Iowa High Performance Computing Summer School 2010

Parallel Programming Using MPI

The Message Passing Interface (MPI) libraries are the most widely used choice for parallel programming. Today we
will learn some of the very basics about MPI and get to do some hands on practice with writing parallel code ourselves.

1 General Comments

1. The biggest hindrance to parallel computing for most people is just getting started. Once you get your first parallel
code to work (before lunch today), you’ll see that it’s not really all that hard.

2. I will not cover all of the wide functionality of the MPI libraries. I will merely discuss how to implement basic
point-to-point and collective communications. The many topics that I will not cover include:

a

(
(b

Non-blocking and synchronous vs. asynchronous communication

Derived data types
(

(d
(e) Extended functions of the MPI-2 Standard

)
)
¢) Groups and communicators
) Virtual topologies

)

3. You can do almost anything you want to do with just 8 commands that handle environment management and
point-to-point communications. Another 4 commands for collective communications are also very useful. Probably
95% of MPT users can get away with just these 12 commands, so I will focus on these commands here, and briefly
mention a few others.

4. T will attempt to give the correct syntax for both C and Fortran

2 Concepts

During this presentation, we will learn about the following concepts. The most efficient way to present these concepts is
to define and discuss them as they arise in the MPI implementation, so I only list them here for reference:

1. Communicators

2. Point-to-point vs. collective communications
3. Buffering of messages

4. TIssues of Synchronization and Determinism

(a) Deadlocks and Race Conditions



3 Environment Management Routines

This section describes the basic environment management routines that allow the initialization, management, and ter-
mination of parallel tasks.

1. First, every MPI program needs to include a header file at the beginning of the program:
C #include "mpi.h"
Fortran include ’mpif.h’

This file includes the definition of a number of MPI variables, all of which can be distinguished by starting with

MPI_ and begin in all capitals.

2. The general format of MPI calls differs slightly in C and Fortran, so here is an example of each:
C rc = MPI_Bsend(&buf,count,type,dest,tag,comm)
Fortran CALL MPI_BSEND(buf,count,type,dest,tag,comm,ierr)

The error code of the call is returned in rc for C and ierr for Fortran. If it has a value equal to the variable

MPI_SUCCESS, then the call was successful. We’ll discuss the arguments of each call as we present them below.

Because the error code is always returned for all MPI calls, it is left out of the argument lists below.

3. Initialize MPI Environment, starting parallel tasks:

MPI_Init call must come before any of the MPI calls in the code for each of the MPI tasks.
C MPI_Init (&argc,&argv)
Fortran MPI_INIT (ierr)

Here argc and argv are required only in C, where they are the main program’s arguments.

4. Terminate MPI Environment, cleaning up and closing parallel tasks:
MPI_Finalize must be the last MPI call for every MPI program.
C MPI_Finalize ()
Fortran ~ MPI_FINALIZE (ierr)

5. Note that we are only going to deal with the SPMD model, where each process executes the same program. This
does not mean that each process executes exactly the same instruction at each step. Conditional logic can—and,
in general, must—be used so that each process executes a different series of instructions.

6. Determine Number of MPI tasks:
MPI_Comm_size determines the number of MPI tasks associated with the communicator that is passed in as an

argument.
C MPI_Comm_size (comm,&size)
Fortran MPI_COMM_SIZE (comm,size,ierr)
Arguments:
Intent Argument Type Description
IN comm handle Communicator
OUT  size integer Number of MPI tasks associated with comm

The first argument comm is a variable called the communicator. The communicator defines a group of processes.
The standard pre-defined communicator that is most commonly used (and the only one we will use in this class, is
MPI_COMM_WORLD, and it includes all of the MPI tasks for your run.

7. Determine the Rank of this MPI task:
MPI_Comm_rank determines the rank of this MPI task. Also referred to as the task ID.

C MPI_Comm_rank (comm,&rank)
Fortran MPI_COMM_RANK (comm,rank,ierr)
Arguments:



Intent Argument Type Description

IN comm handle Communicator

OUT rank integer Rank, or task ID of this MPI task.
For a size of N tasks, the ranks, or task IDs, of each of the processes run from 0 to N — 1.

