
Aug. 6-7, 2009 Iowa HPC Summer School 2009

Introduction to MPI: Lecture 3

Jun Ni, Ph.D. M.E.

Associate Professor
Department of Radiology

Carver College of Medicine

Information Technology Services

The University of Iowa

Learning MPI by Examples: Part II

Parallel Programming with MPI
blocking sending/receiving
I/O on Parallel System and

Numerical Integration

Aug. 6-7, 2009 Iowa HPC Summer School 2009

Learning MPI by Examples: Part II

• Objective:
– Learn how to use MPI blocking communication
– Learn how to program I/O in parallel system
– Use message passing to numerically solve a

problem: numerical integration

Aug. 6-7, 2009 Iowa HPC Summer School 2009

Learning MPI by Examples: Part II

• Example 1: numerical integration using
various numerical method
– Mathematical problem:

• definite integral from a to b

– Numerical methods:
• rectangle (one-point), trapezoid (two-point),

Simpson(three-point) methods

– Serial programming and parallel programming

Aug. 6-7, 2009 Iowa HPC Summer School 2009

Learning MPI by Examples: Part II

• Problem: integration of x2 from 0 to 1
– trapezoid method
– exact solution:

1/3=0.33333333

Aug. 6-7, 2009 Iowa HPC Summer School 2009

Learning MPI by Examples: Part II

• ith trapezoid sub-integral:
– [f(x i-1)+f(xi)] h /2

• The accumulated total integral:
[f(x 0)+f(x1)] h /2 + [f(x 1)+f(x2)] h /2 …

… [f(x i-1)+f(xi)] h /2 … [f(x n-1)+f(xn)] h /2
= [f(x 0)+f(xn)] h /2 + [f(x 1)+f(x2)+ .. .f(xn-1)] h

Aug. 6-7, 2009 Iowa HPC Summer School 2009

Learning MPI by Examples: Part II

/* serial.c -- serial trapezoidal rule
*
* Calculate definite integral using trapezoidal rule.
* The function f(x) is hardwired.
* Input: a, b, n.
* Output: estimate of integral from a to b of f(x)
* using n trapezoids.
*
*/

Aug. 6-7, 2009 Iowa HPC Summer School 2009

Learning MPI by Examples: Part II

#include <stdio.h>
float f(float x); /* function prototype */
main()
{

float integral; /* Store result in integral */
float a, b; /* Left and right endpoints */
int n; /* Number of trapezoids */
float h; /* Trapezoid base width */
float x;
int i;

Aug. 6-7, 2009 Iowa HPC Summer School 2009

Learning MPI by Examples: Part II

printf("Enter a, b, and n\n");
scanf("%f %f %d", &a, &b, &n);
h = (b-a)/n;
integral = (f(a) + f(b))/2.0;
x = a;
for (i = 1; i <= n-1; i++)

{
x = x + h;
integral = integral + f(x);

}

Aug. 6-7, 2009 Iowa HPC Summer School 2009

Learning MPI by Examples: Part II

integral = integral*h;
printf("With n = %d trapezoids, our estimate\n", n);
printf("of the integral from %f to %f = %f\n", a, b, integral);

}

float f(float x)
{

/* Calculate f(x). calculation f(x), here the function is x*x */
return x*x;

}

Aug. 6-7, 2009 Iowa HPC Summer School 2009

Learning MPI by Examples: Part II

% cc -o serial serial.c
% serial
Enter a, b, and n
0 1 200
With n = 200 trapezoids, our estimation
of the integral from 0.000000 to 1.000000 = 0.333337

Aug. 6-7, 2009 Iowa HPC Summer School 2009

Learning MPI by Examples: Part II

C serial.f -- calculate definite integral using trapezoidal rule.
C
C The function f(x) is hardwired.
C Input: a, b, n.
C Output: estimate of integral from a to b of f(x)
C using n trapezoids.
C
C See Chapter 4, pp. 53 & ff. in PPMPI.
C

serial code in Fortran:

Aug. 6-7, 2009 Iowa HPC Summer School 2009

Learning MPI by Examples: Part II

PROGRAM serial
INCLUDE 'mpif.h'
real integral
real a
real b
integer n
real h
real x
integer i

C
real f

C

Aug. 6-7, 2009 Iowa HPC Summer School 2009

Learning MPI by Examples: Part II

print *, 'Enter a, b, and n'
read *, a, b, n

C
h = (b-a)/n
integral = (f(a) + f(b))/2.0
x = a
do 100 i = 1 , n-1

x = x + h
integral = integral + f(x)

100 continue
integral = integral*h

C

Aug. 6-7, 2009 Iowa HPC Summer School 2009

Learning MPI by Examples: Part II

print *,'With n =', n,' trapezoids, our estimate'
print *,'of the integral from ', a, ' to ',b, ' = ' , integral
end

C
C**

real function f(x)
real x

C Calculate f(x).
C

f = x*x
return

end

Aug. 6-7, 2009 Iowa HPC Summer School 2009

Learning MPI by Examples: Part II

Program Example
implicit none
integer n, p, i, j
real h, result, a, b, integral, pi

pi = acos(-1.0) !! = 3.14159...
a = 0.0 !! lower limit of integration
b = pi*1./2. !! upper limit of integration
p = 4 !! number of processes (partitions)
n = 500 !! number of increment within each process
h = (b-a)/n/p !! length of increment

