. Dynamically, the computational particles boast thermal en-

ergies characteristic of the diffuse intercloud medium and densities corresponding

to the sum of the volume averaged mass densities of the individual components.

Energetically, however, the computational particle corresponds to different

properties of the ISM. Although the radiative energy loss per physical particle

(molecule, atom, or ion) is greater in the intercloud medium than in the molec-

ular clouds, the number density of molecules in clouds is so much greater than

the number density in the intercloud medium that the rate of radiative cooling
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is effectively dominated by molecular clouds. The molecular cloud temperatures,

therefore, must be estimated in order to calculate the effect on the energy bud-

get due to radiative cooling, as discussed in Section 6.5.2. In addition, since the

primary heating mechanism of concern is shock heating due to the bar potential,

this heating occurs primarily in the dense molecular clouds.

6.3 Gravitational Potential

The simplified gravitational potential adopted by the Galactic model includes sev-

eral components: axisymmetric components including a cylindrical stellar disk, a

cylindrical stellar bulge, and a spherical halo; and a non-axisymmetric bar com-

ponent in the inner Galaxy.

6.3.1 The Axisymmetric Component

Dehnen and Binney [62] describe an axisymmetric mass model of the Milky Way

Galaxy using five components: a thin stellar disk, a thick stellar disk, the inter-

stellar medium disk, a bulge, and a halo (including any dark matter component).

We construct a simpler model with a single stellar disk (subsuming also the mass

distribution of the ISM), a central bulge, and a halo. Although the functional

forms of the density distributions for these components are typically exponen-

tial (as suggested by observations of the surface brightness vs. radius for external

galaxies), for simplicity in the computation, power law profiles are assumed. Only

a qualitative reproduction of the dynamics of the Galaxy is initially sought, so

this simplified model suffices.
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The Stellar Disk

The thin stellar disk, the thick stellar disk, and the disk of interstellar gas in

the Dehnen and Binney [62] model are combined into a single component for this

model. The basic form used for the stellar disk is the Miyamoto-Nagai potential-

density pair (a synthesis of Plummer’s spherical potential and Kuzmin’s flattened

potential) [26], given by the paired gravitational potential

ΦM(R, z) = − GM
√

R2 + (a +
√

z2 + b2)2
(6.3)

and density distribution

ρM(R, z) =

(

b2M

4π

)

aR2 + (a + 3
√

z2 + b2)(a +
√

z2 + b2)2

[R2 + (a +
√

z2 + b2)2]5/2(z2 + b2)3/2
. (6.4)

Here G is the gravitational constant, M is the total mass, R is the cylindrical

radius, z is the vertical height, a is the radial scale, and b is the vertical scale.

When a = 0, this reduces to Plummer’s spherical potential; when b = 0, to

Kuzmin’s flattened potential.

Basing our model on Dehnen and Binney’s mass model 1 [62], we choose

a stellar disk mass Md = 5.0 × 1010 M⊙, a radial scale ad = 2.0 kpc, and a

vertical scale bd = 0.2 kpc. A comparison of the density for this disk with the

combined thin stellar , thick stellar, and ISM disks of Dehnen and Binney is given

in figure 6.2.

The Stellar Bulge

The stellar bulge also employs the Miyamoto-Nagai potential-density pair with

the parameters: bulge mass Mb = 5.0 × 109 M⊙, radial scale ab = 0.3 kpc, and
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Figure 6.2: Density contour plot comparing the combined thin and thick stellar
disks of Dehnen and Binney’s mass model 1 (dashed lines) with the Miyamoto-
Nagai density (solid lines) using the parameters Md = 5.0 × 1010 M⊙, ad = 2.0
kpc, and bd = 0.2 kpc. Contours are shown for density values of 0.1, 0.01, 0.001,
and 0.0001 M⊙/pc3 in the R-z plane.

vertical scale bb = 0.3 kpc.

The Halo

To assist in flattening the rotation curve of the Galaxy to conform with obser-

vations, a halo component is included in the gravitational potential; we do not

distinguish whether the halo mass is comprised of luminous or dark matter since

only the gravitational effects are of concern. The functional form taken for this

spherical component is

Φh(r) =
1

2
v2
∞ ln(r2 + a2

h), (6.5)

where r is th spherical radius and ah is the radial scale length of the halo [27].

The circular velocity due to this component asymptotes to v∞ as radius increases.

Choosing the parameter values so that the rotation curve yields a reasonable value
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at large Galactocentric radii yields ah = 10.7 kpc and v∞ = 0.18 kpc/My= 180

km/s.

A plot of the rotation curve for the axisymmetric components of the Galactic

model is given in Figure 6.3. Although this model does not reproduce the rotation

velocity determined in the solar vicinity (R ∼ 8 kpc) of v = 220 km s−1, it suffices

as an initial model; future refinements of the model, including accounting for the

non-axisymmetric contribution to the circular velocity (neglected here), can be

performed to bring the model more into line with quantitative observations.

6.3.2 The Bar Potential

Through photometry, studies of gas and stellar dynamics, and counts of luminous

stars, the presence of a significant stellar bar in the inner Galaxy has been well

established [38, 119, 134, 32, 23, 15, 28, 72]. Detailed studies of the hydrodynamic

gas flow in barred galaxies have led to a more thorough understanding of the

dynamics of the gas at the Galactic center through an explanation of some of the

salient features of the Galactic (l, v) diagram [119, 24, 7, 6, 92, 67, 68, 116, 148,

126]. The Galactic model here employs a density distribution given by the n = 2

Ferrers ellipsoid [26],

ρ =

{

ρ0(1 − m2)2 m < 1
0 elsewhere,

(6.6)

where

m2 =
x2 + z2

a2
B

+
y2

b2
B

(6.7)

and the prolate bar has bB > aB. The total bar mass is given by MB =

32πa2
BbBρ0/105. Methods of solving for the gravitational potential due to this

162



Figure 6.3: A fit of the rotation curve due to the axisymmetric gravitational
potential model described in Section 6.3. Broken down by components are curves
for the stellar disk (short dash), stellar bulge (long dash), halo (dot-dash), and
total of all components (solid).
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density distribution have been given by Perek [149] and de Vaucouleurs and Free-

man [61]; the solution for the potential and forces for the n = 2 ellipsoid are

explicitly given in the appendix of Papayannopoulos and Petrou [141]. A rotating

bar potential of this form is characterized by four parameters: the semi-minor axis

aB, the semi-major axis bB, the total bar mass MB, and the bar pattern rotation

speed Ωp.

Parameter values used in the present Galactic model are aB = 1.6 kpc, bB =

4.0 kpc, MB = 1.0 × 1010 M⊙, and Ωp = 62.83 km s−1 kpc−1. To avoid large

transients in the system response, the bar is introduced gradually over one rotation

period (the pattern rotation period corresponding to the chosen Ωp = 62.83 km

s−1 kpc−1 is τB = 100 My). Initially the same amount of mass is distributed

in an axisymmetric disk given by the Miyamoto-Nagai potential with parameters

M = MB, a = (aB + bB)/2, and b = aB. The mass is transferred linearly in time

from the axisymmetric disk to the bar.

6.4 Initial Conditions of the ISM

Since the evolution of the Galactic magnetic field is dependent upon the dynamics

of the ISM, the initial conditions of the ISM form a crucial aspect of the Galactic

model. This study makes use of two types of initial conditions: a present-day

model with exponential initial conditions that represent the state of the ISM in

the Galaxy as we see it today, and an early galaxy model with constant initial

conditions that approximate the character of the ISM shortly after the formation of

the Galaxy. The strong vertical magnetic flux inferred at the Galactic center [134]
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is thought to be the result of the accumulation of infalling material [174, 88, 48].

To model this process, the ISM is initialized with a constant density and magnetic

field across the disk; angular momentum transport mechanisms lead to the radial

infall of the ISM towards the Galactic center where the frozen-in magnetic field is

accumulated. The radial profile of the density in the ISM disk is expected to reach

an equilibrium of approximately exponential form, balancing the infall of material

with the loss of mass due to star formation. For comparison to observations, this

equilibrium can be achieved more quickly by initializing an exponential disk.

The initial conditions of the ISM must specify the density, internal energy, ve-

locity, and magnetic field. The distributions of these quantities must be chosen to

yield an equilibrium system. In the absence of a dynamically significant magnetic

field, such equilibrium initial conditions are determined using a simple strategy.

