Introduction to High
Performance Computing

Jun Ni, Ph.D. , Associate Professor
Department of Radiology
Carver College of Medicine

Information Technology Services

The University of lowa, lowa City

Aug. 6-7, 2009 lowa HPC Summer School 2009

Parallel Computing

m Outline
m Concept of parallel programming

m Parallel computing environment and system

Need for Parallel Computing

m Need for computational speed

» Numerical modeling and simulation of scientific
and engineering problems

m Require repetitive calculation on large amounts
of data

» Achieve computational results within desirable
time

m Integrated to CAD for effective and efficient
product processing

m Real time simulation is need.

Need for Parallel Computing

m Need for computational speed
m Modeling of DNA structures
m Forecasting weather
m Prediction in missile defense system
= Study in astronomy
» Grand challenge problems

m The current computer systems do not meet the
need of today’s computations.

Need for Parallel Computing

m Example:

m Weather forecasting system

m Atmosphere is modeled by mathematical governing
equations and numerically divided into many cells in
three dimensions

m Each cell has many physical variable to be computed,
such as temperature, pressure, humidity, wind speed
and direction, etc.

m Imile width by 1 mile long and by 1 mile height, as a
cell size, scan to total 10 miles high

m Global region can be schemed as 5x108 cells.

Need for Parallel Computing

m Example:

m Weather forecasting system

m Each cell calculation requires to have 200 floating-
point operations, we need 10!! floating-point
operations. That is just for one computation for an
interval time.

m If we choose time interval 1s 10 minutes and we
predict 10 days , we will have 10x24x60=1.44x10* time
intervals. Therefore we need about 10*x1011= 101>
operations to accomplish the computational task.

Need for Parallel Computing

m Example:

m Weather forecasting system
m 1 GFlops/s machine would finish this job in 10 days.

m [n other words, if we want to finish this job in 10
minutes, we need to have a 2TFlops/s supercomputer!

m [n reality, 200 tloating-point operations is away not
enough to handle the iterative procedures during
computation.

m We need a PFlops/s machinel!

Need for Parallel Computing

m Another example:
m Astronomy study of bodies in space
m Each body is attracted to each other body by
gravity
m The motion of body can be calculated based on
the total forces acted on the body.

m If there 1s N bodies, there should be N-1 forces

need to be calculated, which requires to have N2
floating-point operations. For example,

» Galaxy has 10! stars, we 10?2 tloating-point
operations.

Need for Parallel Computing

m Another example:

m Effective algorithm the number of operations to
Nlog,N calculations. This is we still have
10'log,10!! floating-point operations.

m It take 10° years to accomplish N?-algorithm and
one year accomplish Nlog?N-algorithm.

The Need tor More
Computational Power

m Example: suppose that we wish to execute
this code in one second:

[* X,y, and z are arrays of floats, */

/* each containing a trillion entries */

for (1=0,1 <ONE_TRILLION; i++)
z[1] =x[i] + y[i];

The Need tor More
Computational Power

m A conventional computer would successively fetch
X[1] and y[1] from memory into registers, add
them, and store the result in Z[1].

m This would require 3 x 102 copies between memory
and registers each second.

m Given the size of the memory and assuming
transters at the speed of light, we would need to fit a
word of memory into ~#10-1% m, the size of a
relatively small atom.

The Need tor More
Computational Power

m Unless we figure out how to represent a
word with an atom, it will be impossible
to build our computer.

» Thus we must increase the number of
processors, increasing the number of
memory transfers and computations per
second.

m Directions in hardware and software.

The Need tor More
Computational Power

m The system designers must concern
themselves with:
m The design and implementation of an

interconnection network for the processors and
memory modules.

m The design and implementation of system
software for the hardware.

The Need tor More
Computational Power

m The system users must concern themselves
with:
m The algorithms and data structures for solving their
problem.

» Dividing the algorithms and data structures into sub
problems.

s Identitying the communications needed among the sub
problems.

