Iowa High Performance Computing Summer School

Gregory G. Howes Department of Physics and Astronomy and Jun Ni Department of Radiology

University of Iowa

2523 UCC Training Room University of Iowa 6-7 August 2009

Thank you

THE UNIVERSITY OF LOWA

Jerry Prothero Jeff DeReus Mary Grabe Information Technology Services Information Technology Services Information Technology Services

and

National Science Foundation's TeraGrid Pittsburgh Supercomputing Center Great Lakes Consortium for Petascale Computing

Outline

UΝ

of lowa

- Welcome and Introductions
- Aims of this Summer School
- Comments
- Getting Online

Welcome and Introductions

JE IC

- Students from a wide range of departments: Chemistry **Computer Science Economics Electrical and Computer Engineering** Hydroscience and Engineering **Management Sciences Mechanical Engineering** Molecular Pathology Physics and Astronomy **Statistics and Actuarial Science** Please Introduce yourselves:
 - Name
 - Department
 - Academic Status and Year (ex. graduate student, 3rd year)
 - High Performance Computing Experience

Aims of this Summer School

To enable you to apply parallel computing to your own research

General Comments:

- Much of this material may be familiar to you
- I plan to explain things from a very basic level to make sure this group from such diverse backgrounds can follow

Comments

- A few comments before we get started are in order:
- I) <u>Terminology</u>: Terminology in this field is <u>not</u> standardized.
 This field is new and evolves rapidly.
- 2) <u>HPC is valuable to a wide range of fields</u>:
 - Many examples I use will come from the field of physics.
 I will try to present the specific problems in a relatively abstract way so that you can consider them simply mathematical problems to be solved.
- 3) <u>Software (programming) vs. Hardware (computers)</u>:
 - I am not going to talk a lot about different hardware options, but will focus on the software side, specfically how to design and implement parallel algorithms.

Comments

- 4) <u>Common approaches vs. Exhaustive coverage</u>:
 This will not be an exhaustive review of all possible HPC approaches
 - I will focus on the most important and widely used approaches
 - In particular, we will talk a lot about MPI and some about OpenMP
- 5) Specificity vs. Generality:

- I will try to strike a balance between specific examples, which are often most illuminating, vs. general considerations which may apply to a more wide variety of HPC applications

Getting Online

Each participant has accounts set up on several computers: <u>University of Iowa, Research Services</u>:

Research Clusters

rs-001.its.uiowa.edu (32 bit)
rs-003.its.uiowa.edu (64 bit)

Pittsburgh Supercomputing Center:

• Bigben: Cray XT3, 2068 compute nodes (4172 cores)

- Detailed information for running on bigben is available at <u>http://www.psc.edu/machines/cray/xt3/</u>
- More detail follows below: getting online and submitting both interactive and batch jobs

Getting Online

Logging on:

• We use Secure Shell (ssh) to log on to remote computers from an xterm terminal:

ssh -X howes@bigben.psc.edu

- Enter your password at the prompt: howes@bigben.psc.edu's password:
- The "-x" enables Xforwarding, so that you can pull up a window on your local terminal from an application on the remote machine

Transferring Files:

• We use Secure Copy (scp) to copy files to remote computers scp localfile howes@bigben.psc.edu:~/remotefile

• "~/" denotes your home directory on the remote machine

Getting Online

Submitting Jobs on Bigben:

- Jobs can be run either interactively or in batch mode <u>Interactive Jobs</u>:
- To reserve nodes for an interactive job, submit the command gsub -I -q training -1 walltime=10:00 -1 size=2 where
 - -I denotes interactive mode
 - -q training denotes to submit to the queue "training"
 - -1 walltime=10:00 requests wallclock time in HH:MM:SS
 - -1 size=2 requests 2 cores
- The system will prompt you to wait for interactive session [type ^C (Ctrl-C) to cancel the request] gsub: waiting for job 418954.phantom.psc.edu to start
- Once started, you can submit jobs using pbsyod -size 2 ./hellompi
- ^D terminates interactive session

of Iowa

Batch Jobs:

• Create a file hellompi.pbs with the following:

```
#!/bin/csh
#PBS -N hellompi
#PBS -o hellompi.log
#PBS -l size=4
#PBS -l walltime=10:00
#PBS -j oe
#PBS -g debug
set echo
cd $SCRATCH
cp $HOME/hellompi ./
pbsyod -size $PBS_O_SIZE ./hellompi
```

• To submit the job to the queue gsub hellompi.pbs

• To delete the job from the queue qdel 1234

where 1234 is the jobid of the job you want to kill

• To check queue, qstat