First, the external gravitational potential due to the stellar mass distribution is

specified. Second, the form of the ISM density distribution is chosen. Third, the

vertical energy distribution of the ISM is calculated to yield vertical hydrostatic

equilibrium,

∂p(R, z)

∂z
= −ρ(R, z)

∂Φ(R, z)

∂z
(6.8)

Fourth, the circular velocity of the ISM is determined so that the net radial

acceleration due to the radial component of the gravitational acceleration and the

(smaller) radial pressure gradient provides the centripetal acceleration for circular

motion about the Galactic center. Unless particularly simple forms for the ISM

density and stellar gravitational potential are chosen, the calculation of the energy

and velocity profiles is accomplished using numerical integration.
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This equilibrium scheme has the advantage that once the stellar (and dark

matter) mass distribution and the initial ISM density profile have been specified,

there are no more free parameters. The choice of vertical hydrostatic equilibrium

and radial centripetal balance eliminate the need for any other parameters, dra-

matically simplifying the parameter space over which models can be constructed.

Although this scheme produces a system in equilibrium, however, it is not neces-

sarily a stable equilibrium; free energy can still be extracted from the gravitational

potential to drive dynamic evolution of the model on the timescale of the inner

rotation time, τ ∼ 108 years. The system will evolve transiently to a stable equi-

librium. The initial system can be advanced numerically for a short time to allow

these transient motions to escape the system through the boundaries.

6.4.1 Density Distribution of the ISM

The luminosity profiles of external disk galaxies typically demonstrate exponential

behavior with radius and vertical height [25]. For the present-day Galactic model,

the density distribution of the ISM is given by a standard double exponential disk,

ρism(R, z) =
Mism

4πzismR2
ism

exp

(

− R

Rism
− |z|

zism

)

. (6.9)

The parameters chosen for the ISM density distribution are a cylindrical radial

scale Rism = 4.0 kpc, a vertical scale zism = 0.040 kpc, and a total mass Mism =

1010 M⊙, giving a central density of ρism(0, 0) ∼ 109 M⊙/kpc3.

An early galaxy model initializes the ISM with a constant initial density over

radius. The fact that such a disk would have an infinite mass presents no problem

for a numerical simulation of finite size. The vertical structure in a 3-D disk
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maintains an exponential form. The surface density of the disk in this model is

specified Σism = 106 M⊙/kpc2, yielding, for the vertical scale height given above,

a density of ρism = 2.5 × 107 M⊙/kpc3.

6.4.2 Internal Energy Distribution of the ISM

After the stellar gravitational potential Φ(R, z) and the ISM density distribution

ρism(R, z) have been specified, the energy distribution is determined by mandating

vertical hydrostatic equilibrium according to (6.8). Using the adiabatic equation

of state

p = (γ − 1)ρe, (6.10)

where e is the internal energy per unit mass, and assuming lim|z|→∞ p(R, z) = 0

and lim|z|→∞ ρ(R, z) = 0, the internal energy profile is given by

e(R, z) =
1

(γ − 1)ρism(R, z)

∫ ∞

|z|
ρism(R, z)

∂Φ(R, z)

∂z
dz (6.11)

It is worthwhile to note here that the true vertical profile of the inhomoge-

neous ISM is not actually a thermally supported hydrostatic equilibrium but is a

bounded oscillation about the Galactic plane of individual molecular clouds with

a distribution of vertical kinetic energies. Therefore, the value of the energy at

the midplane of the Galactic disk is not necessarily determined by the scale height

of the ISM disk as (6.11) would demand.

For a 2-D early galaxy model, it is possible to choose the constant value for

the internal energy independently of the disk scale height; though this may violate

(6.11), it can be physically justified by the preceding argument. Values often used
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when specified in this independent way are e = 10−4 kpc2/My2, corresponding

to a temperature of T ∼ 104K, or a cooler early galaxy model energy of e =

5 × 10−6 kpc2/My2, corresponding to T ∼ 600K.

6.4.3 Velocity Profile of the ISM

The initial equilibrium velocity of the ISM is assumed to be circular motion about

the Galactic center with centripetal acceleration provided by the net radial accel-

eration due to the radial gravitational acceleration and the typically much smaller

thermal pressure gradient. Therefore, the vertical and radial components of the

velocity are set to zero and the azimuthal component is given by

vφ(R, z) =

[

R

(

∂Φ(R, z)

∂R
+

1

ρism(R, z)

∂p(R, z)

∂R

)]1/2

(6.12)

If the term in parentheses in (6.12) is negative—this only occurs in practice as

R → 0 for unphysically large energies—the azimuthal velocity is simply set to

zero.

Note that the equilibrium initial conditions for a magnetized system necessar-

ily will include a magnetic contribution to the radial acceleration; however, the

magnitude of the initial magnetic field is typically small so that any magnetic

contribution may be neglected.

6.4.4 Initial Magnetic Field

The initial magnetic field for a global disk simulation will consist of an external

long wavelength component and a fluctuating component on much smaller scales.

The hypothesis is that a wide range of initial field configurations will, after being
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acted upon by the motion of the Galactic disk, produce a magnetic field with

the same general topology as that observed today—a largely azimuthal magnetic

field with a strong, vertical component at the center. To produce the present day

magnetic field through disk evolution is the goal of this project, so it begs the

question to discuss the magnetic field for a present-day Galactic model.

The early galaxy models, though, impose a simple, straight external magnetic

field of constant strength with a non-zero vertical flux through the Galactic disk.

Ideally, this field should be tilted from vertical so that its radial position varies

across the height of the disk; differential rotation of the ISM disk can then produce

a strong azimuthal field through field line stretching. (A completely vertical field

may provide an interesting, if not physically realistic, point of comparison.) As

more complex initial models are developed, the initial magnetic field may be

altered by adding a small-scale fluctuating component. The strength of this initial

field is taken to be B ∼ 0.1 µG [48].

6.5 Physical Processes by Prescription

A number of unresolved physical processes that can be added to the ISM dynamics

of the Galactic model by prescription include star formation (a density sink),

radiative cooling (an energy sink), stellar mass loss (a density source), and heating

by cosmic rays (an energy source). Although only star formation and radiative

cooling are necessary to model the qualitative dynamics of the Galaxy, stellar

mass loss and heating by cosmic rays are simple to include and so are described

here.
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6.5.1 Star Formation

The imposition of a stellar bar gravitational potential leads to strong shocks and

significant angular momentum transport in the ISM; consequently, the ISM un-

dergoes a gradual radial inflow towards the Galactic center. Without a sink for

the accumulating mass at the Galactic center, a realistic hydrodynamic evolution

of the Galaxy cannot be attained because the rising radial pressure gradient will

halt the inflow of the ISM. Star formation behaves in the real Galaxy as a den-

sity sink in regions where local density enhancements exceed the Jeans stability

criterion for gravitational collapse [26]. (Note that a phase transition to a cold

molecular form of the ISM is another means of accomplishing the removal of this

density.) We neglect the fact that vigorous star formation also tends to heat the

local environment, becoming a source for energy.

Kennicut [96] correlates the global star formation rates in galactic disks and nu-

clear starbursts with the local gas density. He concludes that a simple Schmidt [163]

power law provides an excellent parameterization of the global star formation rate,

dependent primarily on the gas density.

