ASTR:7830 Homework #2

Suggested Reading: Read RLS16 Chapter 3, Sec. 3.4–3.8 (p.66–90)

Due at the beginning of class, Friday, February 2, 2024.

- 1. Compute the electron-ion collision frequency and electron mean free path for the following plasmas, and determine whether each plasma is strongly collisional or weakly collisional.
 - (a) The plasma in the cylindrical LArge Plasma Device (LAPD) at UCLA, with a number density of $n = 10^{18} \text{ m}^{-3}$, electron temperature $T_e = 8 \text{ eV}$, ion temperature $T_i = 1 \text{ eV}$, and magnetic field B = 600 G. The magnetic field in the LAPD is axial, the cylindrical plasma chamber has $L_{\parallel} = 18 \text{ m}$ and plasma diameter $L_{\perp} = 40 \text{ cm}$.
 - (b) The solar wind has a number density of $n = 10 \text{ cm}^{-3}$, electron temperature $T_e = 10^5 \text{ K}$, ion temperature $T_i = 5 \times 10^4 \text{ K}$, and magnetic field B = 10 nT. The turbulent dynamics in the solar wind are driven at the large length scales of $L \sim 10^6 \text{ km}$.
- 2. The magnetic field strength in the Earth's magnetic equatorial plane is given by $B = B_0 (R_E/r)^3$ where $B_0 = 0.3$ G, R_E is the radius of the Earth, and r is the geocentric distance.
 - (a) Derive an expression for the drift period (the time it takes a particle to drift around the Earth) of a particle on the equatorial plane with a pitch angle of 90° and energy W. (Hint: Think carefully about what this implies).
 - (b) Evaluate the period for a proton of 1 keV energy at a distance of $5R_E$ from the center of the earth.
 - (c) Evaluate the period for an electron of 1 keV energy at a distance of $5R_E$ from the center of the earth.
 - (d) Compare the answer to the drift induced by the force of gravity on the same particles.
 - (e) What is the orbital period of an uncharged particle at the same position?
- 3. A mirror machine has a ratio $B_{max}/B_{min} = 2$. A group of electrons with an isotropic velocity distribution (Maxwellian) is released at the center of the machine. In the absence of collisions, what fraction of these electrons is confined? (Hint: Do not forget that velocity space is three-dimensional.)
- 4. How does the mean free path for electron-ion collisions $\lambda_{m(e-i)}$ depend on the electron temperature T_e ?
- 5. Show, for a plasma species s with a drifting Maxwellian velocity distribution

$$f_s(\mathbf{x}, \mathbf{v}, t) = \frac{n_s(\mathbf{x}, t)}{\pi^{3/2} v_{ts}^3} \exp\left[\frac{-m_s |\mathbf{v} - \mathbf{U}_s(\mathbf{x}, t)|^2}{2T_s(\mathbf{x}, t)}\right]$$

that the first velocity moment, $\int d^3 \mathbf{v} \cdot \mathbf{v} f_s(\mathbf{x}, \mathbf{v}, t)$, gives the result $n_s(\mathbf{x}, t) \mathbf{U}_s(\mathbf{x}, t)$.