Aug. 6-7, 2009 Iowa HPC Summer School 2009

Learning MPI by Examples: Part II

result = 0.0 !! stores answer to the integral
do i=1,p !! sum of integrals over all processes
result = result + integral(a,i,h,n)

enddo
print *,'The result =',result
stop
end

real function integral(a,i,h,n)
implicit none
integer n, i, j
real h, h2, aij, a
real fct, x

Aug. 6-7, 2009 Iowa HPC Summer School 2009

Learning MPI by Examples: Part II

fct(x) = cos(x) !! kernel of the integral

integral = 0.0 !! initialize integral
h2 = h/2.
do j=1,n !! sum over all "j" integrals
aij = a + ((i-1)*n +(j-1))*h !! lower limit of "j" integral
integral = integral + fct(aij+h2)*h

enddo

return
end

Aug. 6-7, 2009 Iowa HPC Summer School 2009

Learning MPI by Examples: Part II

• To compile and execute example.f

• Result:

Enter a, b, and n
0 1 200
With n = 200 trapezoids, our estimate
of the integral from 0.0000000E+00 to 1.000000 =
0.3333370

% f77 serial.f -lmpi
% a.out

Aug. 6-7, 2009 Iowa HPC Summer School 2009

Learning MPI by Examples: Part II

• Parallel programming with MPI blocking
Send/Receive
– implement-dependent because using

assignment of inputs
– Using the following MPI functions

• MPI_Init and MPI_Finalize
• MPI_Comm_rank
• MPI_Comm_size
• MPI_Recv
• MPI_Send

Aug. 6-7, 2009 Iowa HPC Summer School 2009

Learning MPI by Examples: Part II

• Parallel programming with MPI blocking
Send/Receive
– master process receives each partial result,

based on subinterval integration from other
process

– master sum all of the sub-result together
– other processes are idle during master's

performance (due to blocking communication)

Aug. 6-7, 2009 Iowa HPC Summer School 2009

Learning MPI by Examples: Part II

• Numerical Algorithms
– The global variables:

• a: global left endpoint, input variable
• b: global right end point, input variable
• p: total number of process, input variable
• n: total number of trapezoids for each sub-integral
• h: trapezoid base length while p=1 (single process)

– The local variables for each process
• local_a: local left endpoint
• local_b: local right end point
• local_h: local trapezoid base length

Aug. 6-7, 2009 Iowa HPC Summer School 2009

Learning MPI by Examples: Part II

• The expressions of local variables for process
i (rank of process)

local_a=a+i(b-a)/p local_b= a + (i+1) (b-a)/p
= a+i(b-a)/p + (b-a)/p
= local_a + local_h *n

local_h = (local_b - local_a)/n
= [(b-a)/p]/n = h/p

where h=(b-a)/n

Aug. 6-7, 2009 Iowa HPC Summer School 2009

Learning MPI by Examples: Part II

• assignment of sub-integrals to processes

(i=0, 1, 2, … p-1)

[a, a + (b-a)/p]
[a + (b-a)/p, a + 2 (b-a)/p]
[a + 2(b-a)/p, a + 3 (b-a)/p]

…
[a+i(b-a)/p, a + (i+1) (b-a)/p]
…
[a + (p-1) (b-a)/p, a + p (b-a)/p=b]

Aug. 6-7, 2009 Iowa HPC Summer School 2009

Learning MPI by Examples: Part II

/* trap.c -- Parallel Trapezoidal Rule, first version
*
* Input: None.
* Output: Estimate of the integral from a to b of f(x)
* using the trapezoidal rule and n trapezoids.
*
* Algorithm:
* 1. Each process calculates "its" interval of
* integration.
* 2. Each process estimates the integral of f(x)
* over its interval using the trapezoidal rule.

Example of parallel programming in C:

Aug. 6-7, 2009 Iowa HPC Summer School 2009

Learning MPI by Examples: Part II

* 3a. Each process != 0 sends its integral to process 0.
* 3b. Process 0 sums the calculations received from
* the individual processes and prints the result.
*
* Notes:
* 1. f(x), a, b, and n are all hardwired.
* 2. The number of processes (p) should evenly divide
* the number of trapezoids (n = 1024)
*
*/
#include <stdio.h>

Aug. 6-7, 2009 Iowa HPC Summer School 2009

Learning MPI by Examples: Part II

/* We'll be using MPI routines, definitions, etc. */
#include "mpi.h"

main(int argc, char** argv)
{

int my_rank; /* My process rank */
int p; /* The number of processes */
float a = 0.0; /* Left endpoint */
float b = 1.0; /* Right endpoint */
int n = 1024; /* Number of trapezoidsi

in each subintegrals */
float h; /* Trapezoid base length */

Aug. 6-7, 2009 Iowa HPC Summer School 2009

Learning MPI by Examples: Part II

/* local_a and local_b are the bounds
for each integration performed in individual process */

float local_a; /* Left endpoint my process */
float local_b; /* Right endpoint my process */
float local_h; /* trapezoid base length for

each sub-integral */
float integral; /* Integral over my interval */
float total; /* Total integral */
int source; /* Process sending integral */
int dest = 0; /* All messages go to 0 */
int tag = 0;
MPI_Status status;