Star formation is included by prescription according to the empirical formula

given by Kennicut [96]

ΣSFR = (2.5 ± 0.7) × 10−4

(

Σgas

1 M⊙ pc−2

)1.4±0.15

M⊙ year−1 kpc−2 (6.13)

where ΣSFR and Σgas are the disk-averaged star formation rate per unit surface

area and gas surface density. Basing our star formation prescription on the relation
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above, we use the formula

dΣ

dt
= −αSFR

(

Σ

Σ0

)N

(6.14)

where αSFR = 250 M⊙ kpc−2 My−1, Σ0 = 106 M⊙ kpc−2, and N = 1.4. Assuming

that the vertical distribution of the ISM is exponential with a scale height zism,

we can relate the local volume density to the local surface density by the relation

Σ = 2ρzism. Under the approximation that over the simulation domain the ISM

scale height remains constant, we model star formation as a sink of the local

volume density given by the formula

dρ

dt
= −

(

αSFR

2zism

)(

2ρzism

Σ0

)N

(6.15)

6.5.2 Radiative Cooling

Neufeld et al. [138] calculates the radiative cooling curves from molecular clouds

as a function of temperature and molecular density. The plots in Figure 3 of this

paper demonstrate that the cooling power is more sensitive to temperature changes

than to density changes; based on this, we construct an approximate model for

which the total cooling power is dependent only on temperature, neglecting the

variation with molecular number density. In Figure 6.4 is plotted the logarithm of

the total cooling power per H2 molecule in erg s−1, ln Λ, vs. the logarithm of the

temperature in K, ln T . The data are taken from Figure 3c of Neufeld et al. [138]

assuming n(H2) = 103. A fit of these data to the equation log Λ = m log T + b,

plotted in Figure 6.4, yields the values m = 2.6 and b = −29.8. We can use

this approximate fit to construct a prescription for the radiative cooling due to

molecular clouds.
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Figure 6.4: A fit of data taken from Figure 3c of Neufeld et. al. [138] assuming
n(H2) = 103. A fit of these data to the equation log Λ = m log T + b yields the
values m = 2.6 and b = −29.8.
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To determine the temperature of the unresolved molecular clouds from the

computational particle temperature in our simulations, we assume a pressure bal-

ance between the components of the ISM as seen in Figure 6.1 and as discussed in

Section 6.2. Assuming thermal pressure balance, we can find a relation between

the temperature of the warm, diffuse intercloud medium and the temperature of

the cold, dense molecular clouds

TH2 ≤
fH2

fH
TH . (6.16)

The equal sign in (6.16) corresponds to entirely thermal pressure balance; the

molecular clouds temperature will be less if turbulent pressure contributes to the

support of the molecular clouds.

Using the data from the fit in Figure 6.4, we get a final form of the cooling law

Λ = a





e
fH2

fH

e0





m

(6.17)

where the coefficient a = 7.77 × 10−10 kpc2 My−2 My−1, the exponent m = 2.6,

the energy per unit mass scale e0 = 1.3 × 10−8 kpc2 My−2, the volume filling

fraction for cold molecular clouds is fH2 = 0.001, and the volume filling fraction

for the warm intercloud medium is fH = 0.5.

6.5.3 Stellar Mass Loss

The star formation prescription above represents the conversion of ISM gas into

stars as a sink of ISM mass density, but stars also shed gas, adding to the mass

density of the ISM. Although the surface density of stars is clearly dependent on

radius, a simplifying approximation of a roughly constant surface density of stars
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is taken. Stellar mass loss as a source of ISM density is treated according to the

relation

dΣ

dt
= βSML (6.18)

where βSML = 250 M⊙ kpc−2 My−1. We can think of this as having the same

form as the star formation density sink

dΣ

dt
= βSML

(

Σ0

Σ0

)N

(6.19)

but using a constant surface density Σ = Σ0. Converting this to a formula for a

volume density source (assuming an exponential distribution of the ISM vertically

with constant scale height zism over the disk), we find

dρ

dt
=

βSML

2zism
(6.20)

Although the magnitude of this density source is very small, it can have an

effect on regions of very low density. Again, this adds fidelity to the model and

has the useful computational benefit that it inhibits the density from dropping to

zero.

6.5.4 ISM Heating by Cosmic Rays

Without a source of heating, radiative cooling, over very long timescales, would re-

duce the temperature of the ISM to unrealistically low values. Observations of the

ISM suggest its temperature never drops below a minimum value of T ∼ 10 K [58].

Heating of the ISM by cosmic rays maintains this minimum temperature in the

absence of other sources of heat. As the timescale of this heating is significantly

less than the timescale of interest for Galactic dynamics, ISM heating by cosmic
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rays is accomplished by including an energy floor in the simulations that corre-

sponds to a temperature of T ∼ 10 K for the molecular cloud component of the

ISM; the current value used is efloor = 5.0 × 10−6 kpc2 My−2.
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Chapter 7

Galactic Disk Results

Preliminary results from GPM simulations of the Galactic disk are analyzed and

discussed in this chapter. Although the aim of this project is to conduct Galactic

disk simulations to study the evolution of the magnetic field in the Galaxy, devel-

opment of the computational tools to carry out this project regrettably took more

time than anticipated. Little time remained to perform the global disk simula-

tions, so the results here represent only preparatory studies on the path to a more

thorough examination of Galactic disk behavior. As the results in this chapter

constitute only the initial MHD simulations of the Galactic disk with the new

GPM method, no attempt will be made to draw any general conclusions about

the subject here.

The past decade has seen numerous hydrodynamic studies in two dimensions

of the Galactic disk, with particular emphasis placed on the dynamic effect of

the central stellar bar potential [24, 6, 92, 67, 68, 116, 148, 27]. These papers

describe hydrodynamic simulations of an isothermal galactic disk, with the ISM

flowing in a prescribed stellar gravitational potential of varying complexity. The
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simulations presented here extend this work to include an adiabatic, rather than

isothermal, equation of state and to follow the magnetic evolution of the Galaxy in

the MHD approximation. Two simulations are chosen for the analysis presented in

this chapter: both have identical parameters except that one simulation is purely

hydrodynamic while the other includes magnetic fields.

7.1 Description of Galactic Simulations

The two simulations presented here are two-dimensional hydrodynamic (bar125)

and MHD (bbar125) simulations of the Galactic disk. The simulations employ the

second-order GPM algorithm with a second-order leapfrog timestepping scheme.

The magnetic field evolution in simulation bbar125 evolves the vector potential

according to (3.2). The simulations use the adiabatic equation of state (3.6) and

neglect the self-gravity of the ISM. The vertical extent of the disk is assumed to be

constant across the disk with an exponential scale height of zism = 0.04 kpc. Star

formation and stellar mass loss provide a sink and source for mass density in the

ISM; similarly radiative cooling and cosmic ray heating provide a sink and source

for thermal energy. Viscosity and resistivity are modelled by a periodic smoothing

of velocity and magnetic field over a fixed scale. The running parameters used for

both of these simulations are summarized in Table 7.1.

These simulations initialize the ISM as a present-day model as described in

Chapter 6: the density and energy distributions are exponential in radius. Since

these models are two dimensional, the energy must be specified by the value

at the Galactic center, e0 = 10−4 kpc2 My−2. An initially large magnetic field
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Parameter bar125 bbar125
Timestep ∆t 0.125 My 0.125 My
Courant Fraction fCFL 0.125 0.125
Adiabatic Index γ 5/3 5/3
Viscosity scale hν 0.05 kpc 0.05 kpc
Viscosity step nstep ν 8 8
Viscosity fraction fν 0.5 0.5
Resistivity scale hη off 0.1 kpc
Resistivity step nstep η off 32
Resistivity fraction fη off 0.5
Number of particles Np 65536 65536
Radial Boundary Rout 12.0 kpc 12.0 kpc
Number of Neighbors Nn 25 25
Smoothing Order Osm 2 2
Smoothing step nstep sm 16 16
Smoothing fraction fsm 0.5 0.5
Central Energy e0 10−4 kpc2 My−2 10−4 kpc2 My−2

Energy Floor efloor 5 × 10−6 kpc2 My−2 5 × 10−6 kpc2 My−2

Density Floor ρfloor 105 M⊙ kpc−3 105 M⊙ kpc−3

Magnetic Field Strength B 0 2.8 µG
Magnetic Field Direction θxz 0 45◦

Table 7.1: Running parameters for the simulations bar125 and bbar125. The
magnetic field direction, θxz, is the angle from the x-axis in the x-z plane.
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was specified in the MHD run with components Bx = 2 µG and Bz = 2 µG;

the unphysically large magnitude, particularly in the vertical component, was

chosen so that the magnetic field would accumulate in the center to a dynamically

significant value over a short simulation time. The parameters chosen for the the

Galactic model, as detailed in Chapter 6, are presented in Table 7.2.

Difficulties with long-term computational stability using the new GPM algo-

rithm to model this rather complicated Galactic model limited the total evolution

time of the simulations presented. The hydrodynamic simulation (bar125) stopped

at t = 279 My and the MHD simulation (bbar125) ran only to t = 149 My. Hence,

although the qualitative structure of the flow in the Galactic disk agrees with pre-

viously published results from hydrodynamic models, drawing firm conclusions

from these models is not possible because the transient disturbance caused by the

introduction of the stellar bar has not settled down over the short time evolution

of these runs.

