ASTR:7830 Homework #5

Suggested Reading: Read RLS Chapter 10 (p.315–343)

Due at the beginning of class, Friday, March 8, 2024.

1. Magnetic Field Due to a Ring of Current

Consider a circular current loop of radius R_0 centered about the origin of a cylindrical coordinate system with current I_0 in the $-\hat{\phi}$ direction. The current density for this current loop may be expressed as

$$\mathbf{j}(\mathbf{r}) = -I_0 \delta(r - R_0) \delta(z) \hat{\phi}.$$

- (a) Use the Biot-Savart Law to compute the magnetic field at the origin $\mathbf{r} = 0$ due to this current loop. Do not forget to include the vector direction in the answer for $\mathbf{B}(0)$.
- (b) The dipole moment for this current loop is $\mu = -I_0 A \hat{\mathbf{z}}$, where the loop encircles the area A. Use the Biot-Savart Law to compute the far-field limit of the magnetic field due to a dipole at a position in the plane of the loop far away from the loop, $r \gg R_0$,

$$\mathbf{B}(r,\phi,0) = \frac{-\mu_0}{4\pi} \frac{\boldsymbol{\mu}}{r^3}$$

2. Radius of the Plasmasphere

For cold plasma that has evaporated from the ionosphere, the convection of the plasma in the inner magnetosphere is governed by a balance of the convection electrostatic potential and the corotation electrostatic potential,

$$\Phi_{tot} = -E_c r \sin \phi - \frac{\Omega_E B_E R_E^3}{r}. \label{eq:phitot}$$

The stagnation point in the convective flow occurs where the electric field due to this potential is zero, $\mathbf{E} = -\nabla \Phi_{tot} = 0$.

- (a) Compute the formula for radius of the stagnation point in terms of Ω_E , B_E , R_E , and the convective electric field E_c . In which direction is the stagnation point from the Earth, noon, dusk, midnight, or dawn?
- (b) For a convective electric field of magnitude $E_c = 2 \text{ mV/m}$, compute the L value of the stagnation point, which gives an estimate of the radius of the plasmapause, the outer boundary of the plasmasphere.

3. Partial Ring Current

For hot plasma with energies $W \gtrsim 10$ keV, the convection of the plasma is governed by a balance of the convection electrostatic potential and the effective potential associated with the azimuthal drift due to the ∇B and curvature drifts,

$$\Phi_{tot} = -E_c r \sin \phi + \frac{\mu B_E R_E^3}{q r^3},$$

where the magnetic moment of the charged particle is $\mu = mv_{\perp}^2/2B$ and, for simplicity, we have assumed equatorial trapped particles with a pitch angle of $\alpha = 90^{\circ}$.

- (a) Compute the formula for radius of the stagnation point in terms of the perpendicular kinetic energy $W_{\perp} = mv_{\perp}^2/2$ and the convective electric field E_c . In which direction is the stagnation point from the Earth, noon, dusk, midnight, or dawn?
 - HINT: When taking the gradient of the potential, the magnetic moment—which is the first adiabatic invariant—is constant.
- (b) For particles with energy $W_{\perp} = 20 \text{ keV}$ and a convective electric field of magnitude $E_c = 1 \text{ mV/m}$, compute the L value of the stagnation point. This gives an estimation of the radius at which the ring current transitions to the partial ring current for particles of this energy.

1