29:195 Homework \#3

Due at the beginning of class, Tuesday, February 24, 2009.

1. Ray Tracing

Consider a radio wave packet launched from an antenna located at $(x, z)=(0,0)$ at time $t=0$ in a plane-parallel atmosphere as depicted in the figure below.

The plasma electron density in the atmosphere increases with height as

$$
n_{e}(z)=n_{0} \frac{z^{2}}{H^{2}} .
$$

The wave vector of the radio wave has components $k_{x}=k_{z}=k_{0}$. Please give all answers in terms of the parameters of the problem $\omega_{p e 0}^{2}=\left(n_{0} q_{e}^{2}\right) /\left(\epsilon_{0} m_{e}\right), k_{0}, c$, and H.
(a) Calculate the frequency of the radio wave ω as a function of time.
(b) Find the rate of change of the wavevector components k_{x} and k_{z} with respect to time in terms of the problem parameters and x and z.
(c) Determine the motion of the wavepacket in time as the functions $x(t)$ and $z(t)$. Be sure to use initial conditions to solve for any unknown constants in terms of the problem parameters.
(d) Determine the trajectory in the (x, z) plane in the form $z(x)$.
(e) What is the total distance traveled in the horizontal direction before the wavepacket returns to the ground?
(f) What is the maximum height the wavepacket reaches?