7.2 Qualitative Comparison of Results

Density color maps and cross sections of the density, energy, and vertical magnetic

field are presented in Figure 7.1 (bar125) and Figure 7.2 (bbar125). The data in

the density plots in these figures has been rotated to align the major radius of the

bar with the vertical axis. The cross section chosen for the density, energy, and

vertical magnetic field plots is indicated by the region between the two red lines

on the density map.
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Parameter Value
Star Formation (SF) on
SF Coefficient αSFR 250 M⊙ kpc−2 My−1

SF Exponent N 1.4
SF Normalization Σ0 106 M⊙ kpc−2

Stellar Mass Loss (SML) on
SML Coefficient βSML 250 M⊙ kpc−2 My−1

Radiative Cooling (RC) on
RC Coefficient a 7.77 × 10−10 kpc2 My−2 My−1

RC Exponent m 2.6
RC Normalization e0 1.3 × 10−8 kpc2 My−2

Molecular Cloud Filling Fraction fH2 0.001
Warm ISM Filling Fraction fH 0.5
ISM Mass Mism 1010 M⊙
ISM Radial Scale Rism 4.0 kpc
ISM Vertical Scale zism 0.04 kpc
Stellar Disk Mass Md 5 × 1010 M⊙
Stellar Disk Radial Scale ad 2.0 kpc
Stellar Disk Vertical Scale bd 0.2 kpc
Stellar Bulge Mass Mb 5 × 109 M⊙
Stellar Bulge Radial Scale ab 0.3 kpc
Stellar Bulge Vertical Scale bb 0.3 kpc
Halo Asymptotic Velocity v∞ 0.180 kpc/My
Halo Radial Scale ah 10.7 kpc
Stellar Bar Mass MB 1010 M⊙
Stellar Bar Minor Radius aB 1.6 kpc
Stellar Bar Major Radius bB 4.0 kpc
Stellar Bar Rotation Rate Ωp −62.83 km s−1 kpc−1

Bar Introduction Rotations nrot 1.0

Table 7.2: Parameters for the Galactic model used by both bar125 and bbar125.
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Figure 7.1: Cross section of results from the hydrodynamic simulation bar125 at
t = 148 My. The upper left plot shows a logarithmic color plot of the density
between 108 M⊙ kpc−3 and 109 M⊙ kpc−3; note that the data has been rotated
to align the major axis of the bar with the vertical axis of the plot. The cross
section chosen is indicated on this plot as the strip within the two parallel red
lines. Profiles of density (upper right), energy per unit mass (lower right), and
vertical magnetic field (lower left) are shown. This hydrodynamic run had B = 0
everywhere.
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Figure 7.2: Cross section of results from the MHD simulation bbar125 at t =
148 My. The upper left plot shows a logarithmic color map of the density between
108 M⊙ kpc−3 and 109 M⊙ kpc−3; note that the data has been rotated to align the
major axis of the bar with the vertical axis of the plot. The cross section chosen
is indicated on this plot as the strip within the two parallel red lines. Profiles of
density (upper right), energy per unit mass (lower right), and vertical magnetic
field (lower left) are shown.
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Both simulations show the development of a four-armed trailing spiral struc-

ture induced by the central bar. Beyond 4 kpc, these spiral arms combine, lead-

ing to a two-armed spiral structure in the outer regions of the disk. This flow

structure, although differing in fine detail, agrees qualitatively with previously

published hydrodynamic studies [6, 67, 68].

The dense arms emanating from the central bar represent shocks in the fluid

flow, as can be seen where the density and energy profiles cross two of these shocks

around 3 kpc from the center. The non-axisymmetric gravitational potential of the

central bar and the shocks induced by it lead to the outward transport of angular

momentum; the ISM gradually falls towards the Galactic center, accumulating

mass at the center. This increase in central mass is apparent in the density plot;

the central density increases by an order of magnitude within the central half

kiloparsec. As the ISM undergoes the gradual infall towards the Galactic center, it

drags the frozen-in magnetic field along with it. Although the in-plane component

of the magnetic field can be destroyed by resistivity as it is concentrated to small

scales near the center (see Figure 7.6), the vertical component builds up. Although

star formation provides a sink to remove the rapidly growing central density (and

radiative cooling provides a sink for the thermal energy), no analogous sink exists

for the vertical magnetic flux. This is demonstrated in the plot of the vertical

magnetic field in Figure 7.2; the vertical magnetic flux builds to a large value in

this central region.

Since the vertical magnetic field was initialized with a strength about an order

of magnitude greater than the typically observed value of Bz ∼ 0.1 µG, the effect

of the vertical flux accumulation in the center becomes dynamically significant
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even in this short simulation. Comparing the density plots in Figure 7.1 and

Figure 7.2, the MHD simulation (bbar125) develops small shoulders in the region

between 0.3 kpc and 0.6 kpc; these shoulders are absent in the hydrodynamic

runs (bar125). It appears that the strong vertical magnetic field in this central

region enhances the angular momentum transport within the central kiloparsec,

producing a greater infall of mass that builds small shoulders in the density profile.

7.3 Mass Inflow Rate

One of the key measures of the long-term Galactic dynamic evolution is the rate

of the radial infall of mass. This rate of mass inflow has a great influence on the

evolution of the mass distribution in the Galaxy. Whether the inferred strong

central magnetic field in the Galaxy [134] contributes to an increased rate of mass

flow towards the Galactic center has yet to be determined. Plotted in Figure 7.3

is a comparison of the mass inflow rate dM/dt vs. radius R for the hydrodynamic

simulation (bar125—dashed line) and the MHD simulation (bbar125—solid line).

Note that a negative value corresponds to mass flowing inward, a positive value to

mass flowing outward. Results from both runs agree except for the central kilopar-

sec where the hydrodynamic rate is larger than the MHD rate. The mass inflow,

however, is still dominated at this early point in the simulation by the transient

effect of introducing the central bar potential over the initial bar pattern rotation

time of 100 My. The regions of positive dM/dt, corresponding to outflow of mass,

represent global adjustments to the bar potential. Only after these transient ef-

fects have settled down can a meaningful comparison of the hydrodynamic and
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MHD mass inflow rates be made. Unfortunately, sufficient time was not available

to complete simulations that reached this point in the disk evolution.

7.4 Longitude-Velocity Diagram

The Galactic gravitational potential is best probed through maps of the velocity

field of the gas. Molecular emissions from HI, CO, and CS provide maps of the line-

of-sight velocity vlos with varying Galactic longitude l and latitude b. Projecting

this data onto the l-vlos plane produces the longitude-velocity, or (l, v), diagram.

Construction of the (l, v) diagram based on the results of a numerical model often

provides a useful comparison with observational data.

Figure 7.4 presents the (l, v) diagram constructed from the MHD simulation

bbar125 at t = 148 My. The diagram does reproduce the qualitative aspects of the

observational (l, v) diagram, although the quantitative characteristic values of the

diagram do not necessarily agree closely with observational values. A thorough

examination of these differences will not be performed here for two reasons: first,

the numerical results used to construct this plot are still affected by transient

behavior from the introduction of the bar, so these results are only preliminary;

and second, the aim of this project is to follow the magnetic evolution of the

Galactic disk for which a Galactic model that is merely qualitatively correct is

probably adequate.
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Figure 7.3: Mass inflow dM/dt (M⊙/My) vs. radius R (kpc) for simulations bar125
(dashed) and bbar125 (solid) at time t = 148 My. A negative value corresponds
to mass flowing inward, a positive value to mass flowing outward.
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Figure 7.4: Longitude-velocity diagram of line-of-sight velocity vlos vs. Galactic
longitude l for MHD simulation bbar125 at t = 148 My.
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7.5 Magnetic Field Evolution

The initial magnetic field in the MHD simulation bbar125 is constant over the

disk with components Bx = 2 µG and Bz = 2 µG. The differential rotation of the

Galactic disk winds up the in-plane magnetic field into a roughly azimuthal field

that reverses direction with radius. Figure 7.5 and Figure 7.6 present two plots

of the in-plane magnetic field. Note that the plots presented in this section have

not been rotated to align the major axis of the bar with the vertical plot axis.

Figure 7.5 displays field vectors where vector length signifies magnitude and color

distinguishes field direction (red for clockwise, Bφ < 0; blue for counterclockwise,

Bφ > 0). Figure 7.6 displays a color map of magnetic field intensity; positive

values correspond to a counterclockwise azimuthal component, negative values to

a clockwise azimuthal component.

