ASTR:7830 Homework \#3

Suggested Reading: Read RLS16 Chapter 13, Sec 13.1-13.3.2 (p.396-402)
Read RLS16 Chapter 13, Sec 13.3.7-13.4 (p.415-418)
Due at the beginning of class, Friday, February 9, 2024.

1. Star Formation

Suppose the interstellar medium has a number density of $10^{6} \mathrm{~m}^{-3}$ and a straight, uniform magnetic field of magnitude $B=3 \times 10^{-10} \mathrm{~T}$.
(a) Calculate the field strength in a star if the flux remains "frozen-in" and the star forms by a spherical collapse to the radius and mass of the sun.
2. Spherically Expanding Plasma Consider a sphere of radius r_{0} filled with plasma of uniform number density n_{0} and threaded by a straight, uniform magnetic field in the z-direction of magnitude B_{0}. The sphere then undergoes a uniform spherical expansion to a final radius $4 r_{0}$. The resistivity of the plasma is negligible and the plasma is a fully ionized plasma of protons and electrons.
(a) Assuming no plasma enters or leaves the sphere, what is the final number density?
(b) What is the magnitude of the final magnetic field?
(c) If the plasma is significantly collisional and the expansion is sufficiently rapid that the adiabatic equation of state describes the expansion, what is the final temperature if the initial temperature was T_{0} ?
(d) If instead the plasma is collisionless, then the double adiabatic equation of state applies. If the initial perpendicular and parallel temperatures were $T_{\perp}=2 T_{0}$ and $T_{\|}=T_{0}$, what are the final perpendicular and parallel temperatures?
3. Ideal MHD Dispersion Relation Calculate the linear dispersion relation for the Ideal MHD equations for a general wave vector of the form $\mathbf{k}=k \sin \theta \hat{\mathbf{x}}+k \cos \theta \hat{\mathbf{z}}$. Assume the equilibrium plasma conditions are constant in time and uniform in space with a mean equilibrium magnetic field $\mathbf{B}_{0}=B_{0} \hat{\mathbf{z}}$. Assume there is zero mean fluid velocity, $\mathbf{U}_{0}=0$.
(a) Determine the linearized equations for Ideal MHD. State clearly any assumptions you have made and please box the final form of each equation.
(b) Find the Fourier transform of the equations by assuming a plane wave solution of the form $\exp [i(\mathbf{k} \cdot \mathbf{x}-\omega t)]$. Be sure to box the final form of each equation.
(c) Eliminate all of variables except for \mathbf{U}_{1}, writing the problem as a matrix equation of the form

$$
\left(\begin{array}{lll}
M_{11} & M_{12} & M_{13} \\
M_{21} & M_{22} & M_{23} \\
M_{31} & M_{32} & M_{33}
\end{array}\right)\left(\begin{array}{c}
U_{1} \\
U_{2} \\
U_{3}
\end{array}\right)=0
$$

in terms of $\omega, k, \theta, c_{s}=\sqrt{\gamma p_{0} / \rho_{0}}$, and $v_{A}=B_{0} / \sqrt{\mu_{0} \rho_{0}}$.
(d) Determine the dispersion relation $D(\omega, \mathbf{k})=0$ by setting the determinant of the 3×3 matrix M equal to zero, $|M|=0$. Be sure to simplify the result so that the Alfvén wave solution and fast/slow solutions appear as separate factors in the dispersion relation.