Aug. 6-7, 2009 Iowa HPC Summer School 2009

Learning MPI by Examples: Part II

/* Trap function prototype. Trap function is used to calculate
local integral */

float Trap(float local_a, float local_b, int local_n);

/* Let the system do what it needs to start up MPI */
MPI_Init(&argc, &argv);

/* Get my process rank */
MPI_Comm_rank(MPI_COMM_WORLD, &my_rank);

Aug. 6-7, 2009 Iowa HPC Summer School 2009

Learning MPI by Examples: Part II

/* Find out how many processes are being used */
MPI_Comm_size(MPI_COMM_WORLD, &p);

h = (b-a)/n; /* h is the same for all processes */
local_h = h/p; /* So is the number of trapezoids */

local_a = a + my_rank*local_h*n;
local_b = local_a + local_h*n;
integral = Trap(local_a, local_b, n);

Aug. 6-7, 2009 Iowa HPC Summer School 2009

Learning MPI by Examples: Part II
if (my_rank == 0)

{
/* Add up the integrals calculated by each process */
total = integral; /* this is the intergal calculated by process 0 */
for (source = 1; source < p; source++)
{

MPI_Recv(&integral, 1, MPI_FLOAT, source, tag,
MPI_COMM_WORLD, &status);

total = total + integral;
}

}

Aug. 6-7, 2009 Iowa HPC Summer School 2009

Learning MPI by Examples: Part II
else

{
printf("The intergal calculated from process %d is %f\n",

my_rank,integral);
MPI_Send(&integral, 1, MPI_FLOAT, dest, tag,

MPI_COMM_WORLD);
}

/* Print the result */
if (my_rank == 0)
{
printf("With n = %d trapezoids, our estimate\n", n);
printf("of the integral from %f to %f = %f\n",a,b,total);

}

Aug. 6-7, 2009 Iowa HPC Summer School 2009

Learning MPI by Examples: Part II

/* Shut down MPI */
MPI_Finalize();

}

float Trap (
float local_a /* in */,
float local_b /* in */,
int local_n /* in */)

Aug. 6-7, 2009 Iowa HPC Summer School 2009

Learning MPI by Examples: Part II

{

float integral; /* Store result in integral */
float x;
int i;
float local_h;

float f(float x); /* function we're integrating */
local_h=(local_b-local_a)/local_n;
integral = (f(local_a) + f(local_b))/2.0;
x = local_a;

Aug. 6-7, 2009 Iowa HPC Summer School 2009

Learning MPI by Examples: Part II

for (i = 1; i <= local_n-1; i++)
{

x = x + local_h;
integral = integral + f(x);

}
integral = integral*local_h;
return integral;

}

Aug. 6-7, 2009 Iowa HPC Summer School 2009

Learning MPI by Examples: Part II

float f(float x)
{

float return_val;
/* Calculate f(x). */
/* Store calculation in return_val. */
return_val = x*x;
return return_val;

} /* f */

Aug. 6-7, 2009 Iowa HPC Summer School 2009

Learning MPI by Examples: Part II

• To compile a C code with MPI library

• To run job interactively using SGI's MPI
implementation:

cc -o trap trap_.c -lmpi

/bin/time mpirun -np 8 trap

Aug. 6-7, 2009 Iowa HPC Summer School 2009

Learning MPI by Examples: Part II

• Result (first run):

% /bin/time mpirun -np 8 a.out
The integral calculated from process 1 is 0.004557
The integral calculated from process 2 is 0.012370
The integral calculated from process 3 is 0.024089
The integral calculated from process 5 is 0.059245
With n = 1024 trapezoids, our estimate
of the integral from 0.000000 to 1.000000 = 0.333333
The integral calculated from process 4 is 0.039714
The integral calculated from process 6 is 0.082682
The integral calculated from process 7 is 0.110026

Aug. 6-7, 2009 Iowa HPC Summer School 2009

Learning MPI by Examples: Part II

• Result (second run):

mpirun -np 8 a.out
The integral calculated from process 1 is 0.004557
The integral calculated from process 7 is 0.110026
The integral calculated from process 2 is 0.012370
The integral calculated from process 3 is 0.024089
The integral calculated from process 4 is 0.039714
The integral calculated from process 5 is 0.059245
The integral calculated from process 6 is 0.082682
With n = 1024 trapezoids, our estimate
of the integral from 0.000000 to 1.000000 = 0.333333

Aug. 6-7, 2009 Iowa HPC Summer School 2009

Learning MPI by Examples: Part II

• Result (thirf run):

mpirun -np 8 a.out
The integral calculated from process 3 is 0.024089
The integral calculated from process 2 is 0.012370
The integral calculated from process 4 is 0.039714
The integral calculated from process 5 is 0.059245
The integral calculated from process 1 is 0.004557
The integral calculated from process 6 is 0.082682
The integral calculated from process 7 is 0.110026
With n = 1024 trapezoids, our estimate
of the integral from 0.000000 to 1.000000 = 0.333333

