ASTR:7830 Homework \#5

Suggested Reading: Read RLS Chapter 10 (p.315-343)

Due at the beginning of class, Friday, March 8, 2024.

1. Magnetic Field Due to a Ring of Current

Consider a circular current loop of radius R_{0} centered about the origin of a cylindrical coordinate system with current I_{0} in the $-\hat{\phi}$ direction. The current density for this current loop may be expressed as

$$
\mathbf{j}(\mathbf{r})=-I_{0} \delta\left(r-R_{0}\right) \delta(z) \hat{\phi}
$$

(a) Use the Biot-Savart Law to compute the magnetic field at the origin $\mathbf{r}=0$ due to this current loop. Do not forget to include the vector direction in the answer for $\mathbf{B}(0)$.
(b) The dipole moment for this current loop is $\boldsymbol{\mu}=-I_{0} A \hat{\mathbf{z}}$, where the loop encircles the area A. Use the Biot-Savart Law to compute the far-field limit of the magnetic field due to a dipole at a position in the plane of the loop far away from the loop, $r \gg R_{0}$,

$$
\mathbf{B}(r, \phi, 0)=\frac{-\mu_{0}}{4 \pi} \frac{\boldsymbol{\mu}}{r^{3}}
$$

2. Radius of the Plasmasphere

For cold plasma that has evaporated from the ionosphere, the convection of the plasma in the inner magnetosphere is governed by a balance of the convection electrostatic potential and the corotation electrostatic potential,

$$
\Phi_{t o t}=-E_{c} r \sin \phi-\frac{\Omega_{E} B_{E} R_{E}^{3}}{r}
$$

The stagnation point in the convective flow occurs where the electric field due to this potential is zero, $\mathbf{E}=-\nabla \Phi_{t o t}=0$.
(a) Compute the formula for radius of the stagnation point in terms of Ω_{E}, B_{E}, R_{E}, and the convective electric field E_{c}. In which direction is the stagnation point from the Earth, noon, dusk, midnight, or dawn?
(b) For a convective electric field of magnitude $E_{c}=2 \mathrm{mV} / \mathrm{m}$, compute the L value of the stagnation point, which gives an estimate of the radius of the plasmapause, the outer boundary of the plasmasphere.
3. Partial Ring Current

For hot plasma with energies $W \gtrsim 10 \mathrm{keV}$, the convection of the plasma is governed by a balance of the convection electrostatic potential and the effective potential associated with the azimuthal drift due to the $\nabla \mathrm{B}$ and curvature drifts,

$$
\Phi_{t o t}=-E_{c} r \sin \phi+\frac{\mu B_{E} R_{E}^{3}}{q r^{3}}
$$

where the magnetic moment of the charged particle is $\mu=m v_{\perp}^{2} / 2 B$ and, for simplicity, we have assumed equatorial trapped particles with a pitch angle of $\alpha=90^{\circ}$.
(a) Compute the formula for radius of the stagnation point in terms of the perpendicular kinetic energy $W_{\perp}=m v_{\perp}^{2} / 2$ and the convective electric field E_{c}. In which direction is the stagnation point from the Earth, noon, dusk, midnight, or dawn?
HINT: When taking the gradient of the potential, the magnetic moment-which is the first adiabatic invariant-is constant.
(b) For particles with energy $W_{\perp}=20 \mathrm{keV}$ and a convective electric field of magnitude $E_{c}=1 \mathrm{mV} / \mathrm{m}$, compute the L value of the stagnation point. This gives an estimation of the radius at which the ring current transitions to the partial ring current for particles of this energy.