® Assignment of sub problems to processors and memory
modules.

Need for Parallel Computing

= One way to increase computational speed is use
multiple processors operating together on a single
problem.

m From the hardware aspect, people can build
multiple processor machines, traditionally called
supercomputing, or utilize distributed computers to
form a cluster.

m Recently such computing is immigrated to Internet
by integrate hundreds to thousands ot distributed
computers together on a global scale “virtual
supercom%uter” to solve single computational
problem. That is called “Grid” computing.

High Pertormance Computer

m Detinition of a high performance Computer

m a computer which can solve large problems in a
reasonable amount of time

m Characterization of high performance
computer
m fast operation of instruction

m large memory

® high speed interconnect

® high speed input/output

High Pertormance Computer

» How it works?
= make sequential computation faster.

m perform computation in parallel.

High Pertormance Computer

m Available commercial high performance
computer?

m SGI/Cray: Power Challenge, Origin-2000,
T3D/T3E

= HO/Convex: SPP-1200, 2000
m [BM: SP

m Tandem:

High Pertormance Computer

s In theory, we can obtain virtually unlimited
computational power.

m But we have ignored how the processors will
work together to solve the problem.

m Getting the collection of processors to work
together is extremely complex and requires a
huge amount ot work.

Need for Parallel Computing

= No matter what computer system we put
together, we need to split the problem into
many parts, and each part 1s pertormed by a
separate processor in parallel.

m Writing program for such form ot
computation 18 known as parallel
programming.

m The objective of parallel computing is to
significantly increase in pertormance

Need for Parallel Computing

m The idea 1s that n computers provide
up to n times the computational speed of a
single computer. In other words, the
computational job be completed
inl/nth ot the time used by a single
computer.

m In practical, people would not achieve that
expectation, because there is a need ot
interaction between parts, both for

and of

computations.

Need for Parallel Computing

m Never the less, one can achieve substantial
improvement, depending upon the problem
and amount ot parallelism (the way to
parallelize the computational job).

m In addition, multiple computers often have
more total main memory than a single
computer, which enables problems that
require larger amounts of main memory to

be tackled.

Types of Parallel Computer Systems

m Single computer with multiple internal
ProCessors

m Multiple interconnected computers (cluster
system)

m Multiple Internet-connected computers
(distributed systems)

» Multiple Internet-connected, heterogeneous,
globally distributed systems, in “virtual”
organization (grid computing system)

Types of Parallel Computer Systems

m Hardware architecture classification:

m Single computer with multiple internal
processors

» Multiple interconnected computers (cluster
system)

» Multiple Internet-connected computers
(distributed systems)

» Multiple Internet-connected, heterogeneous,
globally distributed systems, in “virtual”
organization (grid computing system)

Types of Parallel Computer Systems

m Memory based classitication:

m Shared memory multiprocessor system
m Supercomputing such as Cray, SGI Origin, ...

m Conventional computer consists of a processor
executing a program stored in a main mMemory

— | Main memory«

Instructions Data to or from processor
(to processor)

A

Processor [

Shared Memory Systems

The simplest shared memory architecture 1s bus

based.

All processors share a common bus to memory
and other devices.

The bus can become saturated resulting in large
delays in the fultillment of requests.

Some of the contention is relieved by large caches,
however the architecture still does not scale well.

The SGI Challenge XL is bus based and has only

36 processors.

Shared Memory Systems

Most shared memory architectures rely on a
switch based interconnection network.

The basic unit of the Convex SPP1200isa 5 x 5
crossbar switch.

A crossbar is a rectangular mesh ot wires with
switches at points of intersection.

The switches can either allow signals to pass
through in both vertical and horizontal
simultaneously or they can redirect from
horizontal to vertical.