In the magnetic field vector plot of Figure 7.5, the magnetic field does indeed

become nearly azimuthal with the direction reversing with radius, a bisymmetric

spiral structure (BSS). In the center, the large resistive diffusion specified in this

simulation begins to reconnect the field. The field in this central region is not am-

plified much because differential rotation is weak in the center. Resistive diffusion

acting in this region tends to decrease the field strength, as demonstrated in the

color map of intensity in Figure 7.6. Effectively, we are seeing the beginning of the

process of flux expulsion [130]: through diffusion, the horizontal flux is expelled

from the central region.

The evolution of the vertical magnetic flux, however, is dramatically different.

The gradual flow of the ISM towards the Galactic center drags the magnetic field
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Figure 7.5: The magnetic field vectors are plotted for bbar125 at t = 148 My.
Vector length corresponds to magnitude. The colors correspond to the sign of the
azimuthal component, Bφ: red for Bφ < 0, blue for Bφ > 0.
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Figure 7.6: The magnitude of the in-plane component of the magnetic field,
√

B2
x + B2

y , is plotted as a color map from −10 µG to 10 µG on a plan view of

the Galactic disk. Negative values correspond to a negative (clockwise) azimuthal
component, Bφ < 0, while positive values correspond to a positive (counterclock-
wise) azimuthal component, Bφ > 0.
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Figure 7.7: The magnitude of the vertical component of the magnetic field, Bz, is
plotted as a color map from 0 µG–10 µG on a plan view of the Galactic disk.
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along with it. The vertical magnetic flux accumulates in the Galactic center, as

demonstrated in the lower left plot of Figure 7.2. A color map of the vertical mag-

netic field is shown in Figure 7.7, clearly demonstrating the strong accumulation

of vertical flux in the central region. The vector potential method used in this sim-

ulation (see Section 3.4.1), however, suffers an overshoot problem in the vertical

magnetic field. This can be seen where the vertical magnetic field dips below zero

near the strong central peak in the lower left plot of Figure 7.2; it is also evident

in Figure 7.7 in the black region around the central peak. Thus, although this

simulation begins to produce the results we expect, it experiences unphysical nu-

merical problems upon further integration. Implementation of the new technique

using Lagrange multipliers to eliminate magnetic divergence is necessary to push

these simulations further. Therefore, although the simulation bbar125 provides a

taste of the magnetic evolution of the Galactic disk, conclusive results must wait

for a more thorough suite of simulations conducted with refinements to the GPM

method.
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Chapter 8

Conclusion

This dissertation collects the effort to unravel the origin and understand the evo-

lution of magnetic fields in the universe. Most of the work presented here focuses

on the evolution of the magnetic field in the Galaxy as an important piece of the

puzzle of astrophysical magnetism. In Chapter 1, the literature on the origin of as-

trophysical magnetism is reviewed with emphasis on tackling this problem within

the broad framework of all forms of magnetism in the universe. Chapter 2 presents

the results of an analytical investigation of the stability of a shear magnetic field in

the presence of velocity shear. The new Gradient Particle Magnetohydrodynamics

(GPM) algorithm for the MHD simulation of astrophysical systems is described in

Chapter 3 and validation tests of this method are collected in Chapter 4. Adap-

tive Particle Refinement (APR), an adaptive framework for the GPM algorithm,

is developed in Chapter 5 to tackle the challenges of astrophysical simulation in a

generally adaptive manner. Chapter 6 describes a realistic Galactic model for 2-D

and 3-D simulations aimed at modelling the evolution of the magnetic field in the

Galactic disk. Finally, Chapter 7 analyzes the numerical results of hydrodynamic

and MHD evolution of the Galactic disk using the GPM algorithm.
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Although more work is required before conclusive results about the evolution of

the Galactic magnetic field can be established, this dissertation demonstrates the

potential of the GPM method developed here for astrophysical MHD simulation.

Unfortunately, unforeseen obstacles in the development of this new computational

tool consumed most of the time allocated to this project; little time remained to

hone the Galactic disk simulation results. The preliminary Galactic disk sim-

ulations described in this chapter produce qualitatively similar results to those

previously published in hydrodynamic studies. The two simulations described in

this chapter detect the dynamic effect of the magnetic field in the central region of

the Galactic disk where the vertical flux can accumulate to dynamically significant

values. Plots of the mass inflow rate can help to characterize the long-term devel-

opment of the Galactic mass distribution; construction of the longitude-velocity

diagram for numerical results connects these simulations directly to constraints

established by observation. Finally, the evolution of the magnetic field can be

examined using the new GPM method to determine the effect of the dynamic

flow of the ISM on the magnetic field topology and to pinpoint differences be-

tween hydrodynamic and MHD models. Future refinement of the GPM method,

including incorporation of the APR framework for adaptivity, promises to yield

greater insight into the magnetic evolution of the Galactic disk.
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Appendix A

Analytical Investigation of
Twisting Instability

A.1 Twisting Modes vs. Fourier Modes

In the sheared magnetic field, the local unstable modes can be written in two ways

[158]; we call them twisting and Fourier modes. For the reader’s convenience, we

summarize the essence of the argument here. In the twisted field line coordinates,

we obtain the twisted mode where a perturbed quantity Φ(x, y, z, t) is given by

ΦT = ΦT (z, x)eiky′+γt = ΦT (z, x)e
iky−ik xz

lB
+γt

(A.1)

with ΦT localized in z and varying weakly in x compared to k−1. But since the

origin in z is arbitrary, we can also write

Φ′
T = ΦT (z − z0, x)e

iky−ik
x(z−z0)

lB
+γt

. (A.2)

Thus, there are an infinite number of twisting modes, each with a different origin

of the twist. We can construct a mode that does not depend on z—a Fourier
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mode—by integrating (A.2) over z0

ΦF =
∫ ∞

−∞
Φ′

T (z − z0, x, y, t)dz0 = ΦF

(

kx

lB
, x

)

eiky+γt, (A.3)

where

ΦF

(

kx

lB
, x

)

=
∫ ∞

−∞
ΦT (z′, x)e

−i kx
lB

z′dz′
. (A.4)

Thus, the Fourier modes and the twisting modes are related by a Fourier trans-

form. Clearly, the Fourier mode can be made by “adding” twisting modes together

(see (A.3)), or vice versa, using the Fourier inversion theorem on (A.4); see Cow-

ley et al. [56] for pictures of this superposition. The Fourier modes are narrowly

localized in x—typically ∆x ∼ ∆x
k∆z

where ∆x is the x width of the Fourier mode

and ∆z is the z width of the twisting mode. Note this x localization of the Fourier

mode is narrow compared to the x variation of the twisting mode. In this paper,

we have taken the twisting mode representation for two reasons: first, the role of

the flow, we believe, is more intuitive in this picture; and, second, the twisting

modes are finite in z extent and therefore represent more easily the evolution of

an initial value problem.

A.2 Asymptotic Analysis as M → 1

To demonstrate stabilization as the Alfvén Mach number approaches one, as seen

of region (II) of Figure 2.3, we perform an asymptotic analysis of our model in the

limit M → 1. For a small dimensionless parameter ǫ, we quantify the order of this

limit as 1 − M ∼ O(ǫ2). We expect the instability growth rate to be γ ∼ O(ǫ).

Identifying the terms in the dimensionless system of (2.26)–(2.28) for reference,
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Figure A.1: Regions defined for the asymptotic solution of A− in the limit M → 1.

we have

−(1 − M)dA+

dz
= −γA+ +(1 + M) z

1+z2 A− − s
(1+z2)1/2

(1) (2) (3) (4)
(A.5)

(1 + M)dA−

dz
= −γA− −(1 − M) z

1+z2 A+ + s
(1+z2)1/2

(5) (6) (7) (8)
(A.6)

M ds
dz

= −γs −s′0
2

A+

(1+z2)1/2 +
s′0
2

A−

(1+z2)1/2 .