. EXAMPLE: SERIAL HELLO WORLD PROGRAM:

program helloworld serial
implicit none

'Write out message to screen
write(*,’(a)’)’Hello World.’

end program helloworld_ serial

. EXAMPLE: PARALLEL HELLO WORLD PROGRAM:
Here we must include the MPI header file mpif.h, add declarations for the variables nproc, iproc, and ierror,
and make the calls to mpi_init, call mpi_comm sizempi_comm rank,and mpi_finalize.

program helloworld
implicit none
include ’mpif.h’

integer :: nproc !Number of Processors (1 to nproc)
integer :: iproc !Number of local processors (0 to nproc-1)
integer :: ierror !Integer error flag

!Initialize MPI message passing-——-—--—-———————————————————————————————————————
call mpi_init (ierror)

call mpi_comm size (mpi_comm world, nproc, ierror)

call mpi_comm rank (mpi_comm world, iproc, ierror)

'Write out message to screen
write(x,’(a,i4,a,i4)’)’Hello World. I am processor ’,iproc,’ of ’,nproc

'Finalize MPI message passing
call mpi_finalize (ierror)

end program helloworld

. When the parallel helloworld is run on 16 processors using the command
srun -p scx-event -n 16 ./helloworld.e, the output appears like this:
Hello World. I am processor 11 of 16
Hello World. I am processor 5 of 16
Hello World. I am processor 9 of 16
Hello World. I am processor 15 of 16
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Hello World.
Hello World.
Hello World.
Hello World.
Hello World.
Hello World.
Hello World.
Hello World.

am processor 8 of 16

am processor 10 of 16

am processor 12 of 16

am processor 14 of 16

am processor 6 of 16

processor 7 of 16

am processor 13 of 16
am processor 0 of 16

Hello World. am processor 1 of 16

Hello World. am processor 3 of 16

Hello World. am processor 4 of 16

Hello World. I am processor 2 of 16

This raises the issue of determinism, a subtle but critically important issue in parallel programming. Why does the

output occur in an apparently random order, rather than in rank order from 0 to 157 How can we modify the code

to produce output in rank order? We will be tackle this issue as part of In-Class Exercises #1 this afternoon.

HHHHHHMHHKHHH

Point-to-Point Communication Routines

Point-to-point communication involve the sending of a message from one task (A) t and the receiving of that message by
one task (B). This will involve a matched pair of commands, one send and one receive.

1. Send a message to another MPI task:

MPI_Send initiates a blocking send operation, returning from the call only when the sending task is free for re-use
(this does not necessarily mean that the message has been received—see the discussion on message buffering below).

C MPI_Send (&buf,count,datatype,dest,tag,comm)

Fortran MPI_SEND (buf,count,datatype,dest,tag,comm,ierr)
Arguments:

Intent Argument Type Description

IN buf choice Address of data array to send

IN count integer(> 0) Number of array elements to send

IN datatype handle Type of data to send

IN dest integer Rank (task ID) of destination task

IN tag integer Message tag

IN comm handle Communicator

The argument buf supplies the address of the variable array to be sent. In Fortran this is just the variable name;
in C, it is passed by reference and should be the variable name prepended by ’&’. The datatype is the type of
variable array, specified by a pre-defined handle, such as MPI_REAL, MPI_INTEGER, MPI_CHARACTER, or MPI_COMPLEX
in Fortran. These handles are defined in the include file mpi.h or mpif.h, and a brief reference of the most common
datatypes for C and Fortran can be found at https://computing.llnl.gov/tutorials/mpi/. The argument tag
is a unique identifier to identify the message that can be assigned by the programmer. Good programming practices
do not depend on this tag unless unavoidable.

. Receive a message from another MPI task:

MPI_Recv receives a message from another MPI task, blocking until the requested data has been received and is
available.

C MPI Recv (&buf,count,datatype,source,tag,comn,&status)
Fortran MPI_RECV (buf,count,datatype,source, tag,comm,status, ierr)
Arguments:



Intent Argument Type Description

OUT  buf choice Address of data array to receive

IN count integer(>0) Number of array elements to receive
IN datatype handle Type of data to recv

IN source integer Rank (task ID) of source task

IN tag integer Message tag

IN comm handle Communicator

OUT  status status Status object

The argument status can be used subsequently to inquire about the size, tag, and source of the received message.

. Note that blocking communication is not necessarily synchronous. However, this is not specified in the MPI standard
and varies depending on the implementation. A blocking send can be asychronous. In other words, the send can be
completed, allowing the sending task move on to other work, before the message is received by the receiving task.
In this case, the receiving process may have a buffer for incoming messages, that hold received messages, waiting
for the receiving task to request the message, but allowing the sending task to move ahead (asynchronously) to
other work.



