Lecture 7: Particle Motion in Temporally Varying \(B(t) \) Fields & Adiabatic Invariance

I. Particle Motion in a Temporally Varying Magnetic Field \(B(t) \)

A. Uniform Magnetic Field changing in time \(\frac{dB}{dt} = B(t) \).

1. Unlike the static case, Faraday's Law tells us
 \[\frac{\partial B}{\partial t} = -\nabla \times E \], so an electric field is produced.

2. What will this Electric Field \(E \) do?
 a. Take \(\frac{dB}{dt} > 0 \)

 b. We expect the electric field can accelerate ions or electrons

 c. For \(\frac{dB}{dt} > 0 \), ions are accelerated in \(-\phi\) direction, electrons are accelerated in \(+\phi\) direction

3. Lorentz Force Law: \(m \frac{d\mathbf{v}}{dt} = q \left(\mathbf{E} + \mathbf{v} \times \mathbf{B} \right) \)
 a. Take \(\mathbf{v} = 0 \) \(\rightarrow m \frac{d\mathbf{v}}{dt} = q \mathbf{v} \left(\mathbf{E} + \mathbf{v} \times \mathbf{B} \right) \)

 \[\frac{d}{dt} \left(\frac{1}{2} m \mathbf{v}^2 \right) = q \mathbf{v} \cdot \mathbf{E} \]

 b. For \(\frac{dB}{dt} = \frac{d^2 B}{dt^2} = \left(\frac{\partial \mathbf{E}}{\partial \mathbf{r}} - \frac{\partial \mathbf{E}}{\partial \mathbf{y}} \right) \mathbf{r} \Rightarrow E_z = 0 \)

 c. Therefore \(\frac{d}{dt} \left(\frac{1}{2} m \mathbf{v}^2 \right) = \frac{d}{dt} \left(\frac{1}{2} m \mathbf{v}^2 \right) \) since \(\frac{d\mathbf{v}}{dt} = 0 \).

4. What is the energy change due to \(\frac{dB}{dt} \neq 0 \)?
 a. \[\frac{d}{dt} \left(\frac{1}{2} m \mathbf{v}^2 \right) = q \mathbf{v} \cdot \mathbf{E} \]

b. If \(\frac{dB}{dt} \) changes slowly, we can calculate this energy change along the unperturbed Larmor orbit \(\phi_0 \)

\[\frac{d}{dt} \left(\frac{1}{2} m \mathbf{v}^2 \right) dt = q \phi_0 \mathbf{E} \cdot d\mathbf{r} = q \phi_0 \mathbf{E} \cdot \mathbf{r} \]
c. \[\Delta (\frac{1}{2}mv^2) = q \oint_C E \cdot dl = q \oint_C E \cdot dl \]

Change over 1 orbit

Line integral over the path of the particle

By Stokes' Theorem, \[q \oint_C E \cdot dl = q \oint_S \nabla \times E \cdot dA = -q \oint_S \frac{dB}{dt} \cdot dA \]

Surface integral over area enclosed by the Larmor orbit

Note: For the ion motion above, \(dA = -dA \frac{e}{m} \) (right-hand rule), so

\[\Delta (\frac{1}{2}mv^2) = -q \oint_S \frac{dB}{dt} \cdot dA = -q \oint_S \frac{dB}{dt} \cdot dA = q \oint_S \frac{dB}{dt} \]

If we assume the rate of energy change is approximately constant over Larmor orbit, \(\Delta (\frac{1}{2}mv^2) = \frac{dW}{dt} \Delta t = \frac{dW}{dt} \frac{2\pi}{v_c} \)

Where \(W = \frac{1}{2}mv^2 \) is perpendicular energy,

Thus

\[\frac{dW}{dt} = \frac{ev}{2 \pi} \frac{dB}{dt} \left(\frac{u^2}{v_c^2} \right) = \frac{q}{2 \pi} \frac{m}{v_c} \frac{dB}{dt} = \left(\frac{mv^2}{2B} \right) \frac{dB}{dt} = B \frac{dB}{dt} \]

Since \(N = \frac{W_1}{B} \),

\[\frac{dW}{dt} = \frac{W_1}{B} \frac{dB}{dt} \Rightarrow \left(\frac{dW}{dt} \right) B = \frac{W_1}{B} \frac{dB}{dt} \]

\[\Rightarrow \frac{dW}{dt} = \mu \frac{dB}{dt} \Rightarrow \frac{dW}{dt} = \mu \frac{dB}{dt} = \text{constant} \]

