I. Introduction
A. Confinement: 1. One of the goals of the fusion program in particular, and plasma physics in general, is the confinement of plasmas.
2. We have discussed last semester a number of MHD Equilibria ⇒ BUT NOT ALL MHD EQUILIBRIA ARE STABLE!

3. Instabilities: Macroscopic vs. microscopic
 a. Plasma instabilities that involve the displacement of the plasma are macroscopic, and may be discussed in terms of MHD.
 b. Microscopic instabilities, on the other hand, are driven by the structure in the velocity distribution function and require a kinetic description.

4. Unfortunately, for the fusion program, many perfectly good MHD equilibria are unstable to a wide range of instabilities, with odd names like interchange, sausage, and kink instabilities.

B. Stability: Simple 1-D Example
1. Consider the problem of a frictionless ball on a surface of varying height
 a. Gravitational potential \(\Phi(r) = mg h(r) \)

2. The force \(F = -\frac{d\Phi}{dr} = 0 \) at equilibrium points.
 a. But, if we displace the mass by small amount \(y = r - r_0 \) from the equilibrium point \(r_0 \), we have
 \[\Rightarrow \text{Stability if the force causes the particle to return to } r_0 \]
 \[\Rightarrow \text{Instability if the force pushes the particle farther from } r_0 \]

3. The Energy Principle is a powerful energy argument that can easily tell us about stability.
4. Consider a system with a gravitational potential \(\phi(x) = \phi_0 \sin x \) \(\phi(x) \)

\[E = \frac{1}{2} m v^2 + \phi(x) \]

b. Let's expand \(\phi(x) \) about an equilibrium point \(x_0 \).

\[\phi(x) = \phi(x_0) + (x-x_0) \frac{\partial \phi}{\partial x} \bigg|_{x_0} + \frac{(x-x_0)^2}{2} \frac{\partial^2 \phi}{\partial x^2} \bigg|_{x_0} + \ldots \]

c. Let's write the small displacement \(y = x - x_0 \) (also \(\frac{dx}{dt} = \frac{dy}{dt} \)).

d. Thus,

\[E = \frac{1}{2} m \left(\frac{dy}{dt} \right)^2 + \phi(x_0) + y \frac{\partial \phi}{\partial x} \bigg|_{x_0} + \frac{y^2}{2} \frac{\partial^2 \phi}{\partial x^2} \bigg|_{x_0} + \ldots \]

5. Now, for small displacement \(y \ll 1 \), let's expand in orders:

a. \(O(y) \)

\[E_0 = \phi(x_0) \]

b. \(O(y') \)

\[E_1 = y \frac{\partial \phi}{\partial x} \bigg|_{x_0} \] (but \(\frac{\partial \phi}{\partial x} \bigg|_{x_0} = 0 \) \(\Rightarrow E_1 = 0 \))

c. \(O(y^2) \)

\[E_2 = \frac{1}{2} m \left(\frac{dy}{dt} \right)^2 + \frac{y^2}{2} \frac{\partial^2 \phi}{\partial x^2} \bigg|_{x_0} \]

\[\text{Kinetic Energy} \quad \text{Potential Energy, } SW \]

6. Since we have conservation of energy, as \(y \) changes, \(E = \text{const} \).

a. Thus, the particle can only gain kinetic energy if \(SW < 0 \).

b. \(SW = \left(\frac{y^2}{2} \right) \left(\frac{\partial^2 \phi}{\partial x^2} \bigg|_{x_0} \right) \)

\[\frac{\partial^2 \phi}{\partial x^2} = -\phi_0 \sin x \]

\[\Rightarrow x_0 = \frac{\pi}{2} \quad \Rightarrow \frac{\partial^2 \phi}{\partial x^2} = -\phi_0 < 0 \quad \text{unstable!} \]

\[x_0 = \frac{3\pi}{2} \quad \Rightarrow \frac{\partial^2 \phi}{\partial x^2} = +\phi_0 > 0 \quad \text{stable!} \]
Lecture #7 (Continued)
L. B. (Continued)

7. This example is trivial, but it demonstrates a powerful technique.
 a. For more complicated situations, it can easily demonstrate instability.
 Ex: 2-D Saddle Point

1. In a complicated MHD Equilibrium, the equilibrium geometry can be used to calculate stability (numerically if needed).

II. Types of MHD Instabilities

A. Interchange Instability
 i. Consider a plasma equilibrium with total pressure \(\nabla (\rho + \frac{B^2}{2\mu_0}) \) = constant, but with \(B_z \) increasing with height, \(B(\rho) \) decreasing with height, and gravity.

 a. Weaker \(B_0 \)

 b. "Interchange" flux tubes

 c. Now heavier flux tube 1 has dropped in gravitational field, releasing energy! \(\Rightarrow \) UNSTABLE \(SW < 0 \).
Lecture 17 (Continued)

II. A. (Continued)

2a. Field lines are not bent during interchange motion. (Magnetic tension does not act as restoring force)

b. Release of gravitational P.E. drives kinetic energy \(\rightarrow\) Instability

This is the Magnetized Rayleigh-Taylor Instability

c. More fluid supported by \(J_B\) than \(J_0\) \(\Rightarrow\) \(|J_0| > |J_B|\)

d. \(\frac{\partial B}{\partial t} + \nabla \cdot \vec{J} = 0 \Rightarrow\) Charge build up \(\Rightarrow\) leads to \(E\) fields

e. \(E\times B\) velocity reinforces original perturbation

4. Interchange does not require gravity. Centripetal force can act like gravity to drive interchange.

\(B_e\)

\(E\times B\) flow leads to rotation of plasma

Interchange at plasma edge leads to a "fluted" appearance, \(\Rightarrow\) "Flute" Instability
Lecture #7 (continued)

II. Interchange due to Field Curvature

B. Interchange due to Field Curvature

i. When field lines are concave towards the plasma, equilibrium is unstable.

ii. When field lines are convex towards the plasma, equilibrium is stable.

