
Aug. 6-7, 2009 Iowa HPC Summer School 2009

Introduction to MPI: Lecture 4

Jun Ni, Ph.D. M.E.

Associate Professor
Department of Radiology

Carver College of Medicine

Information Technology Services

The University of Iowa

Learning MPI by Examples: Part III

Blocking and non-blocking
communications

Aug. 6-7, 2009 Iowa HPC Summer School 2009

Learning MPI by Examples: Part III

• Previous parallel programming with MPI
blocking Send/Receive, which means
– process 1 (or processes other than 0) is ready

for receiving message from process 0. Once it
is ready, it deserve for receiving. If process 0
doesn't send a message, the process 1 is idle
and waiting for receiving the message

– it is not synchronous communication, which
means sender would send message until it
receives confirmation from receiver

Aug. 6-7, 2009 Iowa HPC Summer School 2009

Learning MPI by Examples: Part III

– blocking communication should be avoid
– The use of non-blocking communication can be

used to provide dramatic improvements in the
performance of message passing programs

– Use MPI_Isend() and MPI_Irecv()
• I stands for immediate

– Use MPI_Wait() to complete the non-blocking
communication

Aug. 6-7, 2009 Iowa HPC Summer School 2009

Learning MPI by Examples: Part III

• Parallel programming with MPI non
blocking Send/Receive
– do not make processes idle
– Using the following MPI functions

• MPI_Init and MPI_Finalize
• MPI_Comm_rank
• MPI_Comm_size
• MPI_Irecv
• MPI_Isend
• MPI_Wait()

Aug. 6-7, 2009 Iowa HPC Summer School 2009

Learning MPI by Examples: Part III

• MPI _ISend() syntax:

int MPI_ISend (void* buffer /*in */,
int count /* in */,
MPI_Datatypes /*in */,
int dest /*in*/,
int tag /*in*/,
MPI_Comm comm /*in*/
MPI_Request* request /*out */)

Aug. 6-7, 2009 Iowa HPC Summer School 2009

Learning MPI by Examples: Part III

• MPI _IRecv() syntax:

int MPI_IRecv (void* buffer /*in */,
int count /* in */,
MPI_Datatypes /*in */,
int source /*in*/,
int tag /*in*/,
MPI_Comm comm /*in*/
MPI_Request* request /*out */)

Aug. 6-7, 2009 Iowa HPC Summer School 2009

/* nbtrap.c -- Parallel Trapezoidal Rule, nonblocking
* sending
* Input: None.
* Output: Estimate of the integral from a to b of f(x)
* using the trapezoidal rule and n trapezoids.
*
* Algorithm:
* 1. Each process calculates "its" interval of
* integration.
* 2. Each process estimates the integral of f(x)
* over its interval using the trapezoidal rule.
* 3a. Each process != 0 sends its integral to process 0.
* 3b. Process 0 sums the calculations received from
* the individual processes and prints the result.
*
*

Aug. 6-7, 2009 Iowa HPC Summer School 2009

Notes:
* 1. f(x), a, b, and n are all hardwired.
* 2. The number of processes (p) should evenly divide
* the number of trapezoids (n = 1024)
*
*/
#include <stdio.h>

/* We'll be using MPI routines, definitions, etc. */
#include "mpi.h"

main(int argc, char** argv)
{

int my_rank; /* My process rank */
int p; /* The number of processes */
float a = 0.0; /* Left endpoint */

Aug. 6-7, 2009 Iowa HPC Summer School 2009

float b = 1.0; /* Right endpoint */
int n = 1024; /* Number of trapezoidsi

in each subintegrals */
float h; /* Trapezoid base length */

/* local_a and local_b are the bounds
for each integration performed in individual process */

float local_a; /* Left endpoint my process */
float local_b; /* Right endpoint my process */
float local_h; /* trapezoid base length for

each subintegral */
float integral; /* Integral over my interval */
float total; /* Total integral */
int source; /* Process sending integral */
int dest = 0; /* All messages go to 0 */
int tag = 0;

Aug. 6-7, 2009 Iowa HPC Summer School 2009

MPI_Status status;
MPI_Request send_req;

/* Trap function prototype. Trap function is used to calculate
local integral */

float Trap(float local_a, float local_b, int local_n);

/* Let the system do what it needs to start up MPI */
MPI_Init(&argc, &argv);

/* Get my process rank */
MPI_Comm_rank(MPI_COMM_WORLD, &my_rank);

/* Find out how many processes are being used */
MPI_Comm_size(MPI_COMM_WORLD, &p);

Aug. 6-7, 2009 Iowa HPC Summer School 2009

h = (b-a)/n; /* h is the same for all processes */
local_h = h/p; /* So is the number of trapezoids */

local_a = a + my_rank*local_h*n;
local_b = local_a + local_h*n;
integral = Trap(local_a, local_b, n);

if (my_rank == 0)
{
/* Add up the integrals calculated by each process */
total = integral; /* this is the intergal calculated by process 0 */
for (source = 1; source < p; source++)
{

MPI_Recv(&integral, 1, MPI_FLOAT, source, tag,
MPI_COMM_WORLD, &status);

total = total + integral;
}

}

Aug. 6-7, 2009 Iowa HPC Summer School 2009

else
{
printf("The intergal calculated from process %d is %f\n",my_rank,in

);
/* MPI_Send(&integral, 1, MPI_FLOAT, dest, tag, MPI_COMM_W
*/
MPI_Isend(&integral, 1, MPI_FLOAT, dest, tag, MPI_COMM_WO
MPI_Wait(&send_req, &status);

}

/* Print the result */
if (my_rank == 0)
{
printf("With n = %d trapezoids, our estimate\n", n);
printf("of the integral from %f to %f = %f\n",a,b,total);

}

Aug. 6-7, 2009 Iowa HPC Summer School 2009

/* Shut down MPI */
MPI_Finalize();

}

float Trap (
float local_a /* in */,
float local_b /* in */,
int local_n /* in */)

{

float integral; /* Store result in integral */
float x;
int i;
float local_h;

float f(float x); /* function we're integrating */

Aug. 6-7, 2009 Iowa HPC Summer School 2009

local_h=(local_b-local_a)/local_n;

integral = (f(local_a) + f(local_b))/2.0;
x = local_a;
for (i = 1; i <= local_n-1; i++)
{

x = x + local_h;
integral = integral + f(x);

}
integral = integral*local_h;
return integral;

}

Aug. 6-7, 2009 Iowa HPC Summer School 2009

float f(float x)
{

float return_val;
/* Calculate f(x). */
/* Store calculation in return_val. */
return_val = x*x;
return return_val;

} /* f */

Aug. 6-7, 2009 Iowa HPC Summer School 2009

Learning MPI by Examples: Part II

• Example of parallel programming using non
blocking Sending

mpirun -np 8 a.out
The intergal calculated from process 4 is 0.039714
The intergal calculated from process 5 is 0.059245
The intergal calculated from process 7 is 0.110026
The intergal calculated from process 2 is 0.012370
The intergal calculated from process 3 is 0.024089
The intergal calculated from process 1 is 0.004557
The intergal calculated from process 6 is 0.082682
With n = 1024 trapezoids, our estimate
of the integral from 0.000000 to 1.000000 = 0.333333

	Introduction to MPI: Lecture 4
	Learning MPI by Examples: Part III
	Learning MPI by Examples: Part III
	Learning MPI by Examples: Part III
	Learning MPI by Examples: Part III
	Learning MPI by Examples: Part III
	Learning MPI by Examples: Part III
	Learning MPI by Examples: Part II

