
Aug. 6-7, 2009 Iowa HPC Summer School

Introduction to MPI: Lecture 2

Jun Ni, Ph.D. M.E.

Associate Professor
Department of Radiology

Carver College of Medicine

Information Technology Services

The University of Iowa

Learning MPI by Examples

Simple Greetings Among Processes

Aug. 6-7, 2009 Iowa HPC Summer School

Simple Greetings Among
Processes

• Example 0: basic communication between
processes. Suppose we have p processes
– p, multiple processes: starting from 0 to p-1
– process 0 receive messages from other processes

process 0
process 1

process 2

process 3message

Aug. 6-7, 2009 Iowa HPC Summer School

Simple Greetings Among
Processes

• Example 0: mechanism
– system copies the executable code to each

processes
– each process begins execution of the copied

executable code
– different processes can execute different

statements by branching within the program
based on their ranks (this form of MIMD
programming is called single-program
multiple-data (SPMD) programming)

Aug. 6-7, 2009 Iowa HPC Summer School

Simple Greetings Among
Processes

/***
greetings.c -- greetings program
Send a message from all processes with rank != 0 to process 0.
Process 0 prints the messages received.

Input: none.
Output: contents of messages received by process 0.

***/
#include <stdio.h>
#include <string.h>
#include "mpi.h"

Aug. 6-7, 2009 Iowa HPC Summer School

Simple Greetings Among
Processes

main(int argc, char* argv[])
{

int my_rank; /* rank of process */
int p; /* number of processes */
int source; /* rank of sender */
int dest; /* rank of receiver */
int tag = 0; /* tag for messages */
char message[100]; /* storage for message */
MPI_Status status; /* return status for receive */

/* Start up MPI */
MPI_Init(&argc, &argv);

Aug. 6-7, 2009 Iowa HPC Summer School

Simple Greetings Among
Processes

/* Find out process rank */
MPI_Comm_rank(MPI_COMM_WORLD, &my_rank);
printf("my_rank is %d\n", my_rank);

/* Find out number of processes */
MPI_Comm_size(MPI_COMM_WORLD, &p);
printf("p, the total number of processes: %d\n",p);

if (my_rank != 0)
{

/* Create message */
sprintf(message, "Greetings from process %d!", my_rank);
dest = 0;

Aug. 6-7, 2009 Iowa HPC Summer School

Simple Greetings Among
Processes

/* Use strlen+1 so that '\0' gets transmitted */
MPI_Send(message, strlen(message)+1, MPI_CHAR,

dest, tag, MPI_COMM_WORLD);
}
else /* my_rank == 0 */
{

for (source = 1; source < p; source++)
{ MPI_Recv(message, 100, MPI_CHAR, source, tag,

MPI_COMM_WORLD, &status);
printf("%s\n", message);

}
}

Aug. 6-7, 2009 Iowa HPC Summer School

Simple Greetings Among
Processes

/* Shut down MPI */
MPI_Finalize();

} /* main */

Commands:

% cc -o greetings greetings.c -lmpi

% /bin/time mpirun -np 8 greetings

Aug. 6-7, 2009 Iowa HPC Summer School

Simple Greetings Among
Processes

Result:
silicon % /bin/time mpirun -np 8 greetings
my_rank is 3
p, the total number of processes: 8
my_rank is 4
p, the total number of processes: 8
my_rank is 0
p, the total number of processes: 8
my_rank is 1
p, the total number of processes: 8
Greetings from process 1!
my_rank is 2

Aug. 6-7, 2009 Iowa HPC Summer School

Simple Greetings Among
Processes

p, the total number of processes: 8
my_rank is 7
p, the total number of processes: 8
Greetings from process 2!
Greetings from process 3!
my_rank is 5
p, the total number of processes: 8
Greetings from process 4!
Greetings from process 5!
my_rank is 6
p, the total number of processes: 8
Greetings from process 6!
Greetings from process 7!