4. Determinism:
Message passing using point-to-point communications in MPI should be deterministic—meaning that sends and
receives should always occur in a specified order—otherwise you can get into trouble. The following example
demonstrates some of the subtleties associated with programming deterministic communications.

Can you identify the potential problem in the following code?

program deadlock
implicit none
include ’mpif.h’

integer :: nproc !Number of Processors (1 to nproc)

integer :: iproc !Task ID of local processor (0 to nproc-1)

integer :: ierror !Integer error flag

integer :: sproc, rproc !Processor IDs to Send to and Receive from
real :: sx,rx !Variable to send and receive

integer :: tag=0 !message tag

integer, dimension (MPI_STATUS_SIZE) :: status !Receive status variable

!Initialize MPI message passing-——-—--————————————————————————————————————————
call mpi_init (ierror)

call mpi_comm size (mpi_comm world, nproc, ierror)

call mpi_comm rank (mpi_comm world, iproc, ierror)

!Set sx equal to iproc
sx=real (iproc)
rx=-1.

'Ring communications to local neighbor: Send message to sproc=iproc+1
! Receive message from rproc=iproc-1

INOTE: mod function enables periodic wrap-around

sproc=mod (iproc+1,nproc)

rproc=mod (iproc+nproc-1,nproc)

!Send Message to sproc and receive message from rproc
call mpi_send(sx,1,MPIREAL,sproc,tag,MPI_COMM_WORLD, ierror)
call mpi_recv(rx,1,MPIREAL,rproc,tag,MPI_COMM _WORLD,status,ierror)

'Write out message of send and received values
write(x,’(a,i4,a,f6.3,a,f6.3)’)°I am processor ’,iproc,’ Sent: ’,sx,’ Received: ’,rx

'Finalize MPI message passing
call mpi_finalize (ierror)

end program deadlock



The problem with the program deadlock can be demonstrated simply by considering a run with just two MPI
tasks, nproc=2. In this case, the variables sproc and rproc have the following values for ranks (task IDs) iproc=0
and iproc=1:
proc=0 iproc=1

sproc 1 0

rproc 1 0
Therefore, the MPI send and receive commands on iproc=0 are
call mpi_send(sx,1,MPIREAL,1,tag,MPI_COMM_WORLD,ierror)
call mpi_recv(rx,1,MPIREAL,1,tag,MPI_COMM_WORLD,status,ierror)
and the MPI send and receive commands on iproc=1 are
call mpi_send(sx,1,MPIREAL,O,tag,MPI_COMM_WORLD,ierror)
call mpi_recv(rx,1,MPIREAL,O,tag,MPI_COMM_WORLD,status,ierror)

The potential error here is that both tasks execute the instruction to send a message to the other task before
executing the instruction to receive the message. If the send instruction on each task waits for the message to be
received before moving on (this would be both a blocking and synchronous communication), the both tasks will
hang up on the MPI send command and never move forward to the MPI receive command.

In practice, this non-deterministic coding will usually work and give you the result that you intended. The reason
is that the implementation of MPI_SEND in most MPI libraries will complete the send instruction (blocking until
any subsequent send operations will not interfere with the current send operation) and then allow the task to
move on to the next instruction (without waiting for the message to be received, meaning that the communication
is asynchronous). Therefore, each task moves on to the receive instruction to successfully receive the message
(possibly waiting in its message buffer) that was just by the other task. However, the MPI and MPI-2 standards
do not specify that this must be the action of the send instruction. It is possible for an implementation to require
the message to be received (forcing synchronous communication) before completing the send instructions, in which
case the code will hang up. This problem is generally called a deadlock, and is also referred to as a race condition
(code execution depends on the order of operations, which is not deterministic, leading to success when one task
reaches in instruction in the code first and failure when another task gets there first).

In addition to varying implementations of MPI_SEND, if the message to be sent is particularly long, then blocking
by the send instruction may continue until the message is received, and the code will hang up.

The overall lesson here is that, although most of the time the code in program deadlock will execute as intended
without a hitch, the communication sequence is not deterministic and potential for a crash exists. This leads to
the possibility that the code will perform satisfactorily in 999 out of 1000 cases, so trying to find the bug causing
the problem in the 1000th case becomes very difficult. The root cause is the non-deterministic communication, but
many new to the practice of parallel programming may be unaware of the problem because, in practice, the code
works nearly all of the time.