Aug. 6-7, 2009 Iowa HPC Summer School 2009

Learning MPI by Examples: Part II

• Result:

real 1.726
user 0.006
sys 0.050

Aug. 6-7, 2009 Iowa HPC Summer School 2009

Learning MPI by Examples: Part II

• Example of parallel programming in Fortran

c trap.f -- Parallel Trapezoidal Rule, first version
c
c Input: None.
c Output: Estimate of the integral from a to b of f(x)
c using the trapezoidal rule and n trapezoids.
c
c Algorithm:
c 1. Each process calculates "its" interval of
c integration.

Aug. 6-7, 2009 Iowa HPC Summer School 2009

c 2. Each process estimates the integral of f(x)
c over its interval using the trapezoidal rule.
c 3a. Each process != 0 sends its integral to 0.
c 3b. Process 0 sums the calculations received from
c the individual processes and prints the result.
c
c Notes:
c 1. f(x), a, b, and n are all hardwired.
c 2. Assumes number of processes (p) evenly divides
c number of trapezoids (n = 1024)
c
c

program trapezoidal
c

include 'mpif.h'
c

Aug. 6-7, 2009 Iowa HPC Summer School 2009

integer my_rank
integer p
real a
real b
integer n
real h
real local_a
real local_b
real local_h
integer local_n
real integral
real total
integer source
integer dest
integer tag
integer status(MPI_STATUS_SIZE)
integer ierr

Aug. 6-7, 2009 Iowa HPC Summer School 2009

c
real Trap

c
data a, b, n, dest, tag /0.0, 1.0, 1024, 0, 0/

call MPI_INIT(ierr)
call MPI_COMM_RANK(MPI_COMM_WORLD, my_rank, ierr)
call MPI_COMM_SIZE(MPI_COMM_WORLD, p, ierr)

h = (b-a)/n
local_h=h/p

local_a = a + my_rank*local_h*n
local_b = local_a + local_h*n
integral = Trap(local_a, local_b, n)

Aug. 6-7, 2009 Iowa HPC Summer School 2009

if (my_rank .EQ. 0) then
total = integral
do 100 source = 1, p-1

call MPI_RECV(integral, 1, MPI_REAL, source, tag,
+ MPI_COMM_WORLD, status, ierr)

total = total + integral
100 continue

else
call MPI_SEND(integral, 1, MPI_REAL, dest,

+ tag, MPI_COMM_WORLD, ierr)
endif
if (my_rank .EQ. 0) then

write(6,200) n
200 format(' ','With n = ',I4,' trapezoids, our estimate')

write(6,300) a, b, total
300 format(' ','of the integral from ',f6.2,' to ',f6.2,

+ ' = ',f11.5)
endif

Aug. 6-7, 2009 Iowa HPC Summer School 2009

call MPI_FINALIZE(ierr)
end

c
c

real function Trap(local_a, local_b, local_n)
real local_a
real local_b
integer local_n
real local_h

c
real integral
real x
real i

c
real f

c

Aug. 6-7, 2009 Iowa HPC Summer School 2009

local_h=(local_b-local_a)/local_n
integral = (f(local_a) + f(local_b))/2.0
x = local_a
do 100 i = 1, local_n-1

x = x + local_h
integral = integral + f(x)

100 continue
Trap = integral*local_h
return
end

c
real function f(x)
real x
real return_val
return_val = x*x
f = return_val
return
end

Aug. 6-7, 2009 Iowa HPC Summer School 2009

Learning MPI by Examples: Part II

• To compile a f77 code with MPI library

• To run job interactively using SGI's MPI
implementation:

• First run result:

f77 -o trap trap.f -lmpi

/bin/time mpirun -np 8 trap

With n = 1024 trapezoids, our estimate
of the integral from 0.00 to 1.00 = 0.33333

Aug. 6-7, 2009 Iowa HPC Summer School 2009

Learning MPI by Examples: Part II

• Notes:
– Different process performs different part of

computation based on branching statements
– Distinguish between the variables whose

contents were significant on all the processes,
and the variables whose contents were only
significant on individual processes.

– global and local variables, respectively

Aug. 6-7, 2009 Iowa HPC Summer School 2009

Learning MPI by Examples: Part II

• Notes:
– Clear documenting the global and local

variables is very crucial to parallel
programming

– Partial results are over all identical
– Problem: this code lacks of input/output

generality. That means a, b, and n are
hardwired.