Aug. 6-7, 2009 Iowa HPC Summer School

Simple Greetings Among
Processes

real 1.501
user 0.005
sys 0.049

Aug. 6-7, 2009 Iowa HPC Summer School

Simple Greetings Among
Processes

• Example 0: (in Fortran)
c greetings.f -- greetings program
c
c Send a message from all processes with rank != 0 to process 0.
c Process 0 prints the messages received.
c
c Input: none.
c Output: contents of messages received by process 0.
c
c Note: Due to the differences in character data in Fortran and char
c in C, their may be problems in MPI_Send/MPI_Recv
c

Aug. 6-7, 2009 Iowa HPC Summer School

program greetings
c

include 'mpif.h'
c

integer my_rank
integer p
integer source
integer dest
integer tag
character*100 message
character*10 digit_string
integer size
integer status(MPI_STATUS_SIZE)
integer ierr

c

Aug. 6-7, 2009 Iowa HPC Summer School

c function
integer string_len

c
call MPI_Init(ierr)

c
call MPI_Comm_rank(MPI_COMM_WORLD, my_rank, ierr)
call MPI_Comm_size(MPI_COMM_WORLD, p, ierr)

c
if (my_rank.ne.0) then

call to_string(my_rank, digit_string, size)
message = 'Greetings from process ! ' // digit_string(1:size) +//
dest = 0
tag = 0

call MPI_Send(message, string_len(message),
MPI_CHARACTER, dest, tag, MPI_COMM_WORLD, ierr)

else

Aug. 6-7, 2009 Iowa HPC Summer School

do 200 source = 1, p-1
tag = 0
call MPI_Recv(message, 100, MPI_CHARACTER, source,
+ tag, MPI_COMM_WORLD, status, ierr)

call MPI_Get_count(status, MPI_CHARACTER, size, ierr)
write(6,100) message(1:size)

100 format(' ',a)
200 continue

endif
c

call MPI_Finalize(ierr)
stop
end

c
c

Aug. 6-7, 2009 Iowa HPC Summer School

cc
c
c Converts the integer stored in number into an ascii
c string. The string is returned in string. The number of
c digits is returned in size.

subroutine to_string(number, string, size)
integer number
character *(*) string
integer size

character*100 temp
integer local
integer last_digit
integer i

local = number
i = 0

Aug. 6-7, 2009 Iowa HPC Summer School

c strip digits off starting with least significant
c do-while loop
100 last_digit = mod(local,10)

local = local/10
i = i + 1
temp(i:i) = char(last_digit + ichar('0'))

if (local.ne.0) go to 100

size = i

c reverse digits
do 200 i = 1, size

string(size-i+1:size-i+1) = temp(i:i)
200 continue
c

return
end

Aug. 6-7, 2009 Iowa HPC Summer School

c to_string
c
c
ccc
c Finds the number of characters stored in a string
c

integer function string_len(string)
character*(*) string

c
character*1 space
parameter (space = ' ')
integer i

c
i = len(string)

Aug. 6-7, 2009 Iowa HPC Summer School

c while loop
100 if ((string(i:i).eq.space).and.(i.gt.1)) then

i = i - 1
go to 100

endif
c

if ((i.eq.1).and.(string(i:i).eq.space)) then
string_len = 0

else
string_len = i

endif
c

return
end

c end of string_len

Aug. 6-7, 2009 Iowa HPC Summer School

f77 -o greetings greetings.f -lmpi
/bin/time mpirun -np 8 greetings

Greetings from process 1!
Greetings from process 2!
Greetings from process 3!
Greetings from process 4!
Greetings from process 5!
Greetings from process 6!
Greetings from process 7!

real 1.717
user 0.005
sys 0.040

Aug. 6-7, 2009 Iowa HPC Summer School

Simple Greetings Among
Processes

• Anotomy of the first example
– user issues a directive to the operating system

that has effect of placing a copy of the
executable program on each processor

– each processor begins execution of its copy of
the executable code

– different processes can execute different
statements by branching within the program
base don their process ranks

