
PHYS:7729 Homework #2

Reading: Required: Read Gurnett & Bhattacharjee (GB), Chapter 6, Sec 6.4–6.6 (p.202–217)
Required: Read Gurnett & Bhattacharjee (GB), Chapter 7, Sec 7.1–7.2 (p.221–239)
Optional: Read Boyd & Sanderson (BS), Chapter 4, Sections 4.3–4.4 (p.82–107)

Due at 5:00pm, Friday, February 19, 2021.

1. Fluid Electron Waves
Assuming that the ions are stationary in a homogeneous, unmagnetized plasma and that the electrons respond to
an applied electrostatic wave of the form

φ(x, t) = φ1e
i(kx−ωt),

use the electron equations from the Two Fluid Equations (neglecting the drag term)
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along with Poisson’s Equation
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to derive the dispersion relation ω = ω(k). Hint: Use E = −∇φ and you may use the expression pe = nekTe.

(a) Treating the perturbation as small, write down the linearized set of equations. Hint: Don’t forget to use the
the property of quasineutrality.

(b) Solve for the dispersion relation ω = ω(k) in terms of the electron plasma frequency ωpe and the electron
thermal velocity vte.

(c) What is the appropriate adiabatic index γ for these waves if they are very fast (and thus adiabatic) and strictly
one-dimensional?

(d) What is the group velocity for these waves?

2. From the general form for linearized Ideal MHD,

ω2U1 = (c2s + v2A)(k ·U1)k− v2A(b̂ ·U1)(b̂ · k)k− v2A(b̂ · k)(k ·U1)b̂+ v2A(b̂ · k)2U1,

solve for the MHD Dispersion Relation in the form D(ω,k) = 0 (this is the determinant set equal to zero).
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3. One-Dimensional Solar Wind Model
Consider a simplified, steady-state (constant in time) model of the solar wind near the equatorial plane in which
all quantities depend only on the spherical radius r. Assume the radial component of the solar wind velocity is a
given function vr(r). Hint: Use spherical coordinates, and take Bθ = 0.

(a) Use the MHD continuity equation to derive the mass density ρ as a function of radius r in terms of the solar
radius R⊙, the density at the solar surface ρ⊙, and the radial velocity at the solar surface vr(R⊙).

(b) Use divergence free condition on the magnetic field to determine the radial component of the magnetic field
Br as a function of radius r in terms of the solar radius R⊙ and the radial field at the solar surface Br(R⊙).
NOTE: This is an expression of the consecration of magnetic flux.

(c) Use the azimuthal component of the Ideal MHD induction equation to derive an expression from Bφ as a
function of radius r in terms of the angular rotational velocity at the solar surface Ω⊙, the radial component
of the magnetic field Br, radial solar wind velocity vr, and the azimuthal solar wind velocity vφ. You may
assume that the magnetic field at the solar surface is purely radial Bφ(R⊙) = 0. Hint: Use your results from
part (b) to simplify the expression and express the vφ at the solar surface as a function of Ω⊙.

4. A force-free equilibrium, in which the thermal pressure gradient forces are negligible and the magnetic force j×B =
0, can be satisfied if the current is parallel to the magnetic field. Since the current density in MHD is given by
Ampere’s Law µ0j = ∇×B, a magnetic field that satisfies the relation

∇×B = αB

will yield a force-free equilibrium, where α is a scalar that may or may not be constant.

(a) In cylindrical coordinates, show that a magnetic field of the form

B = [Bρ, Bφ, Bz] =

[

0,
B0kρ

1 + k2ρ2
,

B0

1 + k2ρ2

]

where k and B0 are constants, yields a force-free equilibrium. Solve for the form of α.

(b) Compute the form of the current density along the axial direction, jz , due to this magnetic field.
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