(9) (10) (11) (12)
(A.7)

The boundary conditions demand A+, A−, s → 0 as |z| → ∞. Asymptotic solu-

tions in the M → 1 limit can be found in the four regions along z displayed in

Figure A.1. Below we find the solutions for each of these regions and, by match-

ing the solutions between these regions, we obtain an eigenvalue condition on the

growth rate demonstrating stabilization as the Alfvén Mach number approaches

one. First, we obtain two reductions of (A.5)–(A.7); one over a boundary layer

where |z| ≪ ǫ−1, and the other over an outer region where |z| ≫ 1 . Then, we

present the solutions in each of the four regions in Figure A.1.
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As the Alfvén Mach number approaches one, regions (1), (2), and (3) of Fig-

ure A.1 behave like a boundary layer region: we expect derivatives to be large

and thus take d
dz

∼ O(ǫ−1). We treat z ∼ O(1) over these three regions. Balance

of the dominant terms (9) and (11) in (A.7) shows that s ∼ O(ǫA+). In turn,

this demands that terms (5) and (8) must balance in (A.6), yielding the ordering

A− ∼ O(ǫ2A+). Adopting the specified ordering allows us to drop terms (6), (7),

(10), and (12) from (A.5)–(A.7); term (3), although one order in ǫ smaller than

the other terms in (A.5), will contribute in the regions for z > 1, so we retain it

in order to be certain that our first order correction in region (3) is valid. The

remaining equations can be combined to a single third-order equation in A− and

simplified by the substitution z = sinh θ to obtain

2M(1 − M)

s′0

d3A−
dθ3

− 2γM

s′0
cosh θ

d2A−
dθ2

+
dA−
dθ

− tanh θA− = 0. (A.8)

In region (4), we find the smoothly varying outer solution over which z ∼

O(ǫ−1). We expect that d
dz

∼ O(ǫ) here. By insisting that terms (9) and (10)

balance with term (11) in (A.7), we find that s ∼ O(A+). Similarly, by balancing

terms (5) and (6) with term (8) in (A.6), we obtain A− ∼ O(A+). This ordering

allows us to drop terms (1) and (7) in (A.5)–(A.7). Approximating (1+z2)1/2 ≃ z,

substituting A− = zB−, and combining the equations, we obtain the second-order

equation

M(1 + M)z2 d2B−
dz2

+
[

(1 + 2M)γz2 + 3M(1 + M)z − (1+M)s′0
2γ

]

dB−

dz

+ [γ2z2 + (1 + 3M)γz + M(1 + M) − s′0] B− = 0. (A.9)

To find the solution in region (1), we assume an eikonal solution for (A.8).

Neglecting the trivial constant solution, we find two independent solutions of the

198



form

A− ∼ 1

(1 + z2)3/4 [(1 + z2)1/2 + z]
1/2

exp

(

γ

2(1 − M)

[

z + (1 + z2)1/2
]

)

(A.10)

A− ∼ z + (1 + z2)1/2

(1 + z2)1/2
exp

(

γ

2(1 − M)

[

z − (1 + z2)1/2
]

+ z
[

z − (1 + z2)1/2
]

)

.

(A.11)

To get the behavior for |z| ≫ 1, we can expand (1 + z2)1/2 ≃ |z| + 1/2|z|. For

region (1), we note that z < 0 and, retaining only the dominant terms, we obtain

solutions of the form

A− ∼ 1

z
exp

(

−γ

4(1 − M)z

)

(A.12)

A− ∼ 1

z2
exp

(

γz

1 − M

)

. (A.13)

The boundary conditions impose that A− → 0 as z → −∞, so our solution in

region (1) must be entirely of the form of (A.13), a growing solution in the +z

direction. To determine the behavior of (A.10) and (A.11) in the overlap with

region (2), we take the limit |z| ≪ 1 and approximate (1 + z2)1/2 ≃ 1 + z2/2 to

get the two solutions

A− ∼ exp

(

γ

2(1 − M)

[

z + z2/2
]

)

(A.14)

A− ∼ exp

(

γ

2(1 − M)

[

z − z2/2
]

)

. (A.15)

One of these solutions must smoothly match onto the solution for region (2).

Region (1)’s solution will be valid as we move in the +z direction until the

eikonal approximation, γz
1−M

≫ 1, breaks down. The failure of this condition

occurs in region (2) of Figure A.1 where z ∼ O(ǫ). For region (2), we expand
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(A.8) about z = 0. For z ≪ 1, cosh θ ≃ 1 and tanh θ ≃ θ where θ ≪ 1, so we

can drop the last term of (A.8). Letting f = dA−

dθ
and using the integrating factor

f = B− exp
(

γ sinh θ
2(1−M)

)

to simplify the result, we obtain the equation

d2B−
dθ2

−
[

γ2 cosh2 θ

4(1 − M)2
− γ sinh θ

2(1 − M)
− s′0

2M(1 − M)

]

B− = 0. (A.16)

Neglecting the central term in the coefficient of B− because it is an order ǫ smaller

than the other terms, we can cast (A.16) in the form of Hermite’s equation for

which the solutions are well known. Therefore, for the n = 0 Hermite polynomial,

the solution in region (2) is

A− ∼
∫ z

exp

(

γ

2(1 − M)
(z′ − z′2/2)

)

dz′, (A.17)

and the eigenvalue condition on the growth rate imposed by Hermite’s equation

is

γ2 =
2s′0(1 − M)

M
− 2(2n + 1)γ(1 − M) (A.18)

for the nth Hermite polynomial. Thus, we find that the solution in region (1)

given by (A.15) matches smoothly onto our solution in region (2).

In region (3), we once again assume an eikonal solution for (A.8) and find

the two solutions given by (A.10) and (A.11). To match with region (2), find the

|z| ≪ 1 limit of these equations, yielding once more (A.14) and (A.15); we observe

that (A.15) for the small z limit of region (3) matches (A.17) for region (2). In

the |z| ≫ 1 limit of eqrefeq:a-1a and (A.11) for region (3), we obtain the solutions

(for z > 0)

A− ∼ 1

z2
exp

(

γz

1 − M

)

(A.19)
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A− ∼ exp

(

−γ

4(1 − M)z

)

. (A.20)

To continue our asymptotic solution, we must smoothly match one of these region

(3) solutions to the solution for region (4) in the overlap around z ∼ O(ǫ−1/2).

In region (4), we assume eikonal solutions for (A.9) in the limit z → 0. The

two solutions found are

A− ∼ z (A.21)

A− ∼ exp

(

−s′0
2γMz

)

. (A.22)

Hence, we can match the solution given by (A.20) in region (3) with the solution

given by (A.22) in region (4) if

γ

4(1 − M)
=

s′0
2γM

. (A.23)

But, this is identical to the lowest order of the eigenvalue condition, (A.18). To

complete our asymptotic solution, we must find that a solution to (A.9) in the

limit z → ∞ which satisfies the boundary condition that A− → 0 as z → ∞. In

this limit, the two solutions take the form

A− ∼ exp
(−γz

M

)

(A.24)

A− ∼ exp
( −γz

1 + M

)

. (A.25)

Both of these solutions satisfy the boundary condition as z → ∞.

Now that we have seen that it is possible to construct a complete asymptotic

solution in the limit M → 1, let us examine this solution more closely. Beginning

in region (1) at the left of Figure A.1, the boundary conditions demand that the

201



solution must be solely of the form of (A.13). But, as behavior in regions (1), (2),

and (3) is governed by (A.8), the eikonal approximation must break down in region

(2) in order for the solution in region (1) to convert to the solution given by (A.20)

in region (3) so that smooth matching may be accomplished with (A.22) in region

(4). The failure of the eikonal approximation around z = 0 yields a reduction

of (A.8) to the Hermite-type (A.16). The requirement that a solution to this

equation exist imposes the eigenvalue condition, (A.18). This single condition

can also be used to smoothly match (A.20) in region (3) to (A.22) in region (4).

Finally, region (4) is governed by (A.9). In the limit z → 0, this equation yields

a matching solution in the overlap with region (3); and, in the limit z → ∞, it

provides two solutions which both satisfy the boundary conditions as z → ∞.