Aug. 6-7, 2009 Iowa HPC Summer School

Simple Greetings Among
Processes

– MPI is not a programming language
– MPI is just a parallel library which contains

many definitions of functions or subroutines
– MPI has its own data types with MPI_

identifier and data-type definition in upper
cases, such as

Aug. 6-7, 2009 Iowa HPC Summer School

MPI Data-types

• MPI_CHAR,
• MPI_SHORT, MPI_INT, MPI_LONG,
• MPI_UNSIGNED_CHAR, MPI_UNSIGNED
• MPI_UNSIGNED_SHORT, MPI_UNSIGNED_LONG,
• MPI_FLOAT,
• MPI_DOUBLE, MPI_LONG_DOUBLE
• MPI_BYTE,
• MPI_PACKED,
• MPI_LONG_LONG_INT

Aug. 6-7, 2009 Iowa HPC Summer School

Simple Greetings Among
Processes

– MPI_Init() must be called before other MPI
functions are invoked.

– MPI_Finalize() must be called after the
program is finished.

Aug. 6-7, 2009 Iowa HPC Summer School

Simple Greetings Among
Processes

– MPI_Comm_rank() function returns the rank of
a process in its second parameter.

– Syntax:

MPI_Comm_rank (MPI_Comm comm /*in */,
int* size /* out */)

-comm --- inter-communicator, ground or collection of process
The function returns the rank in the group.
Default value of comm is MPI_COMM_WORLD, all processes
during execution

Aug. 6-7, 2009 Iowa HPC Summer School

Simple Greetings Among
Processes

– MPI_Comm_size() function returns the number
of processes in its second parameter.

– Syntax:

MPI_Comm_size (MPI_Comm comm /*in */,
int* size /* out */)

-comm --- inter-communicator, group or collection of process
The function returns the total number of processes in the group.
Default value of comm is MPI_COMM_WORLD, all processes
during execution

Aug. 6-7, 2009 Iowa HPC Summer School

Simple Greetings Among
Processes

– MPI_Send and MPI_Recv() functions are the
most basic message-passing commands in MPI
library

– Review basic message passing mechanism

message
sender

message
receiver

compose message (letter); put in an envelop;
stop by a poster office for stamping; drop to the mail box;
Add more information about receiver's address, size, and subject

Aug. 6-7, 2009 Iowa HPC Summer School

Simple Greetings Among
Processes

message
sender

message
receiver

receive message (letter); distinguish the priority; sorting message;
reply address; action, and return message back;

Key points: message subject, message format, message size

Aug. 6-7, 2009 Iowa HPC Summer School

Simple Greetings Among
Processes

• Solutions to message passing
– each process sends two messages: one for

method and another for actual message content
– each processes send single message which

contains both information. It should be encoded
before sending and decoded after receiving.

– tag communication signal with the envelop
being sent out. MPI has its own tag
identification numbers

Aug. 6-7, 2009 Iowa HPC Summer School

Simple Greetings Among
Processes

• Communicator can specify the scope of
process activities
– Two processes using distinct communicator can

not receive messaged from each other.
• The complete message passing envelop

contains
– the rank of the receiver
– the rank of the sender
– a tag
– communicator

Aug. 6-7, 2009 Iowa HPC Summer School

Simple Greetings Among
Processes

– MPI_Send() syntax:
int MPI_Send (void* message /*in */,

int count /* in */,
MPI_Datatypes /*in */,
int dest /*in*/,
int tag /*in*/,
MPI_Comm comm /*in*/)

Aug. 6-7, 2009 Iowa HPC Summer School

Simple Greetings Among
Processes

– MPI_Recv() syntax:
int MPI_Recv (void* message /*out */,

int count /* in */,
MPI_Datatypes /*in*/,
int source /*in*/,
int tag /*in*/,
MPI_Comm comm /*in*/,
MPI_Status* status /*out*/)

Aug. 6-7, 2009 Iowa HPC Summer School

Simple Greetings Among
Processes

• The content of the massage are stored in a block of
memory referenced by the variable message (In C
it is a char array, while in Fortran it is a char
variable.)

