Introduction to MPI: Lecture 1

Jun Ni, Ph.D. M.E.

Associate Professor Department of Radiology Carver College of Medicine

Information Technology Services

The University of Iowa

Aug. 6-7, 2009

Objectives

- Introduce you the fundamentals of MPI by FORTRAN and C examples
- Provides overview of MPI basics
- Teaches you how to compile, link and run MPI codes
- Learning basic MPI functions

Outline

- Introduction to MPI
- Basics of MPI
- Compilation and Execution
- Learning by examples (in Fortran or C)
- Reference

Introduction to MPI

- Message passing interface (MPI)
 - Parallel computing utility library
 - Contains many subroutine/functions
 - Not a independent language
 - MPI subroutines/functions can be invoked from Fortran and C, respectively
 - With FORTRAN or C compilers
 - MPI-1 doesn't support F90, but MPI-2 does support Fortran and C++

Aug. 6-7, 2009

Introduction to MPI (cont.)

- Why people use MPI?
 - Speed up computation
 - Big demand of CPU time and more memory
 - More portable and scalable rather than using automatic "parallelizer"
 - Good for distributed computing systems, such as distributed clusters, network based computers (or workstations)
 - More or least "standard"

Aug. 6-7, 2009

Introduction to MPI (cont.)

- Disadvantages using MPI?
 - More complicated than serial computing
 - More complicated to master the technique, especially parallel algorithms
 - Synchronization lost
 - Amount of time required to convert a serial code to a parallel code

Introduction to MPI (cont.)

- Alternative ways?
 - Data parallel model using high level language such as HPF
 - Advanced library (or interface), such as (The Portable, Extensible Toolkit for Scientific Computation (PETSC)
- Java multithread computing on internet based distributed computation, such as Common Object Request Broker Architecture (CORBA)
 Aug. 6-7, 2009

- MPI header (library) file should be included in user's FORTRAN or C codes.
- The library files contains definitions of constants and prototypes.

<pre>#include "mpif.h"</pre>	for FORTRAN code
#include "mpi.h"	for C code

- MPI is free
- Where you can download or get MPI?
 - MPI Forum (<u>http://www.mpi-forum.org/</u>) and MPI documents (<u>http://www.mpi-</u> <u>forum.org/docs/docs.html</u>)
 - MPI standards

(http://www.mcs.anl.gov/research/projects/mpi)

– LAM.MPI Parallel Computing

(http://www.lam-mpi.org/)

- Mississippi State University NSF Engineering Research Center (<u>http://www.hpc.msstate.edu/</u>)
- MPI-lite (UCLA) (<u>http://pcl.cs.ucla.edu/projects/sesame/mpi_lite/mpi_l</u> <u>ite.html</u>)
- Wiki about MPI

(http://en.wikipedia.org/wiki/Message_Passing_Interf ace)

- UTK (MPI page) (http://www.cs.utk.edu/~tatebe/research/mpi/)
- Open MPI (<u>http://www.open-mpi.org/</u>)
- MPI Complete Reference at Netlib (<u>http://www.netlib.org/utk/papers/mpi-book/mpi-book.html</u>)
- -IINL's MPI

(https://computing.llnl.gov/tutorials/mpi/)

- MPICH2
 - (http://www.mcs.anl.gov/research/projects/mpi ch2/)
- Open MPI (<u>http://www.open-mpi.org/</u>)
- MP-MPICH for heterogeneous clusters (<u>http://www.lfbs.rwth-aachen.de/content/mp-mpich</u>)
- WMPI-II (<u>http://www.criticalhpc.com/</u>)

 Basic idea behind MPI is to send (or receive) messages from one process to another process

Aug. 6-7, 2009

- MPI segments cane be included inside the serious code to make the execution of the code in parallel.
- The structure of MPI enhanced code

- MPI is initiated by calling MPI_Init() first before invoking any other MPI subroutines or functions.
- MPI processing ends with a call MPI_Finalize().

- Only difference between MPI subroutines (for FORTRAN) and MPI functions (for C) is the error reporting flag.
 - In FORTRAN, it is returned as the last member of the subroutine's argument list.
 - In C, the integer error flag is returned through the function return value.
- Consequently, MPI FORTRAN subroutines always contain one additional variable in the argument list than the C counterpart.

- C's MPI function names start with MPI_ followed by a character string with the leading character in upper case letter while the rest in lower case letters
- FORTRAN subroutines bear the same names but are case-insensitive.
- On SGI's Origin20000 (NCSA), parallel I/O is supported.

Aug. 6-7, 2009

Compilation and Execution (f77)

• To compile and execute a f77 (or f90) code without MPI

f77 -o example example.f /bin/time example

• To compile and execute a f77 (or f90) code with MPI

f77 -o example1_1 example1_1.f -lmpi /bin/time mpirun -np 4 example1_1 **Compilation and Execution (C)**

• To compile and execute a C code without MPI

cc -o exampleC exampleC.c -lm /bin/time exampleC

• To compile and execute a C code with MPI

cc -o exampleC1_1 exampleC1_1.c -lmpi -lm /bin/time mpirun -np 4 exampleC1_1