Shared Memory Systems

m Example of 4 x 4 crossbar switch:

L

|
|

u:f_fjl — IMlemory

l'fu — lemory

[
o

ff. — Memory

) — O

___.I' I-.___. I.._'_

Q) —— Memory

Shared Memory Systems

With the crossbar switch, communication
between two units will not interfere with
communication between any other two units.

Crossbar switches don’t sufter from the problems
of saturation as in busses.

Crossbar switches are very expensive as they
require /7 switches for 7 processors and 7
Mmemory units.

Types of Parallel Computer Systems

m Memory based classitication:

» Shared memory multiprocessor system

m Multiple processors connected to a shared memory
with single address space. Multiple processors are
connected to the memory though interconnection
network

One address space

A A A

interconnection

A A A

Processors

Types of Parallel Computer Systems

® Programming a shared memory multiprocessor
involves having executable code stored in the
memory for each processor to execute.

» The data for each problem will also be stored in
the shared memory.

m Each program could access all the data it need.

m [t is desirable to have a parallel programming
language which allows the shared variables and

parallel code should be declared.

Types of Parallel Computer Systems

» In most of cases, people need to insert special
parallel programming library into existing
sequential programming codes to perform
parallel computing.

m Alternatively, one can introduce threads for
individual processor.

Types of Parallel Computer Systems

m Distributed memory system or message-passing
multi-computer

» The system is connected with multiple independent
computers through an interconnection network.

» Each computer consists of a processor and local memory
that 1s not accessible by the other processors, since each
computer has its own address space.

» The interconnection network is used to pass messages
among the processors.

» Massages include commands and data that other processor
may require for the computations.

Types of Parallel Computer Systems

m Distributed memory system or message-
passing multi-computer

m Such system can be built-in processors with
memory, for example like IBM SP system

® Or can be self-contained computer that could
operate independently (PC-LINUX operated

cluster) or distributed system through Internet.

m The traditional way to do parallel programming
is to introduce a to the
sections coded by a sequential-programming
language.

Types of Parallel Computer Systems

m Distributed memory system or message-passing
multi-computer

Interconnection network

““““““““““““““““““““

processor !

memory |

Types of Parallel Computer Systems

m Programming message-passing multicomputer
still involves dividing the overall problem 1nto
parts that are intended to be executed
simultaneously to solve the problem.

» The independent parallel subpart ot the problem
is defined as a . Therefore, in parallel
computing, one can divide a problem into a
number of processes.

® One may have multiple processes executed on
multiple processors.

Types of Parallel Computer Systems

m [f the number of processes is the same as or less
than the number of the processors, one can
distribute each process to each processor for load
balance.

» However, if there were more processes than
processors, then more than one process would be
executed on one processor, in a time-shared
tashion.

Types of Parallel Computer Systems

m Shortcomings of message-passing based
parallel programming

m Require programmers to provide explicit
message-passing calls

® Data are not shared; it must be copied, which
limits the applications that require multiple
operations across amounts of data.

Types of Parallel Computer Systems

m Advantages
m Scalable to large system

= Applicability to computers connected on a
network (either inter-networked or global
networked)

m Easy to replace
m Easy to maintain

» Cost much cheaper.

Distributed Shared Memory System

m Each processor has access to the whole
memory using a single memory address
space, although the memory is distributed.

m The technology 1s also called “virtual shared
memory~ or distributed memory system

Distributed Shared Memory System

m KSR 1 multiprocessor system use such
technique

Interconnection network

processor

memory

__

Classification of Instruction stream
and data stream

s MIMD and SIMD

» Each single-instruction stream generated from
program operates single data (SISD)

m Each single-instruction stream generated from

program operates multiple data (SIMD)

» Multiple instruction stream generated torm
program operates single data (MISD) (not exits).

» Multiple instruction stream generated form

program operates multiple data (MISD)

Classification of Instruction Stream
and Data Stream

s Within MIMD, one has

» Multiple program multiple data structure

m Single program multiple data structure

Computer Architectures
The classical von Neumann machine
consists of a CPU and main memory.
The CPU consists of a control unit and an
arithmetic-logic unit (ALU).
The control unit is responsible for directing
the execution of instructions.