• Count and MPI_Datatype specify how much
allocated storage is needed for the message.
– The amount of space allocated for receiving buffer does

not have to match the exact amount of space the
message being received

– Make sure that there is sufficient storage allocated for
receiving

Aug. 6-7, 2009 Iowa HPC Summer School

Simple Greetings Among
Processes

• The integer parameters “dest” in MPI_Send() and
“source” in MPI_Recv() are, respectively, the
ranks of the receiving and the sending processes.
– dest in MPI_Send() indicates the receiving process
– source in MPI_Recv() indicates the sending process
– MPI_ANY_SOURCE can be used for any sending

process rather than a particular sending process

Aug. 6-7, 2009 Iowa HPC Summer School

Simple Greetings Among
Processes

• Parameter tag and comm are, respectively, the tag
and communicator.
– tag is a integer variable, specification of message

passing mode
– comm is the communicator, specification of collection

of message passing process
– In this example, tag is 0 and comm is

MPI_COMM_WORLD, indicating all running
processes during execution

– MPI_ANY_TAG can be used in MPI_Recv() for any
tag.

Aug. 6-7, 2009 Iowa HPC Summer School

Simple Greetings Among
Processes

– For example process A sends a message to
process B

• comm, which the process A uses, in its call to
MPI_Send() must ne identical to the argument that
B uses in its call to MPI_Recv(), while A must use a
tag and B can receive with either an identical tag or
MPI_ANY_TAG

Sending process Receiving process

MPI_Send(, , , ,tag, comm) MPI_Recv(, , , , tag, coom)

identical or MPI_ANY_TAG

Aug. 6-7, 2009 Iowa HPC Summer School

Simple Greetings Among
Processes

• status of MPI_Status in MPI_Recv() returns
information on the data that was actually
received.
– status is a variable of structure, defined as

MPI_Status, which has three members, one for
source, one for tag and one for error code

• status->MPI_SOURCE
• status->MPI_TAG
• status->MPI_ERROR

Aug. 6-7, 2009 Iowa HPC Summer School

Simple Greetings Among
Processes

• Either MPI_Send() or MPI_Recv() returns a
error code in C, while the error code, passed
back from the called subroutine to the
calling code, is located as the last argument
of the subroutine in Fortran with MPI.

Aug. 6-7, 2009 Iowa HPC Summer School

Simple Greetings Among
Processes

• Exercise:

1. Modify greetings.c (or greetings.f) so that
process 0 send a "string" message to all the other
processes. The receiving processes receive and then
print the message on screen.

2. Modify greetings.c (or greetings.f) so that
process u send a "integer" message to processes v
and w. The v and w calculate the square and cubic
values, respectively, based on the received integer.
They print out the values.

	Introduction to MPI: Lecture 2
	Learning MPI by Examples
	Simple Greetings Among Processes
	Simple Greetings Among Processes
	Simple Greetings Among Processes
	Simple Greetings Among Processes
	Simple Greetings Among Processes
	Simple Greetings Among Processes
	Simple Greetings Among Processes
	Simple Greetings Among Processes
	Simple Greetings Among Processes
	Simple Greetings Among Processes
	Simple Greetings Among Processes
	Simple Greetings Among Processes
	Simple Greetings Among Processes
	MPI Data-types
	Simple Greetings Among Processes
	Simple Greetings Among Processes
	Simple Greetings Among Processes
	Simple Greetings Among Processes
	Simple Greetings Among Processes
	Simple Greetings Among Processes
	Simple Greetings Among Processes
	Simple Greetings Among Processes
	Simple Greetings Among Processes
	Simple Greetings Among Processes
	Simple Greetings Among Processes
	Simple Greetings Among Processes
	Simple Greetings Among Processes
	Simple Greetings Among Processes
	Simple Greetings Among Processes
	Simple Greetings Among Processes