Aug. 6-7, 2009 Iowa HPC Summer School 2009

Learning MPI by Examples: Part II

• I/O in parallel system
– options:

• let every process do I/O work
• let process 0 (master process) do I/O work. In this

case, we need for process 0 to send user's inputs to
other processes, using MPI_Send() and MPI_Recv()

Aug. 6-7, 2009 Iowa HPC Summer School 2009

Learning MPI by Examples: Part II

• I/O in parallel system
– Let process 0 send a, b, and n to each process.
– use different tag for each data transferring
– input/output is performed using separate

function

Aug. 6-7, 2009 Iowa HPC Summer School 2009

Learning MPI by Examples: Part II

/* get_data.c -- Parallel Trapezoidal Rule,
* uses basic Get_data function for input.
*
* Input:
* a, b: limits of integration.
* n: number of trapezoids.
* Output: Estimate of the integral from a to b of f(x)
* using the trapezoidal rule and n trapezoids.
*
* Notes:
* 1. f(x) is hardwired.
* 2. Assumes number of processes (p) evenly divides
* number of trapezoids (n). */

Aug. 6-7, 2009 Iowa HPC Summer School 2009

Learning MPI by Examples: Part II

#include <stdio.h>

/* We'll be using MPI routines, definitions, etc. */
#include "mpi.h"

main(int argc, char** argv)
{

int my_rank; /* My process rank */
int p; /* The number of processes */
float a; /* Left endpoint */
float b; /* Right endpoint */
int n; /* Number of trapezoids */
float h; /* Trapezoid base length */

Aug. 6-7, 2009 Iowa HPC Summer School 2009

Learning MPI by Examples: Part II

float local_a; /* Left endpoint my process */
float local_b; /* Right endpoint my process */
float local_h; /* trapezoid base length for */

/* each sub-integral */
float integral; /* Integral over my interval */
float total; /* Total integral */
int source; /* Process sending integral */
int dest = 0; /* All messages go to 0 */
int tag = 0;
MPI_Status status;

Aug. 6-7, 2009 Iowa HPC Summer School 2009

Learning MPI by Examples: Part II

/* function prototypes */
void Get_data(float* a_ptr, float* b_ptr,

int* n_ptr, int my_rank, int p);
float Trap(float local_a, float local_b, int local_n);

/* Calculate local integral */

/* Let the system do what it needs to start up MPI */
MPI_Init(&argc, &argv);

/* Get my process rank */
MPI_Comm_rank(MPI_COMM_WORLD, &my_rank);

Aug. 6-7, 2009 Iowa HPC Summer School 2009

Learning MPI by Examples: Part II

/* Find out how many processes are being used */
MPI_Comm_size(MPI_COMM_WORLD, &p);

Get_data(&a, &b, &n, my_rank, p);

h = (b-a)/n; /* h is the same for all processes */
local_h = h/p; /* So is the number of trapezoids */

local_a = a + my_rank*local_h*n;
local_b = local_a + local_h*n;

integral = Trap(local_a, local_b, n);

Aug. 6-7, 2009 Iowa HPC Summer School 2009

Learning MPI by Examples: Part II

/* Add up the integrals calculated by each process */
if (my_rank == 0)
{

total = integral;
for (source = 1; source < p; source++)
{
MPI_Recv(&integral, 1, MPI_FLOAT, source, tag,

MPI_COMM_WORLD, &status);
total = total + integral;

}
}
else

Aug. 6-7, 2009 Iowa HPC Summer School 2009

Learning MPI by Examples: Part II

{
MPI_Send(&integral, 1, MPI_FLOAT,

dest, tag, MPI_COMM_WORLD);
}

/* Print the result */
if (my_rank == 0)
{
printf("With n = %d trapezoids, our estimate\n", n);
printf("of the integral from %f to %f = %f\n",

a, b, total);
}
MPI_Finalize();

}

Aug. 6-7, 2009 Iowa HPC Summer School 2009

Learning MPI by Examples: Part II

/**
****************/
/* Function Get_data
* Reads in the user input a, b, and n.
* Input parameters:
* 1. int my_rank: rank of current process.
* 2. int p: number of processes.
* Output parameters:
* 1. float* a_ptr: pointer to left endpoint a.
* 2. float* b_ptr: pointer to right endpoint b.
* 3. int* n_ptr: pointer to number of trapezoids.

Aug. 6-7, 2009 Iowa HPC Summer School 2009

Learning MPI by Examples: Part II

* Algorithm:
* 1. Process 0 prompts user for input and
* reads in the values.
* 2. Process 0 sends input values to other
* processes.
*/
void Get_data(

float* a_ptr /* out */,
float* b_ptr /* out */,
int* n_ptr /* out */,
int my_rank /* in */,
int p /* in */)

{

Aug. 6-7, 2009 Iowa HPC Summer School 2009

Learning MPI by Examples: Part II

int source = 0; /* All local variables used by */
int dest; /* MPI_Send and MPI_Recv */
int tag;
MPI_Status status;

if (my_rank == 0)
{

printf("Enter a, b, and n\n");
scanf("%f %f %d", a_ptr, b_ptr, n_ptr);

Aug. 6-7, 2009 Iowa HPC Summer School 2009

Learning MPI by Examples: Part II
for (dest = 1; dest < p; dest++)