The ALU 1s responsible for carrying out
the actual computations.

Computer Architectures

The CPU contains very fast memory locations
called registers.

Both instructions and data are moved between the
registers and memory along a bus.

The bus 1s a bottleneck. No matter how fast the
CPU is, the speed of execution 1s limited by the
rate at which we can transfer instructions and data
between memory and the CPU.

Computer Architectures

An intermediate memory 1s introduced called
cache.

Cache 1s taster than main memory but slower
than registers.

Programs tend to access both instructions and
data sequentially.

Thus a small block of instructions and data in the
cache will mean most memory accesses will be
from the fast cache rather than the slower main
memory.

Computer Architectures

m There are a variety of many different
architectures (hardware designs).

m Flynn classitied systems according to the
number of instruction streams and the
number of data streams.

Computer Architectures

The simplest architecture (typically found
in personal computers) 1s single-instruction
single-data (SISD).

On the opposite extreme is multiple-
instruction multiple-data (MIMD) in which
multiple autonomous processors operate on
their own data.

Computer Architectures (SISD)

s The first extension to CPUs for speedup
was pipelining.

m The various circuits ot the CPU are split up
into functional units which are arranged
into a pipeline.

m Fach tunctional unit operates on the result
of the previous tunctional unit during a

clock cycle.

Computer Architectures (SISD)

m Suppose that the addition operation was split into
the following sequence of operations:

Fetch the operands from memory.

Compare exponents.

Shift one operand.

Add

Normalize the result.

S s

Store Result in memory.

Computer Architectures (SISD)

m Consider the following code:

for (1 = 0;
z[r] = x[1] + y[1l;

While x[0] and y[Q] are in stage 4,

),

Xn—

1
o

and y[

and y][

1
o

will

will

and x[3] and y[3]

1 < 100; 1++)

be in stage 3,
be in stage 2,

will be in stage 1.

Computer Architectures (SISD)

s Thus when the pipeline is tull, we can
produce a result every clock cycle,
presumably six times taster than without

pipelining.

Computer Architectures (SIMD)

m Vector processors perform the same
operation on several inputs simultaneously.

m They are considered a variation (not pure)

of the SIMD architecture.

m The basic instruction 1s only issued once tor
several operands.

Computer Architectures (SIMD)

Compare the Fortran 77 code (sequential):
do 100 1 = 1, 100
z(1) = x(1) + y(n)

100 continue

with the equivalent Fortran 90 code (vector):
z(1:100) = x(1:100) + y(1:100)

Computer Architectures (SIMD)
m Pure SIMD systems have a single CPU

devoted to control and a large collection of
subordinate processors each with its own
registers.

m Fach cycle the control CPU broadcasts an
instruction to all of the subordinates.

m FEach subordinate either executes the
instruction or sits idle.

Computer Architectures (SIMD)

m Consider the following sequence of
sequential instructions:
for (1 = 0; 1 < 1000; 1++)
it (y[i] != 0.0)
z[1] = x[11/ylrl];
else

z[1]

X[1];

Computer Architectures (SIMD)

m Then each subordinate processor would

execute these sequence of operations:

Step 1 Test localy 1= 0.0.

Step 2 a. If local y was nonzero, z[1] = x[1]/y[1].
b. If local y was zero, do nothing.

Step 3 a. If local y was nonzero, do nothing.
b. If local y was zero, z[1] = X[I1].

Computer Architectures (SIMD)

Notice though that all of the processors are
idle in either step two or step three.

In programs with many conditional
branches, it is possible some processors will
remain idle for long periods of time.

Examples ot SIMD machines are the MP2
with 16,384 processors and the CM2 with
65,536 processors.

Computer Architectures (MIMD)

All the processors in MIMD machines are

autonomous, possessing a control unit and

an ALU.

Each processor operates on its own pace.

