PHYS:7729 Homework \#4

Reading: Required: Read GB Chapter 9, Sections 9.1-9.3 (p.319-349)
Optional: Read BS Chapter 7, Sections 7.1-7.3 (p.252-268)
Due at 5:00pm, Friday, March 26, 2021.

1. A plasma has a "spherical shell" distribution function given by

$$
f_{0}(\mathbf{v})=\frac{n_{0}}{4 \pi C^{2}} \delta(|\mathbf{v}|-C)
$$

where C is a constant.
(a) Using the Fourier analysis approach, show that the dispersion relation for electrostatic waves in this plasma is $\omega^{2}=\omega_{p}^{2}+k^{2} C^{2}$.
(b) What is the region of validity of this dispersion relation?
2. Show that the Laplace transform of $f(t)=\cosh (a t)$ is given by

$$
\tilde{f}(p)=\frac{p}{p^{2}-a^{2}}
$$

3. Use the Residue Theorem to evaluate the inverse Laplace transform of

$$
\tilde{f}(p)=\frac{1}{p^{2}-a^{2}}
$$

4. Solution of Navier-Stokes Equations:

The Navier-Stokes Equations for the viscous evolution of a hydrodynamic fluid are given by:

$$
\begin{aligned}
\frac{\partial \rho}{\partial t}+\mathbf{U} \cdot \nabla \rho & =-\rho \nabla \cdot \mathbf{U} \\
\rho\left(\frac{\partial \mathbf{U}}{\partial t}+\mathbf{U} \cdot \nabla \mathbf{U}\right) & =-\nabla p+\nu \rho \nabla^{2} \mathbf{U} \\
\frac{\partial p}{\partial t}+\mathbf{U} \cdot \nabla p & =-\gamma p \nabla \cdot \mathbf{U}
\end{aligned}
$$

where ν is the coefficient of kinematic viscosity. Assume a wave vector of the form $\mathbf{k}=k \hat{\mathbf{z}}$. The initial conditions for a sound wave in this system at $t=0$ are $\mathbf{U}(\mathbf{x}, 0)=\bar{U} \cos (k z) \hat{\mathbf{z}}$ and $\mathbf{U}^{\prime}(\mathbf{x}, 0)=-\bar{U} \omega_{0} \sin (k z) \hat{\mathbf{z}}$. Use the LaplaceFourier transform method (Fourier transform in space, Laplace transform in time) to solve for the velocity $\mathbf{U}(\mathbf{x}, t)$. Note that the z-component of the velocity U_{z} is the only non-trivial part of the solution.
HINT: This is similar to a linear dispersion relation problem, so your first step is to linearize the Navier-Stokes equations.
(a) Fourier transform the linearized equations and find the differential equation for $U_{z}(\mathbf{k}, t)$ in terms of time derivatives. Use the definition of the sound speed $c_{s}^{2}=\gamma p_{0} / \rho_{0}$ to simplify the equation.
(b) Solve for the Laplace transform $\tilde{U}_{z}(\mathbf{k}, p)$.
(c) Perform the inverse Laplace transform to find a solution for $U_{z}(\mathbf{k}, t)$. You may wish to define $\omega^{2}=k^{2} c_{s}^{2}-\nu^{2} k^{4} / 4$ to simplify notation.
(d) Fourier transform the initial conditions and apply them to the answer above so that you may obtain the final solution $U_{z}(\mathbf{x}, t)$.
(e) Determine the evolution of the magnitude of the velocity $\left|U_{z}(\mathbf{x}, t)\right|$ for $\nu^{2} k^{2}<4 c_{s}^{2}$.
(f) In the weak damping limit $\nu^{2} k^{2} \ll 4 c_{s}^{2}$, what are the effective real frequency of oscillation (include the small, first order correction) and damping rate?
(g) Qualitatively sketch the solution $U_{z}(z=0, t)$ in the case that $\nu^{2} k^{2}<4 c_{s}^{2}$.
(h) Qualitatively sketch $U_{z}(z=0, t)$ for the cases $\nu^{2} k^{2}=4 c_{s}^{2}$ and $\nu^{2} k^{2}>4 c_{s}^{2}$ on the same plot (but a different plot from part d).