{
tag = 0;
MPI_Send(a_ptr, 1, MPI_FLOAT, dest, tag,

MPI_COMM_WORLD);
tag = 1;
MPI_Send(b_ptr, 1, MPI_FLOAT, dest, tag,

MPI_COMM_WORLD);
tag = 2;
MPI_Send(n_ptr, 1, MPI_INT, dest, tag,

MPI_COMM_WORLD);
}

}
else

Aug. 6-7, 2009 Iowa HPC Summer School 2009

Learning MPI by Examples: Part II
{

tag = 0;
MPI_Recv(a_ptr, 1, MPI_FLOAT, source, tag,

MPI_COMM_WORLD, &status);
tag = 1;
MPI_Recv(b_ptr, 1, MPI_FLOAT, source, tag,

MPI_COMM_WORLD, &status);
tag = 2;
MPI_Recv(n_ptr, 1, MPI_INT, source, tag,

MPI_COMM_WORLD, &status);
}

} /* Get_data */

Aug. 6-7, 2009 Iowa HPC Summer School 2009

Learning MPI by Examples: Part II

/**
****************/
float Trap(float local_a /* in */,

float local_b /* in */,
int local_n /* in */)

{

float integral; /* Store result in integral */
float x;
int i;
float local_h;

Aug. 6-7, 2009 Iowa HPC Summer School 2009

Learning MPI by Examples: Part II
float f(float x); /* function we're integrating */

local_h=(local_b-local_a)/local_n;
integral = (f(local_a) + f(local_b))/2.0;
x = local_a;
for (i = 1; i <= local_n-1; i++) {

x = x + local_h;
integral = integral + f(x);

}
integral = integral*local_h;
return integral;

} /* Trap */

Aug. 6-7, 2009 Iowa HPC Summer School 2009

Learning MPI by Examples: Part II

/**
****************/
float f(float x)
{

float return_val;
/* Calculate f(x). */
/* Store calculation in return_val. */
return_val = x*x;
return return_val;

} /* f */

Aug. 6-7, 2009 Iowa HPC Summer School 2009

Learning MPI by Examples: Part II

% cc get_data.c -lmpi
% mpirun -np 8 a.out
Enter a, b, and n
0 1 1024
With n = 1024 trapezoids, our estimate
of the integral from 0.000000 to 1.000000 = 0.333333

Aug. 6-7, 2009 Iowa HPC Summer School 2009

Learning MPI by Examples: Part II

% cc get_data.c -lmpi
% mpirun -np 8 a.out
Enter a, b, and n
0 1 1024
With n = 1024 trapezoids, our estimate
of the integral from 0.000000 to 1.000000 = 0.333333

Aug. 6-7, 2009 Iowa HPC Summer School 2009

Learning MPI by Examples: Part II

• Parallel programming for numerical
integration with various numerical methods

Aug. 6-7, 2009 Iowa HPC Summer School 2009

Learning MPI by Examples: Part II

silicon.weeg.uiowa.edu% more seosl_intNCb.c
/* seosl_intNC -- Parallel version of numerical integration

with Newton-Cotes methods, which includes
rectangle rule (one-point rule),
tprapezoidal rule (two-point rule),
Simpson rule(three-point rule)

*/

#include <stdio.h>
#include "mpi.h"
#include <math.h>

Aug. 6-7, 2009 Iowa HPC Summer School 2009

main(int argc, char** argv)
{

int my_rank;
int p;
float a = 0.0, b=1.0, h;
int n = 2048;
int mode=3; /* mode=1,2,3 rectangle,

trapezoidal, and Simpson */

float local_a, local_b, local_h;

float local_integral, integral;
int source;
int dest = 0;
int tag = 0;
MPI_Status status;

Aug. 6-7, 2009 Iowa HPC Summer School 2009

/* function prototypes */
void Get_data(float* a_ptr, float* b_ptr,

int* n_ptr, int my_rank, int p, int *mode_ptr);
float rect(float local_a, float local_b, int local_n);
float trap(float local_a, float local_b, int local_n);
float simp(float local_a, float local_b, int local_n);

/* MPI starts */
MPI_Init(&argc, &argv);
MPI_Comm_rank(MPI_COMM_WORLD,

&my_rank);
MPI_Comm_size(MPI_COMM_WORLD, &p);
Get_data(&a, &b, &n, my_rank, p, &mode);
h = (b-a)/n;
local_h=h/p;
local_a = a + my_rank*local_h*n;
local_b = local_a + local_h*n;

Aug. 6-7, 2009 Iowa HPC Summer School 2009

switch(mode)
{
case(1):
local_integral = rect(local_a, local_b, n);
break;

case(2):
local_integral = trap(local_a, local_b, n);
break;

case(3):
local_integral = simp(local_a, local_b, n);

}

Aug. 6-7, 2009 Iowa HPC Summer School 2009

if(my_rank==0)
{
if (mode==1)

printf("Rectangle rule (0-point rule) is selected\n");
else if (mode==2)

printf("Trapezodial rule (2-point rule) is selected\n");
else /* defaulted */

printf("Simpson rule (3-point rule) is selected\n");
}

if (my_rank == 0)
{
integral = local_integral;
for (source = 1; source < p; source++)
{

Aug. 6-7, 2009 Iowa HPC Summer School 2009

MPI_Recv(&local_integral,1,MPI_FLOAT,source,tag,MP
I_COMM_WORLD, &status)
;

integral += local_integral;
}

}
else
{
printf("The intergal calculated from process %d is

%f\n",my_rank,local_in
tegral);

MPI_Send(&local_integral, 1, MPI_FLOAT, dest, tag,
MPI_COMM_WORLD);

}

Aug. 6-7, 2009 Iowa HPC Summer School 2009

if (my_rank == 0)
{
printf("With n = %d, the total integral from %f to %f

= %f\n",n, a,b,integ
ral);

}

/* MPI finished */
MPI_Finalize();

}

/**
**********************/
/* Function Get_data
* Reads in the user input a, b, and n.
* Input parameters:
* 1. int my_rank: rank of current process.