There is often no global clock and no
implicit synchronization.

There are shared-memory systems and
distributed-memory systems.

Distributed Memory Systems

m Distributed memory systems are
constructed from nodes in which each
processor has its own private memory.

m There are two main types ot distributed
memory systems: static networks and
dynamic networks.

Distributed Memory Systems

m Static networks are constructed so that each
vertex corresponds to a node (processor/memory
pair).

m There are no switches as vertices in static
networks.

m If a there is no direct connection between two
nodes, then intermediate nodes would have to
forward communication between them.

Distributed Memory Systems

m For performance a tully connected network
is desirable.

m But they are impractical to build tor more
than a few nodes.

Distributed Memory Systems

m Static networks can be arranged as a linear
array, a ring, hypercube, 2d mesh, 3d mesh,
and 2d torus, in increasing order of
connectivity.

m The Intel Paragon 1s a 2D mesh and the
Cray T3E is a 3d torus. Both scale to
thousands of nodes.

Distributed Memory Systems

Dynamic networks are constructed so that some
vertices correspond to switches that route
communications.

A crossbar switch, as describe earlier, would be
optimal but also very expensive.

Most switches are multistage such that a
communication that conflicts with another
communication may be delayed.

Examples are omega networks.

Architectural Features of Message-
Passing Multi-computer

m Static network message-passing multi-
computer system

» Having direct fixed physical links between
computers (nodes)

Memory

Processor
\

Communication interfa e

“““““““““““““““““““““““““““““““

| | Link to other nodes

Architectural Features of Message-
Passing Multi-computer

m Network Criteria (key issues in network design are
network bandwidth, network latency, and cost)

N . number of bits that can be transmitted in
unit time (bits/s)

o : time make a message transfer through
the network

= : total time to send a message,
including software overhead and interface delays

o or : time required for a zero-
length message being sent

Architectural Features of Message-
Passing Multi-computer

m Number of links in a path between nodes is
also an important consideration as this will
be a major factor in determining the delay of
a message passing

m Diameter 1s the minimum number of links
between two farther nodes in the network. It
is used to determine the worst case delays.

Architectural Features of Message-
Passing Multi-computer

m How efficiently a parallel problem can be
solved using a multi-computer system within
a specific network 1s extremely important.

m The diameter gives the maximum distance
and can be used to find the communication
lower bound ot some parallel algorithm.

m Bisection width: number of links that must
be cut to divide the network into two equal
parts.

Architectural Features of Message-
Passing Multi-computer

m [nterconnection systems

m Completely connected network: each node has a
link to every other node.

m N nodes could have n-1 links from each node to other
n-1 nodes.

m Therefore, there should be n(n-1)/2 links 1n all. It 1s
applied to small n. not practical to large n

Architectural Features of Message-
Passing Multi-computer

m Interconnection systems

» Important static networks with restricted
interconnection, mainly line/ring, mesh, hypercube, and
tree network.

m Line/Ring: each node has two links and link only
to neighboring node

® N-node ring requires n links

» Two end node are farthest away in a line and hence the
diameter is n-1

» Routing algorithm is necessary to find routes between
nodes that re not directly connected, it the network do
not provide complete interconnections.

N=38
Number of links 8

Diameter 7

A

N=38
Number of links 8
Diameter n/2=4

/

/

Architectural Features of Message-
Passing Multi-computer

m Mesh: 2-dimensional mesh; each node
connected to four nearest nodes the diameter
of sqrt(n) by sqrt(n) is 2sqrt(n-1)

m Free-node can be linked to form a torus

Mesh

N=16
Links 21
Diameter 2*(sqrt(16)-1)=6

[nfs!
1

Torus

e
LS

N=16
Links 32
Diameter 4

Architectural Features of Message-
Passing Multi-computer

m Tree Network: binary network or hierarchy
tree network; each node has two links to two
nodes.