2. Mirror Machine

3. Cusp Mirror Geometry

C. Instabilities in a Z-Pinch

1. Sausage Instability

2. Kink Instability
III. The Linear Force Operator

A. 1. We want to express the change in the potential energy due to a displacement.

2. Ideal MHD Equations (from last session)

Continuity: \(\frac{\partial \rho}{\partial t} + \mathbf{U} \cdot \nabla \rho = -\rho \nabla \cdot \mathbf{U} \)

Momentum: \(\frac{\partial \mathbf{U}}{\partial t} + \rho \mathbf{U} \cdot \nabla \mathbf{U} = -\nabla p + \frac{(\nabla \times \mathbf{B}) \times \mathbf{B}}{\mu_0} \)

Induction: \(\frac{\partial \mathbf{B}}{\partial t} = \nabla \times (\mathbf{U} \times \mathbf{B}) \)

Pressure: \(\frac{\partial p}{\partial t} + \mathbf{U} \cdot \nabla p = -\rho \nabla \cdot \mathbf{U} \)

Conserved Energy: \(E = \int d^3x \left[\frac{1}{2} \rho \mathbf{U}^2 + \frac{p}{\gamma-1} + \frac{B^2}{2\mu_0} \right] \)

3. Linearize Equations, but do not assume \(\nabla \times \mathbf{B}_0 = 0 \) or \(\nabla \rho_0 = 0 \), since the equilibrium fields are not necessarily straight and uniform!

\(\rho = \rho_0 + p_1 \)
\(\mathbf{U} = \mathbf{U}_0 + \mathbf{U}_1 \)
\(\mathbf{B} = \mathbf{B}_0 + \mathbf{B}_1 \)
\(p = p_0 + p_1 \)

\[\frac{\partial p_1}{\partial t} + \rho_1 \nabla p_0 + p_0 \nabla \cdot \mathbf{U}_1 = 0 \]
\[\rho_0 \frac{\partial \mathbf{U}_1}{\partial t} = -\nabla p_1 + \frac{(\nabla \times \mathbf{B}_0) \times \mathbf{B}_1 + (\nabla \times \mathbf{B}_1) \times \mathbf{B}_0}{\mu_0} \]
\[\frac{\partial \mathbf{B}_1}{\partial t} = \nabla \times (\mathbf{U}_1 \times \mathbf{B}_0) \]
\[\frac{\partial p_0}{\partial t} + \rho_1 \nabla p_0 - \nabla p_0 \nabla \cdot \mathbf{U}_1 = 0 \]
Lecture #7 (Continued)

III. A. (Continued)

4. Put in terms of displacement vector \(\mathbf{Z}_1 \)

a. \(U_1 = \frac{\partial X_1}{\partial t} \)

b. For example: Continuity Eq:
\[
\frac{\partial \rho_1}{\partial t} + \nabla \cdot (\rho_1 \mathbf{v}_1) + \nabla \cdot \rho_1 \mathbf{v}_1 = 0
\]

1. Now, we can integrate this equation over time:
\[
\int \frac{\partial \rho_1}{\partial t} \, dt + \int \nabla \cdot (\rho_1 \mathbf{v}_1) \, dt + \int \nabla \cdot \rho_1 \mathbf{v}_1 \, dt = 0
\]

2. \(\rho_1 + \mathbf{v}_1 \cdot \nabla \rho_1 + \rho_1 \nabla \cdot \mathbf{v}_1 = 0 \)

c. Similarly, for Induction Eq:
\(\mathbf{B}_1 = \nabla \times (\mathbf{v}_1 \times \mathbf{B}_0) \)

d. Pressure Eq:
\(p_1 + \mathbf{v}_1 \cdot \nabla p_1 = \rho_0 \nabla \cdot \mathbf{v}_1 = 0 \)

5. We can now substitute \(\mathbf{B}_1 \) and \(\rho_1 \) in terms of \(\mathbf{Z}_1, p_0, \mathbf{B}_0 \) into the Momentum Equation to find:

a. \(\rho_0 \frac{\partial^2 \mathbf{Z}_1}{\partial t^2} = \nabla \left[\mathbf{v}_1 \cdot \nabla p_1 - \rho_0 \nabla \cdot \mathbf{v}_1 \right] + \frac{\nabla \times (\mathbf{v}_1 \times \mathbf{B}_0)}{\mu_0}
\]
\[+ \frac{\nabla \times (\nabla \times (\mathbf{v}_1 \times \mathbf{B}_0)) \times \mathbf{B}_0}{\mu_0} \]

b. We usually write this in terms of the linear force operator \(F(\mathbf{Z}_1) \)
\(\rho_0 \frac{\partial^2 \mathbf{Z}_1}{\partial t^2} = F(\mathbf{Z}_1) \)

where \(F(\mathbf{Z}_1) \) is the RHS above.

6. The linear force operator \(F(\mathbf{Z}_1) \) has useful mathematical properties that allow lead to two powerful approaches: 1) Normal Mode Method, 2) Energy Principle.