Beginning on the next page is a potential solution to this problem of non-deterministic communications.



program deadlock fix
implicit none
include ’mpif.h’

integer :: nproc !Number of Processors (1 to nproc)

integer :: iproc !Task ID of local processor (0 to nproc-1)

integer :: ierror !Integer error flag

integer :: sproc, rproc !Processor IDs to Send to and Receive from
real :: sx,rx !Variable to send and receive

integer :: tag=0 !'message tag

integer, dimension (MPI_STATUS_SIZE) :: status !Receive status variable

!Initialize MPI message passing-—————————————————-—-———-——————————————————————
call mpi_init (ierror)

call mpi_comm size (mpi_comm world, nproc, ierror)

call mpi_comm rank (mpi_comm world, iproc, ierror)

!Check for possible error: Algorithm fails if nproc is odd

if (mod(nproc,2) .ne. O0) then

if (iproc .eq. 0) write(*,’(a)’)’ERROR: Algorithm requires even value of nproc’
'Finalize MPI message passing

call mpi_finalize (ierror)

stop

endif

!Set sx equal to iproc
sx=real (iproc)
rx=-1.

'Ring communications to local neighbor: Send message to sproc=iproc+1
! Receive message from rproc=iproc-1

INOTE: mod function enables periodic wrap-around

sproc=mod (iproc+1,nproc)

rproc=mod (iproc+nproc-1,nproc)

!Send Message to sproc and receive message from rproc

INOTE: Avoid deadlock by having even processor always send first
if (mod(iproc,2) .eq. O0) then

call mpi_send(sx,1,MPIREAL,sproc,tag,MPI_COMM_WORLD,ierror)

call mpi_recv(rx,1,MPIREAL,rproc,tag,MPI_COMM _WORLD,status,ierror)
else

call mpi_recv(rx,1,MPIREAL,rproc,tag,MPI_COMM_WORLD,status,ierror)
call mpi_send(sx,1,MPIREAL,sproc,tag,MPI_COMM_WORLD, ierror)

endif

'Write out message of send and received values

write(x,’(a,i4,a,f6.3,a,f6.3)’)°I am processor ’,iproc,’ Sent: ’,sx,’ Received:
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'Finalize MPI message passing
call mpi_finalize (ierror)

end program deadlock fix

The program deadlock_fix handles fix the potential problem of non-deterministic communications in program
deadlock by specify unique which task sends first and which receives first in point-to-point communications between
two tasks. This is done choosing that the processor and and even value of the rank (task ID) sends first. This coding
of the communication will always work, independent of possibly varying implementations of the MPI routines.

Note, however, that the decision to use whether the rank (task ID) is even or odd restricts the validity of this
algorithm to parallel runs with only an even number of tasks. This is typical of solutions to ensure deterministic
communications, that it may restrict the flexibility of your parallelization scheme. To prevent the code from being
run with an odd number of processors (which would again lead to non-deterministic communications, but would
probably work most of the time, just as program deadlock worked most of the time), good programming practice
requires that a test be inserted to prevent this possibility.

Collective Communication Routines

Although you could really get away with only using point-to-point send and receive commands to do all necessary commu-
nication in a parallel code, there are some very useful collective communication routines the provide optimized methods
for one-to-all, all-to-one, and all-to-all communications. For these routines, all tasks associated with the communicator
(and for MPI_COMM_WORLD this is all MPI tasks) must participate. In addition, these collective communication routines
are all blocking.

One of the most useful collective operations is called reduction: this operation takes the data in the same variable on

each processor, or array of variables, and performs an operation on all of the variables, for example computing the sum
or finding the maximum value. The result is either collected at the root process (for MPI_Reduce) or distributed to all
processes (for MPI_Allreduce). Thus, Reduce is an all-to-one operation, and Allreduce is an all-to-all operation.

1. Broadcast a message to all MPI tasks:

MPI_Bast broadcasts (sends) a message from the process with rank "root” to all other processes.

C MPI Bcast (&buffer,count,datatype,root,comm)
Fortran MPI_BCAST (buffer,count,datatype,root,comm,ierr)
Arguments:
Intent Argument Type Description
INOUT buffer choice Address of input data array, or output data array at root
IN count integer(>0) Number of array elements to receive
IN datatype handle Type of data to recv
IN root integer Rank (task ID) of root task
IN comm handle Communicator

The argument root defines the rank (task ID) of the tasks that sends the broadcast; all other tasks receive the
broadcast

. Perform a reduction operation on data from all MPI tasks and send result to one task:

MPI Reduce applies a reduction operation on all tasks in the group and places the result in the one task with rank
specified by "root”.