m root level: one node
m First level: two nodes
m Second level: four nodes

m jth level: 2*1-1 nodes
m CMS5 system deploys such architecture

root

First level

Second level

Architectural Features of Message-
Passing Multi-computer

m Hypercube Network (d-

dimension)

m Use d-bit binary address

® Diameter 1s log,n
m Caltech’s Cosmic
Cube

= Minimum
distance deadlock

free

100

000

110

111

101

-

010

-

s

001

Architectural Features of Message-

Passing Multi-computer

m Embedding

Applied to static network

Describes mapping nodes of one network
onto another network

Example: ring embedded into mesh;
mesh can be embedded into a torus

Dilation is uded to indicate the quality of
the embedding. Dilation is the maximum
number of links in the embedding
network corresponding to one link in
embedding network

Architectural Features of Message-
Passing Multi-computer

s Communication methods

» In many cases, it is often to route a message
through intermediate nodes from the source
node to the destination node.

m T'wo basic ways: circuit switching and packet
switching

Architectural Features of Message-
Passing Multi-computer

m Circuit switching system: establishing a path and
maintain all the links in the path for the message
to pass, uninterrupted, from source to
destination, and links are reserved, until the
message is complete.

m Packet switching, message is divided into packets
of information, each includes the source and
destination address for routing the packet
through the interconnection network.

Architectural Features of Message-
Passing Multi-computer

s Store-and-forward packet switching and its
latency

m Wormwhole routing was introduced to reduce
the size of the butfer and decrease the latency.

® The concept ot deadlock and livelock
= Input and output

Networked Computers as a Multi-
Computer Plattform

m Cluster of workstation (COWs) and Network of

workstations (NOWs) offers a very attractive
alternative to expensive supercomputers and

parallel computing system for HPC.
m Advantages:

m [.ow cost

m Portable to be incorporated with lately developed
processor

m Existing software can be used and modified

Networked Computers as a Multi-
Computer Plattform

» Ethernet packet transmission

» Point-to-point communication in high-
performance parallel interface

s Commons with static network multi-computer

m Communication delay in networked multi-
computer system will be much greater than the
static networked multi-computer system.

m Strong requirement for job balance due to
different speed ot distributed platform.

Communication and Routing

s When two nodes can’t communicate
directly, they must communicate through
other nodes.

m The nodes through which the

communication occurs defines the route the
messages take.

m Most systems use a deterministic shortest
path routing algorithm.

Communication and Routing

There are two methods nodes can use in relaying
messages.

Store-and-forward routing is used when an
intermediate node reads in the entire message
before forwarding it.

Cut-through routing occurs when an intermediate
node immediately forwards each identifiable piece
of the message (packet).

Communication and Routing

s Cut-through routing requires less memory
because only a packet at a time is stored.

m Cut-through routing 1s also faster because 1t
does not wait on all the packets of the
message before forwarding them.

m Therefore cut-through routing is preterred
and most commonly used.

Communication and Routing

A process is an instance of a program or
subprogram executing autonomously on a
processor.

Processes can be considered running or blocked.

A process 1s running when its instructions are
currently being executed on a processor.

A process 1s blocked when the operating system
has not scheduled it to run on a processor, usually
because it 1s waiting for something to be done (or
message received).

Communication and Routing

m All processes have a parent, which 1s the
process that created (spawned) it.

m Processes can have children, which are
processes they created (spawned).

m Processes are typically spawned through a
combination of the Fork() and exec()

UNIX system calls.

Potential for Increase
Computational Speed

m Process: Divide computation into tasks or
processes that are executed simultaneously.

m Size ot process can be described by its
oranularity.

® In coarse granularity, each process contains a
large number ot sequential instructions and takes
a substantial time to execute.

® In fine granularity, a process may have a few or
one instruction

Potential for Increase
Computational Speed

m Sometimes, granularity is defined as the size of
the computation between communication or
synchronization points

m In general, we want to increase granularity to
reduce the costs of process creation and inter-
process communication, which likely reduce the
number of processes and parallelism

m For message passing, it 1s very important to
reduce communication laency.