Therefore, for slowly varying magnetic fields \(B(t) \),

\[\frac{dW}{dt} = \text{constant} \]
B. Magnetic Flux Interpretation

1. Conservation of the Magnetic Moment \mathbf{A} is equivalent to maintaining a constant magnetic flux through Larmor orbit.

\[\Phi_B = \oint \mathbf{A} \cdot d\mathbf{r} \]

For our case:

\[\Phi_B = B \pi n^2 = \frac{\pi}{2} \frac{v^2}{c^2} \rho^2 = \pi \frac{v^2}{c^2} \frac{m^2}{q^2} \tau^2 = \frac{2 \pi m^2}{q^2} (\frac{m v^2}{2 \hbar}) \]

\[\Phi_B = \frac{2 \pi m}{q^2} \mu \]

2. This holds for a B-field varying (slowly) in either time or space.

II. Adiabatic Invariance

A. General Result From Hamiltonian Mechanics

For "nearly" periodic system & slowly varying parameters, the action integral

\[J = \oint p \, dq \]

is an adiabatic invariant.

1. p & q are conjugate momentum & position coordinates.
II. (Continued)

8. Example: Harmonic Oscillator

1. Consider a time dependent harmonic oscillator.

\[\frac{d^2 x}{dt^2} + \omega(t) x = 0 \]

- E: Spring-mass system

\[\omega = \frac{K}{m} \]

2. Position \(q = x = A \sin \omega t \)

- Momentum \(p = mv = ma \Omega \cos \omega t \)

3. Action Integral:

\[J = \oint pdq = \oint_0^{2\pi} m v A \cos \omega t \, d(\sin \omega t) = mA^2 \int_0^{2\pi} \cos^2 \omega t \, d\omega \]

\[= \frac{mA^2 \omega}{2} \int_0^{2\pi} \cos \omega t \, d\omega = \pi m A^2 \omega \]

- This integral \(J = \pi mA^2 \) is constant if \(\omega(t) \) changes slowly.

- So amplitude \(A \propto \omega^{-1/2} \). If frequency decreases, amplitude will increase.

4. Total Energy \(W = \frac{p^2}{2m} = \frac{1}{2} m A^2 \omega^2 \), so this can also be written

\[J = 2\pi W \frac{\omega}{\omega} = \text{constant} \]

C. How slow must system change to satisfy invariance?

1. Since amplitude \(A \propto \frac{1}{\omega} \), consider the WKB solution

\[X_{WKB} = \frac{1}{\sqrt{2\pi}} e^{-i \int \omega(t) \, dt} \]

- In this case, \(J = \pi mA^2 \) is precisely constant.

2. This solution is an exact solution of the differential equation

\[\frac{d^2 X_{WKB}}{dt^2} + \left[\omega^2 + \frac{\dot{\omega}^2}{2\omega} - \frac{3}{4} (\frac{\dot{\omega}}{\omega})^2 \right] X_{WKB} = 0 \]
Lecture 47 (Continued)

II. Continued

11. Here \(\dot{\omega} = \frac{d\omega}{df} \) and \(\ddot{\omega} = \frac{d^2\omega}{df^2} \).

3. The WKB solution is a good approximation when

\[
\omega^2 \gg \left| \frac{3\dot{\omega}}{4} \left(\frac{\dot{\omega}}{\omega} \right)^2 - \frac{\ddot{\omega}}{2\omega} \right|
\]

Rule of Thumb

The adiabatic invariant is approximately constant when the change of characteristic frequency is small over one period.

IV. Example: Magnetic Mirror and its First, Second, and Third Invariants

1. Three types of periodic motion in an axisymmetric magnetic mirror:
 a. Larmor Motion
 b. Parallel Bounce Motion
 c. Azimuthal Drift Motion (due to D8 and Curvature Drifts)

2. First Adiabatic Invariant:
 a. As we know from lecture #3, the lowest order motion in a magnetic field is Larmor motion:

\[
\frac{d^2 \mathbf{V}}{dt^2} = -e \mathbf{V} \times \mathbf{B} \quad \text{or} \quad \frac{d^2 \mathbf{x}}{dt^2} = -e \mathbf{E}
\]
b. In this case, the action integral is

\[J = \int \alpha \, \text{max} \, v_z^2 \, \text{d}t \]

using \(x = r \, \sin \theta \),
\(v_x = r \, \cos \theta \),
\(v_x = r_c \, \cos \theta \) \text{ constant}.

\[J = \frac{9}{4} \, m^2 \, g_\| \, \frac{v_z^2}{(g_\| / m)^2} = \frac{2}{5} \, m \, v_z^2 \left(\frac{m}{2 \, \beta} \right) = \frac{2}{5} \, m \, v_z^2 \] \text{This is just the same as} \, \mu \text{ (with a constant factor).}

