PHYS:7729 Homework #1

Reading: Required: Review Gurnett & Bhattacharjee (GB), Chapter 5, Sec 5.4 (p.157–167) Required: Read GB, Chapter 6, Sec 6.1–6.3 (p.186–202)

Due at 5:00pm, Friday, February 5, 2021.

1. Beginning with the Adiabatic Equation of State, derive the following alternative equation for the evolution of the pressure

$$\frac{dp}{dt} = -\gamma p \nabla \cdot \mathbf{U}$$

- 2. Magnetic Pressure vs. Magnetic Tension
 - (a) For a magnetic field of the form $\mathbf{B} = B_0 y/L\hat{\mathbf{z}}$, calculate the force density due to the magnetic pressure term and magnetic tension term in the simplified form of the Momentum Equation.
 - (b) Calculate the magnetic tension and magnetic pressure force densities for a wave-like magnetic field of form $\mathbf{B} = B_0 \hat{\mathbf{z}} + B_1 \sin(k_{\parallel} z) \hat{\mathbf{y}}$. You may take $B_1 \ll B_0$ and drop terms that are second-order in B_1 .
- 3. A dipole magnetic field has the form

$$\mathbf{B} = \frac{\mu_0 M}{4\pi} \frac{1}{r^3} (2\cos\theta \hat{\mathbf{r}} + \sin\theta \hat{\boldsymbol{\theta}})$$

We can represent **B** in Clebsch form $\mathbf{B} = \nabla \psi \times \nabla \phi$, where ϕ is the azimuthal coordinate and ψ is a scalar function $\psi(r, \theta)$.

(a) Find $\psi(r, \theta)$.

(b) Use this result to easily calculate the equation for a magnetic field line in the form r = r(θ).
HINTS: (i) Choose an appropriate way to label the field line.
(ii) The general form of the equation for a field line is r = R sin² θ, where here you want to determine an expression for the constant R in terms of your chosen field line label.

4. Consider the Clebsch representation of a magnetic field $\mathbf{B} = \nabla \alpha \times \nabla \beta$. Show that

$$\frac{\partial \mathbf{B}}{\partial t} = \nabla \times (\mathbf{U} \times \mathbf{B})$$

is satisfied if the Clebsch variables satisify

$$\frac{\partial \alpha}{\partial t} + \mathbf{U} \cdot \nabla \alpha = 0 \quad \text{and} \quad \frac{\partial \beta}{\partial t} + \mathbf{U} \cdot \nabla \beta = 0.$$

5. Star Formation

Suppose the interstellar medium has a number density of 10^6 m^{-3} and a straight, uniform magnetic field of magnitude $B = 3 \times 10^{-10} \text{ T}$.

(a) Calculate the field strength in a star if the flux remains "frozen-in" and the star forms by a spherical collapse to the radius and mass of the sun.