C MPI Reduce (&sendbuf,&recvbuf,count,datatype,op,root,comm)
Fortran MPI_REDUCE (sendbuf,recvbuf,count,datatype,op,root,comm,ierr)
Arguments:



Intent Argument Type Description

IN sendbuf choice Address of input data array to send

OUT  recvbuf choice Address of output data array for result at root
IN count integer(>0) Number of array elements to receive

IN datatype handle Type of data to recv

IN op handle Operation to perform

IN root integer Rank (task ID) of root task

IN comm handle Communicator

The argument op accepts a pre-defined handle that specifies the operation to perform on the reduced data, for exam-

ple MPT _MAX, MPT MIN, or MPI_SUM. These handles are defined in the include file mpi.h or mpif .h, and a brief reference

of the most common reduction operations for C and Fortran can be found at https://computing.llnl.gov/tutorials/mpi/.
The result is sent to the task with the rank (task ID) specified by the argument root.

3. Perform a reduction operation on data from all MPI tasks and send result to all tasks:
MPI_Allreduce applies a reduction operation on data from all tasks in the group and places the result in all tasks.

C MPI_Allreduce (&sendbuf,&recvbuf,count,datatype,op,comm)

Fortran MPI_ALLREDUCE (sendbuf,recvbuf,count,datatype,op,comm,ierr)
Arguments:

Intent Argument Type Description

IN sendbuf choice Address of input data array to send

OUT  recvbuf choice Address of output data array for result at root

IN count integer(>0) Number of array elements to receive

IN datatype handle Type of data to recv

IN op handle Operation to perform

IN comm handle Communicator

4. Synchronize all MPI tasks:
MPI Barrier creates a barrier synchronization. Each task, when reaching the MPI_Barrier call, blocks until all
tasks in the group reach the same MPI Barrier call.
C MPI Barrier (comm)
Fortran MPI_BARRIER (comm,ierr)

5. Note that although the barrier call is useful for ensuring a deterministic flow of the parallel code, it also can reduce
the computational efficiency of a code significant by forcing many tasks to sit idle until the last task reaches the
barrier. Careful attention to the details of the MPI communication often eliminates the need for barrier calls,
avoiding unnecessary idling of tasks. The barrier call can be very useful in the debugging process.

6. In addition to the collective calls above, there are also MPI_Scatter and MPI_Gather commands that are useful
for distributing data across tasks and collecting data on a single task. Note that this functionality is different
from braodcast and reduce operations. For example, if you have an array of 16 elements and want to distribute
subsections of the array to four different MPI tasks, MPI_Scatter will take the input array from the root task and
output elements 0-3 on task 0, elements 4-7 on task 1, elements 8-11 on task 2, and elements 12-15 on task 3.
Conversely, MPI_Gather performs the reverse operation, collecting the array subsections from each task and placing
the full array on the root task.

6 Asynchronous Communication
Although the examples in point-to-point communications above has discussed possible asynchronous communication

(dependent upon the implementation of the MPI routines), one can use commands that will guarantee asynchronous
communication.
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Here is an example of the benefit of using asynchronous communications. Consider a single timestep in a simulation
where data needs to be exchanged between two tasks to complete the computation for that timestep. For most of the
computational operations that need to performed by one task, the data is local, and only a small fraction of those
operations are dependent upon the data from the other task. Therefore, each task can send a message with the required
data to the other task (asynchronously), and then move on to perform all of the computational operations that depend
only on local data. It can then poll to see if the data from the other task has been received. If so, it can receive the
message and complete the remaining computational operations for that timestep.

The MPI calls to perform asynchronous communications are MPI_ISEND, MPI_TPROBE, and MPI_IRECV.

7 References for MPI

1. Message Passing Interface (MPI), by Blaise Barney
https://computing.llnl.gov/tutorials/mpi/
An excellent tutorial on the use of MPI, with both Fortran and C example code.

2. Designing and Building Parallel Programs, by Ian Foster
http://www.mcs.anl.gov/ itf/dbpp/

3. Introduction to Parallel Computing textbook. Information on this book (but not the book) can be found at
http://www-users.cs.umn.edu/ karypis/parbook/

4. Message Passing Interface Forum,
http://www.mpi-forum.org/
This site has links to various version of the MPI-1 and MPI-2 Standard documents.
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