Therefore, the single condition necessary to find a smooth solution which satisfies

the boundary conditions is the eigenvalue condition, (A.18). To lowest order, this

condition can be written in a more recognizable form in the limit M → 1 as

γ2 ≃ s′0(1 − M2). (A.26)

Thus, in region (II) of Figure 2.3, where γ ≫ 1 − M , the behavior is clearly

demonstrated—that stabilization occurs as the Alfvén Mach number approaches

one.
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Appendix B

Alternative Form of the GPM
Algorithm

Alternative forms of the GPM formulae for the mean, gradient, and higher-order

derivatives provide a more transparent understanding of just how the GPM algo-

rithm calculates these quantities and simplify the task of proving computational

stability and convergence. For first-order GPM in one dimension, these forms can

be derived by inverting the matrix in (3.9) to solve for A0 and A1 and employing

the summation formula

(

N
∑

i=1

Ai

)





N
∑

j=1

Bj



 =
N
∑

i=1

AiBi +
N−1
∑

i=1

N
∑

j>i

(AiBj + AjBi) (B.1)

to simplify the result. Following this procedure, the mean and gradient of q for

an arbitrary particle distribution can be written as

qGPM(x) =

∑N−1
i=1

∑N
j>i mimj

[

qi −
(

qi−qj

xi−xj

)

(xi − x)
]

(xi − xj)
2WiWj

∑N−1
i=1

∑N
j>i mimj(xi − xj)2WiWj

(B.2)

dq(x)

dx GPM
=

∑N−1
i=1

∑N
j>i mimj

[

qi−qj

xi−xj

]

(xi − xj)
2WiWj

∑N−1
i=1

∑N
j>i mimj(xi − xj)2WiWj

(B.3)
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where we use the abbreviation Wi = W (|xi − x|, h) and the sum is over the N

neighbor particles. We interpret the evaluation of the mean and gradient of q

by one-dimensional, first-order GPM as a weighted sum for all possible pairs of

neighbor particles. We define the two-point weighting function

Wij(xi − x, xj − x, h) = mimj(xi − xj)
2W (|xi − x|, h)W (|xj − x|, h). (B.4)

The GPM mean evaluation sums the gradient-corrected mean weighted by Wij

for all possible pairs of neighbor particles; the gradient evaluation likewise finds

the weighted sum of first derivatives calculated by each pair.

For the second-order GPM algorithm in one dimension, a similar procedure to

that presented for the first-order case can be followed to yield, after considerable

algebra,

< q(x) >=
1

D1

N−1
∑

i=1

N
∑

j>i

N−1
∑

k=1

N
∑

l>k

[

(qklxij x̃ij − qijxklx̃kl)

xijxkl(xij − xkl)

]

Wijkl (B.5)

<
dq(x)

dx
>=

1

D2

N−1
∑

i=1

N
∑

j>i

N−1
∑

k=1

N
∑

l>k

[

(qklxijxij − qijxklxkl)

xijxkl(xij − xkl)

]

Wijkl (B.6)

<
d2q(x)

dx2
>=

1

D2

N−1
∑

i=1

N
∑

j>i

N−1
∑

k=1

N
∑

l>k

[

2(qijxkl − qklxij)

xijxkl(xij − xkl)

]

Wijkl (B.7)

with the denominator terms given by

D1 =
N−1
∑

i=1

N
∑

j>i

N−1
∑

k=1

N
∑

l>k

[

x̃ij − x̃kl

xij − xkl

]

Wijkl

D2 =
N−1
∑

i=1

N
∑

j>i

N−1
∑

k=1

N
∑

l>k

Wijkl.
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We have defined a four point weighting function

Wijkl(xi, xj , xk, xl, h) = mimjmkmlx
2
ijx

2
kl(xij − xkl)(x̃ij − x̃kl)WiWjWkWl (B.8)

and used the following abbreviations

xij = xi − xj

xij = (xi − x) + (xj − x)

x̃ij = (xi − x)(xj − x)

qij = qi − qj

qij = qj(xi − x) − qi(xj − x).
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Appendix C

Linear Polynomial Regression
and GPM

The GPM algorithm for the determination of gradient information is nearly iden-

tical to the solution for a weighted least squares regression problem using a local

polynomial fit. Expressed in the statistical terminology of Fan and Gijbels [69],

for a set of n data (X1, Y1), . . . , (Xn, Yn) we can estimate a regression function

m(x) using a polynomial of order p given by a Taylor expansion around the point

x0

m(x) =
p
∑

j=0

βj(x − x0)
j. (C.1)

The least squares regression problem seeks to minimize

n
∑

i=1







Yi −
p
∑

j=0

βj(Xi − x0)
j







2

Kh(Xi − x0) (C.2)

with respect to all βj . Here Kh(t) = K(t/h)/h where K is a symmetric kernel

function to locally weight each datum point. If β̂j , j = 0, . . . , p is the solution to

the least squares problem, it is clear that the νth derivative m(ν)(x0) is estimated

by m̂ν(x0) = ν!β̂j .
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Matrix notation most clearly demonstrates the relationship between the GPM

algorithm and weighted least squares theory. The weighted least squares problem

given by (C.2) can be written as

min
β

(y − Xβ)TW(y −Xβ). (C.3)

Here X is the n × p design matrix of the problem given by

X =









1 (X1 − x0) · · · (X1 − x0)
p

...
...

...
1 (Xn − x0) · · · (Xn − x0)

p









, (C.4)

and the n × n diagonal matrix of weights is

W = diag{Kh(Xi − x0)}. (C.5)

The vectors of the data and polynomial coefficients are y = (Y1 · · ·Yn)T and

β = (β0 · · ·βp)
T . Weighted least squares theory gives the solution vector

β̂ = (XTWX)−1XTWy. (C.6)

If equation (3.9) of the GPM prescription is written in matrix notation as Q = SA,

it can be easily shown for p = 1 that

Q = XTWy, A = β̂, S = XTWX. (C.7)

Local polynomial regression and the GPM formulation are the same except that

GPM includes a mass mi for each particle to allow a variation of weighting among

particles.
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Appendix D

Magnetic Divergence Control
using Lagrange Multipliers

D.1 First Order

We choose to minimize the sum of the weighted squared differences at each neigh-

bor particle with the divergence of magnetic field constraint added in as a Lagrange

multiplier. We will minimize the function χ with respect to each of the coefficients

of the polynomial fit, Aj
α,

χ =
N
∑

i=1

D
∑

j=1

[

D
∑

α=0

Aj
α(x0)(xiα − x0α) − Bj(xi)

]2

W (xi,h) + 2λ
D
∑

j=1

Aj
j(x0) (D.1)

Here we take the coefficients of the polynomial fit,

Aj
α =

∂Bj

∂xα
(D.2)

where the number of dimensions in the problem is D, the number of neighbors in

the smoothing sphere is N , j = 1, 2, . . . , D, α = 0, 1, 2, . . . , D. The vector compo-

nent of the magnetic field is written with the component index as a superscript,
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Bj ≡ Bj , to maintain consistency with the notation of the (D+1) element vectors

Aj, bj, and uj.

It is understood that

xT = (1,x,y, z) (D.3)

and
(

∂

∂x

)T

=

(

1,
∂

∂x
,

∂

∂y
,

∂

∂z

)

(D.4)

As well, the position about which the least squares fit is centered is given by x0,

where the component x00 = 0.

Setting the derivatives ∂χ/∂Aj
α = 0 gives the set of equations

N
∑

i=1

D
∑

β=0

Aj
β(x0)(xiβ−x0β)(xiα−x0α)W(xi,h) =

N
∑

i=1

Bj(xi)(xiα−x0α)W(xi,h)−λδjα

(D.5)

for the values j = 1, 2, . . . , D and α = 0, 1, 2, . . . , D.

For a given j, we can write this in matrix form

M · Aj = bj − λuj (D.6)

where M is a (D + 1) × (D + 1) matrix with elements given by

Mαβ =
N
∑

i=1

(xiα − x0α)(xiβ − x0β)W (xi,h) (D.7)

and bj is a (D + 1)-element vector with elements

bj
α =

N
∑

i=1

Bj(xi)(xiα − x0α)W(xi,h) (D.8)
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and uj is a (D + 1)-element unit vector of all zeros with the value 1 in the jth

place.

The solution for the coefficients Aj is found by inverting the matrix M giving

Aj = M−1 · bj − λM−1 · uj (D.9)

where Aj depends on the as yet unknown Lagrange Multiplier λ. Each element

of this solution can be written in summation form as

Aj
α =

D
∑

β=0

M−1
αβ bj

β − λ
D
∑

β=0

M−1
αβ uj

β (D.10)

Note that the definition of the unit vector uj means that the βth component of

the unit vector can be represented in summation form by the Kronecker Delta

such that uj
β = δβj . This enables us to eliminate the sum over the index β by

D
∑

β=0

M−1
αβ uj

β =
D
∑

β=0

M−1
αβ δβj = M−1

αj , (D.11)

leaving us with the equation

Aj
α =

D
∑

β=0

M−1
αβ bj

β − λM−1
αj (D.12)

The constraint for zero magnetic divergence that is incorporated using the

Lagrange Multiplier can be written

D
∑

j=1

Aj
j(x0) = 0 (D.13)

Substituting in the solutions for Aj
α as a function of λ allows us to solve for the

unknown λ, giving

λ =

∑D
j=1

∑D
β=0 M−1

jβ bj
β

∑D
j=1 M−1

jj

(D.14)
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Plugging this solution back into the equation for Aj
α gives the final answer

Aj
α =

D
∑

β=0

M−1
αβ bj

β −
(
∑D

k=1

∑D
β=0 M−1

kβ bk
β

∑D
k=1 M−1

kk

)

D
∑

β=0

M−1
αj (D.15)

for each value of α = 0, 1, . . . , D. Cast in the form of a matrix equation,

Aj = M−1 · bj −
(

∑D
k=1(M

−1 · bk)k
∑D

k=1 M−1
kk

)

M−1
(j) (D.16)

where M−1
(j) denotes the jth column of the (D + 1) × (D + 1) matrix M−1.