Granularity =

Computation time T

comp

Communication time

T

COIMip

1)

In domain decomposition, we want to increase the size of
data (sub-domain), hence, decrease process number and
decrease communication loss.

Decrease Processors to be used.

Design a parallel algorithm which can easily vary the

eranularity, which we call “scalable design”

Execution time used in single processor, Ts

Speedup, S(n) =

Execution time used in multi processors Tm

= A Measure of relative performance between a
multiprocessor system and a single Processor system.

= Used to compare a parallel solution with a sequential
solution.

» The algorithms for a parallel implementation and
sequential implementation are usually different.

= In theoretical analysis, we use

No. of computational steps using one processor

Speedup, S(n)=

No. of parallel computational steps with n processors

= Example: a parallel sorting algorithm requires 4n steps
and a sequential algorithm requires nlogn steps. The
speedup is (1/4)logn.

* The maximum speedup is n with n processors (linear
speedup.

If the parallel algorithm did not achieve better
than n times the speedup over the current
sequential algorithm, the parallel algorithm can
certainly be emulated on a single processor.

[t suggests that the original sequential algorithm
was not optimal.

The maximum speedup would be achieved if the
computation can be exactly divided into equal
during processes. One process is mapped onto one
processor (no overhead), 1.e.,
S(n)=Ts/(Ts/n)=n

[t is called supperlinear sppedup.

S(n) > n maybe seen on occasion, but usually this
is due to using a suboptimal sequenual algonthm
or some unique teature of the architecture that
tavors the parallel tormation.

Reasons for superlinear speedup phenomena

Extra memory: total memory in multiprocessor
computer is large than the single processor system and
it can hold more of the problem data at any larger than
that in the single processor system.

Some part ot a computation cannot be divided at
all into concurrent processes and must be
performed serially.

Especially initialization period for data variables

declaration or d
[t is better just

initialization jo

task.

ata value input.

let one processor to do the

o, before submit to concurrent sub

m Overhead in parallel version which limit speedup:

m Periods, when not all the processors can be performing
usetul work and are idle, including only one processor’s
activity for initialization and input/ouput.

» Extra computations in the parallel version not
appearing in the sequential version

s Communication time for sending/receiving message

® Maximum speedup:

m It f is the part of computation that can not be
divided into concurrent tasks and it there is
no overhead incurs when computation is
divided into concurrent parts, the time to
perform the computation with n processors
1S

Time = tt.+(1-f) t/n

where t, 1s the execution time on single processor

Parallelizable section

— fts (1-f) ts

Serial section ts

A 4

<
<

A 4

A 4
A

A
A 4

tp = f ts+ (1-f) ts/n

tp = fts+ (1-f) ts/n

ts ts
Speedup = —
5 5 tp f ts+ (1-f) ts/n
n
1+ (n-1)f

Amdahl’s law

m The processor number is increased, one has

S(n)=1/1

m The speedup in only dependent on the fraction
of series computation portion.

m From the law, we can also see that

» Even the problem can be totally parallelized,
that 1s =0, one has the speedup S(n)=1

Speedup, S(n)

f=0% (totally parallel)

16 oo
R e 5 f = 5%
§ Ao f=10%

, £=20%
4

: ; ; ; / f=100% (no parallel,

1 S N D totally

| >

| | | serial)

Processor number, n
1 Z 8 12 16

Speedup vs. number of processors

Speedup, S(n)

n=256
16 -
f=1,S(n)=1
12 7 @)
8 —
4 No parallel (pure serial)
1
| >

| | |
/ Serial fraction, f

Totally parallel 0.0 0.2 0.4 0.6 0.8 1.0

Speedup, S(n) vs. serial fraction, f

m Efficiency:

m System eftficiency, E is detined as

B Execution time using one processor

Execution time using a multiprocessor x number of processors

ts ts

tpxn [fts+ (1-f) ts/n]n

S(Il) x 100% 1
= = x 100%
n fn+ (1-1)

m Cost:

m 1s defined as

Cost =Execution time x (total number of processors used)

