PHYS:7729 Homework \#3

Reading:	Required:	Read GB, Chapter 3, Sec 3.6-3.7 (p.46-51)
	Required:	Read GB, Chapter 7, Sec 7.3-7.3 (p.239-263)
	Required:	Read GB, Chapter 7, Sec 7.5-7.6 (p.263-277)
	Optional:	Read BS, Chapter 4, Sections 4.5-4.7 (p.108-130)

Due at 5:00pm, Friday, March 5, 2021.

1. Here we will apply a simplified version of Multiple-Timescale Analysis to the problem of particle motion in constant, uniform \mathbf{E} and \mathbf{B} fields.

We assume a right-handed, orthonormal basis aligned with the direction of the magnetic field ($\left.\hat{\mathbf{e}}_{1}, \hat{\mathbf{e}}_{2}, \hat{\mathbf{b}}\right)$ such that $\hat{\mathbf{e}}_{1} \times \hat{\mathbf{e}}_{2}=\hat{\mathbf{b}}$. The Lorentz Force Law is

$$
m \frac{d \mathbf{v}}{d t}=q(\mathbf{E}+\mathbf{v} \times \mathbf{B})
$$

for an electric field $\mathbf{E}=E_{1} \hat{\mathbf{e}}_{1}+E_{2} \hat{\mathbf{e}}_{2}+E_{\|} \hat{\mathbf{b}}$ and a magnetic field $\mathbf{B}=B_{0} \hat{\mathbf{b}}$. For this problem, we will take the case $E_{\|}=0$.
(a) First, let us convert the dimensional form of the Lorentz Force Law above to a dimensionless equation. Derive the dimensionless form

$$
\begin{equation*}
\frac{d \mathbf{v}^{\prime}}{d t^{\prime}}=\mathbf{E}^{\prime}+\mathbf{v}^{\prime} \times \hat{\mathbf{b}} \tag{1}
\end{equation*}
$$

for dimensionless quantities $t^{\prime}=\omega_{c} t, \mathbf{v}^{\prime}=\mathbf{v} / v_{\perp}$, and $\mathbf{E}^{\prime}=\frac{\mathbf{E}}{B_{0} v_{\perp}}$ where $v_{\perp}=\sqrt{v_{1}^{2}+v_{2}^{2}}$.
(b) Verify that the quantity $E^{\prime}=\left|\mathbf{E}^{\prime}\right|$ is dimensionless (in the SI system of units).
(c) Show that the condition $E^{\prime} \ll 1$ means that the $\mathbf{E} \times \mathbf{B}$ drift is slow compared to the perpendicular velocity, $\left|\mathbf{v}_{E}\right| \ll v_{\perp}$.
(d) Assuming $E^{\prime} \ll 1$, the timescales of the Larmor motion and the $\mathbf{E} \times \mathbf{B}$ drift are well separated. For the expansion parameter, take $\epsilon=E^{\prime} \ll 1$. As an aid in the bookkeeping for the order of magnitude of each term, we can add an ϵ to the electric field term in our equation to remind us of its order,

$$
\begin{equation*}
\frac{d \mathbf{v}^{\prime}}{d t^{\prime}}=\epsilon \mathbf{E}^{\prime}+\mathbf{v}^{\prime} \times \hat{\mathbf{b}} \tag{2}
\end{equation*}
$$

We'll assume a fast timescale t^{\prime} and a slow timescale $\tau^{\prime}=\epsilon t^{\prime}$. Decompose the total velocity into rapidly varying piece \mathbf{v}_{1}^{\prime} and a smaller slowly varying piece $\mathbf{v}_{2}^{\prime}, \mathbf{v}^{\prime}=\mathbf{v}_{1}^{\prime}\left(t^{\prime}\right)+\epsilon \mathbf{v}_{2}^{\prime}\left(\tau^{\prime}\right)$.
Write down the expansion of $d / d t^{\prime}$ assuming two timescales.
(e) Derive the equation at $\mathcal{O}(1)$ and solve for $\mathbf{v}_{1}^{\prime}\left(t^{\prime}\right)$ given the (dimensional) initial conditions at $t=0$ of $\mathbf{v}=$ $v_{\perp} \hat{\mathbf{e}}_{1}+v_{\| 0} \hat{\mathbf{b}}$.
(f) Derive the equation at $\mathcal{O}(\epsilon)$. Solve for $\mathbf{v}_{2}^{\prime}\left(\tau^{\prime}\right)$. HINT: Do not forget to treat t^{\prime} and τ^{\prime} as independent variables.
(g) Sum the solution for each order to get the total solution $\mathbf{v}^{\prime}\left(t^{\prime}, \tau^{\prime}\right)$. Convert back to dimensional form to yield the final, complete solution $\mathbf{v}(t)$.
2. An electron of charge $q_{e}=-e$ and mass m_{e} and an proton of charge $q_{e}=e$ and mass $m_{i}=m_{p}$ are initially at rest at $\mathbf{x}=(0,0,0)$ in a magnetic field $\mathbf{B}=B_{0} \hat{\mathbf{z}}$. An electric field is then turned on at $t=0$ and increased linearly until time $t_{1}=\frac{20 \pi m_{i}}{e B_{0}}$, at which point the electric field is held constant,

$$
\mathbf{E}(t)=\left\{\begin{array}{cc}
0 & t<0 \\
E_{0}\left(t / t_{1}\right) \hat{\mathbf{y}} & 0 \leq t \leq t_{1} \\
E_{0} \hat{\mathbf{y}} & t>t_{1}
\end{array}\right.
$$

Find the total current density as a function of time $\mathbf{j}(t)$ due to the drifts of the two particles (neglect the current due to the fast Larmor oscillation).
3. Laser Trapping: A charged particle in an unmagnetized plasma can be trapped by a spatially varying intense laser field. Using intereference of several lasers, the electric field near a charged particle is given by

$$
\mathbf{E}(\mathbf{x}, t)=E_{0}\left[1+\left(x / x_{0}\right)^{2}\right] \sin \left(\omega t-k_{y} y\right) \hat{\mathbf{x}} .
$$

Calculate the velocity of the oscillation center U as a function of position x for a particle initially at rest at $t=0$ at position $\mathbf{x}=\left(x_{0}, 0,0\right)$. You may assume that the particle velocity v and laser frequency ω satisfy $v \ll \omega / k_{y}$ and $v / x_{0} \ll \omega$.