3. Second Adiabatic Invariant (Source Motion)
 a. The action integral for parallel bounce motion

\[J = m \int \, 0 \, v_{\parallel} \, \text{d}s \quad \text{s = distance along magnetic field.} \]

b. We know, for a turning point at \(B = B_t \),
\[\frac{1}{2} \, m \, v_{\parallel}^2 + \mu \, B = \mu \, B_t \] (Leaves #6)

So
\[v_{\parallel}(s) = \pm \sqrt{2 \mu \, m} \sqrt{B_t - B(s)} \]

c. This gives
\[J = \int \sqrt{1/2 \mu \, m} \, \sqrt{B_t - B(s)} \, \text{d}s \]

d. Thus, for a given magnetic field configuration with \(B(s) \),
\[\int_{s_0}^{s_f} \sqrt{B_t - B(s)} \, \text{d}s = \text{constant} \]

for bounce motion \(B_t \) between two points \(s_0 \) and \(s_f \).

\(B_t \) between two points \(s_0 \) and \(s_f \).
e. As illustrated above, the constancy of J_2 (for slowly varying system parameters) can be used to determine new motion of a system.

i. For an initial magnetic field $B_i(t)$ with initial energy, we may calculate J_2 and S_{ai} & S_{bi}.

ii. Let the magnetic field change (slowly) from $B_i(t)$ to $B_f(t)$.

iii. Since $J_2 = \left. \int S_{bi} \sqrt{B_i - B(s)} \, ds \right|_{S_{ai}}^{S_{bf}} = \left. \int S_{bf} \sqrt{B_f - B(s)} \, ds \right|_{S_{af}}^{S_{bf}}$, we can adjust B_f (and find corresponding mirror points S_{af} & S_{bf}) and until this integral is satisfied using $B_f(t)$.

iv. The final total energy is then μB_f (since $\mu_0 = \mu$).

4. Third Adiabatic Invariant, (Azimuthal Drift Motion)

a. This invariant only exists in initially symmetric cases, such that the drift orbits are nearly closed.

b. What happens when $B(t)$ changes in time?

i. $\int C.E. \, dt = -\int \frac{\partial E}{\partial t} \, dt$ is change in energy

ii. Assuming axial symmetry, $E(\theta, R) = -\frac{dB}{dt} \theta R^2 \Rightarrow E = -\frac{B}{2} \frac{dB}{dt}$

iii. $E = -\frac{R d^2 B}{2} \times \hat{B}$ Produce $E \times B$ drift radially inward.

End view of mirror. \(\text{Curvature drift} \)

\(\nabla B \) and curvature drift
Lecture #7 (Continued)

4. D. (b) (Continued)

iv. \[v_e = \frac{\mathbf{E} \times \mathbf{B}}{B^2} = -\frac{\mathbf{R} \times \mathbf{B}}{2\pi} \times \mathbf{R} \times \mathbf{B} \times \mathbf{B} = -\frac{\mathbf{R} \cdot \mathbf{B}}{2\pi} \]

Real: \[\frac{dR}{dt} = \frac{dR}{dt} = \frac{dR}{dt} = -\frac{R \cdot dB}{2\pi} \Rightarrow 2\frac{dR}{dt} = \frac{dB}{B} \]

v. Thus \(R^2B = \text{const.} \)

vi. The Magnetic Flux through drift orbit is

\[\Phi_B = \pi R^2B = \text{const.} \]

(Assuming \(B \) is relatively constant near axis of symmetry.)

vii. Thus, the 3rd Adiabatic Invariant means the flux enclosed by drift orbit remains constant.

Particle remains on the surface of a flux tube.

E. Example: Magnetosphere

\(v_e \)\n
![Larmor Motion]

![Nested drift motion (Ring Current)]

1. Second Adiabatic Invariant applies even without axisymmetry.
2. a. For a constant Magnetic field (\(\frac{dB}{dt} = 0 \)), energy is conserved.
 \[\mathcal{E} = \frac{1}{2}mv_{\perp}^2 + \mu B(\mathbf{s}) \]
 b. Since \(\mathcal{E} = \text{const.} \), \(B_\perp = \text{constant} \).
 c. Freeing \(v_{\perp} \) at \(B_\perp \), \(\mathcal{I} = \int_{B_\perp} B_\perp \mathbf{s} \mathbf{d}s = \text{const.} \)

3. Higher order multiple manifolds:
 a. Conserve \(B_\perp \) & \(\mathcal{I} \) mean that drifting particles remain on a surface (L-shell).