Aug. 6-7, 2009 Iowa HPC Summer School 2009

* 2. int p: number of processes.
* Output parameters:
* 1. float* a_ptr: pointer to left endpoint a.
* 2. float* b_ptr: pointer to right endpoint b.
* 3. int* n_ptr: pointer to number of trapezoids.

3. int* mode_ptr: pointer to mode of rule of Newton-
Cotes methods
* Algorithm:
* 1. Process 0 prompts user for input and
* reads in the values.
* 2. Process 0 sends input values to other
* processes.
*/
void Get_data(

float* a_ptr /* out */,
float* b_ptr /* out */,
int* n_ptr /* out */,

Aug. 6-7, 2009 Iowa HPC Summer School 2009

int my_rank /* in */,
int p /* in */,
int* mode_ptr /* out */)

{
int source = 0; /* All local variables used by */
int dest; /* MPI_Send and MPI_Recv */
int tag;
MPI_Status status;

if (my_rank == 0)
{

do
{
printf("Enter a, b, n(1024), and mode(1--rect, 2-- trap,

3-- simp):\n");
scanf("%f %f %d %d", a_ptr, b_ptr, n_ptr, mode_ptr);
} while (*mode_ptr<1 || *mode_ptr>3);

Aug. 6-7, 2009 Iowa HPC Summer School 2009

for (dest = 1; dest < p; dest++)
{
tag = 0;
MPI_Send(a_ptr, 1, MPI_FLOAT, dest, tag,

MPI_COMM_WORLD);
tag = 1;
MPI_Send(b_ptr, 1, MPI_FLOAT, dest, tag,

MPI_COMM_WORLD);
tag = 2;
MPI_Send(n_ptr, 1, MPI_INT, dest, tag,

MPI_COMM_WORLD);
tag = 3;
MPI_Send(mode_ptr, 1, MPI_INT, dest, tag,

MPI_COMM_WORLD);
}

}
else

Aug. 6-7, 2009 Iowa HPC Summer School 2009

{
tag = 0;
MPI_Recv(a_ptr, 1, MPI_FLOAT, source, tag,

MPI_COMM_WORLD, &status);
tag = 1;
MPI_Recv(b_ptr, 1, MPI_FLOAT, source, tag,

MPI_COMM_WORLD, &status);
tag = 2;
MPI_Recv(n_ptr, 1, MPI_INT, source, tag,

MPI_COMM_WORLD, &status);
tag = 3;
MPI_Recv(mode_ptr, 1, MPI_INT, source, tag,

MPI_COMM_WORLD, &status);
}

} /* Get_data */

Aug. 6-7, 2009 Iowa HPC Summer School 2009

float rect(float local_a, float local_b, int local_n)
{

float local_integral;
float x;
int i;
float local_h;

float f(float x);
local_h=(local_b-local_a)/local_n;
local_integral = f(local_a);
x = local_a;
for (i = 1; i <= local_n-1; i++)
{

x = x + local_h;
local_integral += f(x);

}

Aug. 6-7, 2009 Iowa HPC Summer School 2009

local_integral *=local_h;
return local_integral;

}

float trap(float local_a, float local_b, int local_n)
{

float local_integral;
float x;
int i;
float local_h;

float f(float x);

local_h=(local_b-local_a)/local_n;
local_integral = f(local_a) + f(local_b);
x = local_a;

Aug. 6-7, 2009 Iowa HPC Summer School 2009

for (i = 1; i <= local_n-1; i++)
{

x = x + local_h;
local_integral += 2.0*f(x);

}
local_integral *=local_h/2.0;
return local_integral;

}

float simp(float local_a, float local_b, int local_n)
{

float local_integral;
float x;
int i;
float local_h;

float f(float x);

Aug. 6-7, 2009 Iowa HPC Summer School 2009

local_h=(local_b-local_a)/local_n;
local_integral = f(local_a) + f(local_b);
x = local_a;
for (i = 1; i < local_n; i++)
{
x = x + local_h;
if (i % 2 == 0) /* if i is even */

local_integral = local_integral + 2 * f(x);
else /* if i is odd */

local_integral = local_integral + 4 * f(x);
}

local_integral *=local_h/3.0;
return local_integral;

