29:195 Homework \#2

Reading: Required: Skim GB Chapter 6, Sections 6.1-6.6 (p.175-219)
Read GB Chapter 6, Section 6.7 (p.219-239)
Optional: Read BS Chapter 4, Sections 4.5-4.7 (p.108-130)
Due at the beginning of class, Thursday, February 19, 2009.

1. Show that the determinant of the matrix

$$
\left(\begin{array}{ccc}
S-n^{2} \cos ^{2} \theta & -i D & n^{2} \sin \theta \cos \theta \\
i D & S-n^{2} & 0 \\
n^{2} \sin \theta \cos \theta & 0 & P-n^{2} \sin ^{2} \theta
\end{array}\right)
$$

can be written in the form of the Booker Quartic

$$
A n^{4}-B n^{2}+C=0
$$

where

$$
\begin{gathered}
A=S \sin ^{2} \theta+P \cos ^{2} \theta, \\
B=R L \sin ^{2} \theta+P S\left(1+\cos ^{2} \theta\right),
\end{gathered}
$$

and

$$
C=R L P .
$$

2. Prove that the index of refraction for cold plasma waves (the solution of the Booker Quartic above) is either purely real or purely imaginary, but never complex. Hint: Show that the discriminant $B^{2}-4 A C$ is positive definite.
3. In the limit $\omega \rightarrow 0$, show that

$$
\begin{gathered}
R=L=S=1+\sum_{s} \frac{\omega_{p s}^{2}}{\omega_{c s}^{2}}, \\
D=0,
\end{gathered}
$$

and

$$
P=-\sum_{s} \frac{\omega_{p s}^{2}}{\omega^{2}} .
$$

4. Assuming that the ions are infinitely massive, derive the equations for the following characteristic frequencies:
(a) The right-hand cutoff frequency, ω_{R}
(b) The left-hand cutoff frequency, ω_{L}
(c) The upper hybrid frequency, $\omega_{U H}$
5. Whistler Waves
(a) Assuming the wave frequency is sufficiently high that the ions do not move, that $\omega \ll \omega_{p}$, and that $\left|\omega_{c e}\right| \ll \omega_{p}$, show that the index of refraction for whistler waves with a wave vector at an angle θ with respect to the mean magnetic field is approximately

$$
n^{2}=\frac{\omega_{p}^{2}}{\omega\left(\left|\omega_{c e}\right| \cos \theta-\omega\right)}
$$

(b) Sketch $n(\theta)$ for $\omega \ll\left|\omega_{c e}\right|$
(c) Sketch $n(\theta)$ for $\omega=\left|\omega_{c e}\right| / 4$
(d) Sketch $n(\theta)$ for $\omega=\left|\omega_{c e}\right| / 2$