D.2 Second Order

For a second order fit, the function χ that we wish to minimize is given by

χ =
∑N

i=1

∑D
j=1

[

∑D
α=0

∑D
β≥α Aj

(αβ)(x0)(xiα − x0α)(xiβ − x0β) − Bj(xi)
]2

W (xi,h)

+2
∑D

α=0 λα
∑D

j=1(1 + δαj)A
j
(αj)(x0)

(D.17)

We define the coefficients of the second-order polynomial fit by

Aj
(αβ) =

∂2Bj

∂xα∂xβ
(D.18)

Setting the derivatives ∂χ/∂Aj
αβ = 0 yields the set of equations

∑N
i=1

∑D
γ=0

∑D
δ≥γ Aj

γδ(x0)(xiγ − x0γ)(xiδ − x0δ)(xiα − x0α)(xiβ − x0β)W(xi,h) =
∑N

i=1 Bj(xi)(xiα − x0α)(xiβ − x0β)W(xi,h) −∑D
γ=0 λγδjβ(1 + δγj)

(D.19)

for the values j = 1, 2, . . . , D, α = 0, 1, 2, . . . , D, and β = α, α + 1, . . . , D.

For a given j, we have a system of M linear equations, where M =
∑D

µ=0(µ+1).

We want to write this system of M equations as a matrix equation. For the two
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indices (α, β) defining the coefficients of the polynomial fit Aj
(α,β), we must find

an equivalent single index m = 1, 2, . . . , M to specify the elements of the matrix

equation. The equation to convert from the pair of indices (α, β) to the single

index m is

m(α, β) = β − D +
α
∑

µ=0

(D + 1 − µ) (D.20)

Hence, the basis functions of our polynomial fit in second order are given by

Xm ≡ xαxβ (D.21)

so that in D = 3 dimensions we have

XT =
(

1,x,y, z,x2,xy,xz,y2,yz, z2
)

(D.22)

We will refer to the single index m = m(α, β) by the simplified notation (αβ).

With these simplifications, the matrix equation for a given j can be written

M · Aj = bj −
D
∑

γ=0

λγ(1 + δγj)u
(γj) (D.23)

where the M × M matrix M has elements given by

M(αβ)(γδ) =
N
∑

i=1

(xiα − x0α)(xiβ − x0β)(xiγ − x0γ)(xiδ − x0δ)W (xi,h) (D.24)

and the M-element vector bj has elements

bj
(αβ) =

N
∑

i=1

Bj(xi)(xiα − x0α)(xiβ − x0β)W(xi,h) (D.25)

and the M-element vector u(γj) is a unit vector of all zeros with the value 1 in

the mth =(γj)th place. Note that if γ > j, we just switch the values of the

212



indices to calculate the single index m; this is allowed because the definition of

the coefficients Aj
αβ is symmetric with respect to an interchange of the indices α

and β.

Inversion of the M × M matrix M yields the solution for the vector of coeffi-

cients Aj

Aj = M−1 · bj −
D
∑

γ=0

λγ(1 + δγj)M
−1 · u(γj) (D.26)

where Aj depends on the D + 1 unknown Lagrange Multipliers λγ. Each element

of this solution can be written in summation form as

Aj
(αβ) =

M
∑

(γδ)=0

M−1
(αβ)(γδ)b

j
(γδ) −

D
∑

γ=0

λγ(1 + δγj)
M
∑

(µν)=0

M−1
(αβ)(µν)u

(γj)
(µν) (D.27)

Once again, we employ the fact that in summation formation the components of

the unit vector u(γj) can be written in terms of the Kronecker Delta u
(γj)
(µν) = δ(γj)(µν)

to reduce the above expression to

Aj
(αβ) =

M
∑

(γδ)=0

M−1
(αβ)(γδ)b

j
(γδ) −

D
∑

γ=0

λγ(1 + δγj)M
−1
(αβ)(γj) (D.28)

The constraint of zero magnetic divergence provides D + 1 constraints on the

coefficients Aj
αβ. For each α = 0, 1, . . . , D, we have

D
∑

j=1

(1 + δαj)A
j
αj(x0) = 0 (D.29)

Substituting Aj
αj in this equation using the solution above yields, for each α =

0, 1, . . . , D, the equation

D
∑

γ=0

λγ

D
∑

j=1

(1 + δαj)(1 + δγj)M
−1
(αj)(γj) =

D
∑

j=1

(1 + δαj)
M
∑

(µν)=0

M−1
(αj)(µν)b

j
(µν) (D.30)

213



This set of D + 1 linear equations can be written as a matrix equation

N · λ = c (D.31)

where the elements of the (D + 1) × (D + 1) matrix N are given by

Nαγ =
D
∑

j=1

(1 + δαj)(1 + δγj)M
−1
(αj)(γj) (D.32)

and the elements of the (D + 1)-element vector c are given by

cα =
D
∑

j=1

(1 + δαj)
M
∑

(µν)=0

M−1
(αj)(µν)b

j
(µν) (D.33)

The solution for the vector of Lagrange Multipliers λ is found by inverting the

the (D + 1) × (D + 1) matrix N,

λ = N−1 · c (D.34)

In summation form, the solution for each λγ is given by

λγ =
D
∑

α=0

N−1
γα cα (D.35)

Substituting the solution to the Lagrange Multipliers into the solution for the

coefficients Aj
(αβ) gives

Aj
(αβ) =

M
∑

(γδ)=0

M−1
(αβ)(γδ)b

j
(γδ) −

D
∑

γ=0

(1 + δγj)
D
∑

σ=0

N−1
γσ cσM

−1
(αβ)(γj) (D.36)

In matrix form, the solution can be written

Aj = M−1 · bj −
D
∑

γ=0

(1 + δγj)
(

N−1 · c
)

γ
M−1

(γj) (D.37)

214



where M−1
(γj) denotes the (γj)th column of the M ×M matrix M−1 and (N−1 · c)γ

denotes the γth element of the vector N−1 · c. We also use the definitions

cα =
D
∑

k=1

(1 + δαk)
(

M−1 · bk
)

(αk)
(D.38)

Nαγ =
D
∑

k=1

(1 + δαk)(1 + δγk)M
−1
(αk)(γk) (D.39)

M(αβ)(γδ) =
N
∑

i=1

(xiα − x0α)(xiβ − x0β)(xiγ − x0γ)(xiδ − x0δ)W (xi,h) (D.40)

bj
(αβ) =

N
∑

i=1

Bj(xi)(xiα − x0α)(xiβ − x0β)W(xi,h) (D.41)

D.3 Implementation Notes

The implementation of magnetic divergence correction using Lagrange Multipliers

is easily added to a GPM code. The magnetic divergence correction occurs as a

secondary step after the three components of the magnetic field have undergone an

unconstrained fit. This correction depends only on the values of the uncorrected

fit as well as the matrix elements of the inverse spatial matrix M−1.

Although the formulas in terms of the original problem for the divergence

corrected fits are complicated, expressed in terms of the uncorrected fits they

become simple. I’ll denote the uncorrected solutions with the superscript U and

the corrected values with the superscript C.

The first order formula becomes

AjC
α = AjU

α − λM−1
αj (D.42)
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where the Lagrange Multiplier is given by

λ =

∑D
j=1 AjU

j
∑D

j=1 M−1
jj

(D.43)

The second order formula becomes

AjC
(αβ) = AjU

(αβ) −
D
∑

γ=0

λγ(1 + δγj)M
−1
(αβ)(γj) (D.44)

where the Lagrange Multipliers are given by

λ = N−1 · c (D.45)

where

Nαγ =
D
∑

j=1

(1 + δαj)(1 + δγj)M
−1
(αj)(γj) (D.46)

and

cα =
D
∑

j=1

(1 + δαj)A
jU
(αj) (D.47)
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