}

float f(float x)
{ return x*x; }

Aug. 6-7, 2009 Iowa HPC Summer School 2009

Learning MPI by Examples: Part II

mpirun -np 8 a.out
Enter a, b, n(1024), and mode(1--rect, 2-- trap, 3-- simp):
0 1 1024 1
Rectangle rule (0-point rule) is selected
The intergal calculated from process 6 is 0.082670
The intergal calculated from process 1 is 0.004554
The intergal calculated from process 3 is 0.024082
The intergal calculated from process 4 is 0.039705
The intergal calculated from process 5 is 0.059234
The intergal calculated from process 2 is 0.012365
The intergal calculated from process 7 is 0.110012
With n = 1024, the total integral from 0.000000 to 1.000000

= 0.333272

Aug. 6-7, 2009 Iowa HPC Summer School 2009

Learning MPI by Examples: Part II

% mpirun -np 8 a.out
Enter a, b, n(1024), and mode(1--rect, 2-- trap, 3-- simp):
0 1 1024 2
Trapezodial rule (2-point rule) is selected
The intergal calculated from process 1 is 0.004557
The intergal calculated from process 2 is 0.012370
The intergal calculated from process 3 is 0.024089
The intergal calculated from process 4 is 0.039714
The intergal calculated from process 5 is 0.059245
The intergal calculated from process 6 is 0.082682
The intergal calculated from process 7 is 0.110026
With n = 1024, the total integral from 0.000000 to 1.000000 =
0.333333

Aug. 6-7, 2009 Iowa HPC Summer School 2009

Learning MPI by Examples: Part II

%mpirun -np 8 a.out
Enter a, b, n(1024), and mode(1--rect, 2-- trap, 3-- simp):
0 1 1024 3
Simpson rule (3-point rule) is selected
The intergal calculated from process 3 is 0.024089
The intergal calculated from process 6 is 0.082682
The intergal calculated from process 1 is 0.004557
The intergal calculated from process 4 is 0.039714
The intergal calculated from process 5 is 0.059245
The intergal calculated from process 7 is 0.110026
The intergal calculated from process 2 is 0.012370
With n = 1024, the total integral from 0.000000 to 1.000000
= 0.333333

Aug. 6-7, 2009 Iowa HPC Summer School 2009

Learning MPI by Examples: Part II

• Exercise:
– The last example is a parallel code for

numerical integration using the Newton-Cotes
methods. Write a parallel code for numerical
integration using the Gaussian-rule. Reference
can be found at
(http://www.engineering.uiowa.edu/~ncalc/dni/
dni_03.html)

	Introduction to MPI: Lecture 3
	Learning MPI by Examples: Part II
	Learning MPI by Examples: Part II
	Learning MPI by Examples: Part II
	Learning MPI by Examples: Part II
	Learning MPI by Examples: Part II
	Learning MPI by Examples: Part II
	Learning MPI by Examples: Part II
	Learning MPI by Examples: Part II
	Learning MPI by Examples: Part II
	Learning MPI by Examples: Part II
	Learning MPI by Examples: Part II
	Learning MPI by Examples: Part II
	Learning MPI by Examples: Part II
	Learning MPI by Examples: Part II
	Learning MPI by Examples: Part II
	Learning MPI by Examples: Part II
	Learning MPI by Examples: Part II
	Learning MPI by Examples: Part II
	Learning MPI by Examples: Part II
	Learning MPI by Examples: Part II
	Learning MPI by Examples: Part II
	Learning MPI by Examples: Part II
	Learning MPI by Examples: Part II
	Learning MPI by Examples: Part II
	Learning MPI by Examples: Part II
	Learning MPI by Examples: Part II
	Learning MPI by Examples: Part II
	Learning MPI by Examples: Part II
	Learning MPI by Examples: Part II
	Learning MPI by Examples: Part II
	Learning MPI by Examples: Part II
	Learning MPI by Examples: Part II
	Learning MPI by Examples: Part II
	Learning MPI by Examples: Part II
	Learning MPI by Examples: Part II
	Learning MPI by Examples: Part II
	Learning MPI by Examples: Part II
	Learning MPI by Examples: Part II
	Learning MPI by Examples: Part II
	Learning MPI by Examples: Part II
	Learning MPI by Examples: Part II
	Learning MPI by Examples: Part II
	Learning MPI by Examples: Part II
	Learning MPI by Examples: Part II
	Learning MPI by Examples: Part II
	Learning MPI by Examples: Part II
	Learning MPI by Examples: Part II
	Learning MPI by Examples: Part II
	Learning MPI by Examples: Part II
	Learning MPI by Examples: Part II
	Learning MPI by Examples: Part II
	Learning MPI by Examples: Part II
	Learning MPI by Examples: Part II
	Learning MPI by Examples: Part II
	Learning MPI by Examples: Part II
	Learning MPI by Examples: Part II
	Learning MPI by Examples: Part II
	Learning MPI by Examples: Part II
	Learning MPI by Examples: Part II
	Learning MPI by Examples: Part II
	Learning MPI by Examples: Part II
	Learning MPI by Examples: Part II
	Learning MPI by Examples: Part II
	Learning MPI by Examples: Part II
	Learning MPI by Examples: Part II
	Learning MPI by Examples: Part II
	Learning MPI by Examples: Part II
	Learning MPI by Examples: Part II
	Learning MPI by Examples: Part II