Cost of a sequential computation is simply its execution time ts.
Cost of parallel computation is tp x n
=[fts + (1-f) ts/n]xn =ftsn + (1) ts

= (ts x n)/S(n) = ts/E

m Gustafson’s Law:

m [N practice a large multiprocessor usually allows
a larger size of problem. Therefore, the problem
size 1s not independent of the number of
processors.

= [t 1s assume that serial section of the code does
not increase as the problem size.

m Introduce scalable speedup factor

m s is the fractional time for executing the serial
part of computation and p is the fractional time
for executing the parallel part of the
computation on a single processor

5S(n)=n + (I-n) s

	Introduction to High Performance Computing
	Parallel Computing
	Need for Parallel Computing
	Need for Parallel Computing
	Need for Parallel Computing
	Need for Parallel Computing
	Need for Parallel Computing
	Need for Parallel Computing
	Need for Parallel Computing
	The Need for More Computational Power
	The Need for More Computational Power
	The Need for More Computational Power
	The Need for More Computational Power
	The Need for More Computational Power
	Need for Parallel Computing
	High Performance Computer
	High Performance Computer
	High Performance Computer
	High Performance Computer
	Need for Parallel Computing
	Need for Parallel Computing
	Need for Parallel Computing
	Types of Parallel Computer Systems
	Types of Parallel Computer Systems
	Types of Parallel Computer Systems
	Shared Memory Systems
	Shared Memory Systems
	Shared Memory Systems
	Shared Memory Systems
	Types of Parallel Computer Systems
	Types of Parallel Computer Systems
	Types of Parallel Computer Systems
	Types of Parallel Computer Systems
	Types of Parallel Computer Systems
	Types of Parallel Computer Systems
	Types of Parallel Computer Systems
	Types of Parallel Computer Systems
	Types of Parallel Computer Systems
	Types of Parallel Computer Systems
	Distributed Shared Memory System
	Distributed Shared Memory System
	Classification of Instruction stream and data stream
	Classification of Instruction Stream and Data Stream
	Computer Architectures
	Computer Architectures
	Computer Architectures
	Computer Architectures
	Computer Architectures
	Computer Architectures (SISD)
	Computer Architectures (SISD)
	Computer Architectures (SISD)
	Computer Architectures (SISD)
	Computer Architectures (SIMD)
	Computer Architectures (SIMD)
	Computer Architectures (SIMD)
	Computer Architectures (SIMD)
	Computer Architectures (SIMD)
	Computer Architectures (SIMD)
	Computer Architectures (MIMD)
	Distributed Memory Systems
	Distributed Memory Systems
	Distributed Memory Systems
	Distributed Memory Systems
	Distributed Memory Systems
	Architectural Features of Message-Passing Multi-computer
	Architectural Features of Message-Passing Multi-computer
	Architectural Features of Message-Passing Multi-computer
	Architectural Features of Message-Passing Multi-computer
	Architectural Features of Message-Passing Multi-computer
	Architectural Features of Message-Passing Multi-computer
	Architectural Features of Message-Passing Multi-computer
	Architectural Features of Message-Passing Multi-computer
	Architectural Features of Message-Passing Multi-computer
	Architectural Features of Message-Passing Multi-computer
	Architectural Features of Message-Passing Multi-computer
	Architectural Features of Message-Passing Multi-computer
	Architectural Features of Message-Passing Multi-computer
	Networked Computers as a Multi-Computer Platform
	Networked Computers as a Multi-Computer Platform
	Communication and Routing
	Communication and Routing
	Communication and Routing
	Communication and Routing
	Communication and Routing
	Potential for Increase Computational Speed
	Potential for Increase Computational Speed

