The Practice of High Performance Computing

Gregory G. Howes

Department of Physics and Astronomy

University of Iowa

Iowa High Performance Computing Summer School
University of Iowa
Iowa City, Iowa
25-26 May 2010

Thank you

Jerry Prothero
Jeff DeReus
Mary Grabe
Bill Whitson

Information Technology Services Information Technology Services Information Technology Services Purdue University

and

Rosen Center for Advanced Computing, Purdue University Great Lakes Consortium for Petascale Computing

- Remote Computing at National Supercomputing Centers
- Data Management
- Code Management
- Scientific Validation and Benchmarking
- Managing a Computational Research Program
- Applying for a Computing Allocation

National Supercomputing Centers

- Most Supercomputing Centers require running in Batch mode using PBS (Portable Batch System) and a scheduler (like rs-001 and rs-003)
 - Usually your job will wait around in a queue for a while (sometimes days, or even weeks) before running
 - It is important to get used to this method of remote computing
- To best take advantage of the computer, learn the queue rules for that computer:
 - Often, if you modify how you run slightly (i.e., number of processors or total wallclock time), you can achieve much higher throughput of runs
 - Many people pay no attention, and consequently have poor throughput

Queue Rules (Scheduling Policy)

The way you run jobs will differ dramatically depending on the queue rules

#1 Jaguar Cray XT5 ORNL (DOE)

#3 Jaguar Cray XT5 NICS (NSF)

Priority/Limits Based on Job Size

X15 Partition						
Bin	Cores		Maximum Wall-Time	Aging Boost		
	Min	Max	(Hours)	(Days)		
1	120,000		24.0	15		
2	80,004	119,999	24.0	10		
3	40,008	80,003	24.0	5		
4	5,004	40,007	12.0	0		
5	2,004	5,003	6.0	0		
6	1	2,003	2.0	0		

TE Dartitian

Queue	Min Size	Max Size	Max Wall Clock Limit
small	0	512	24:00:00
*longsmall	0	256	60:00:00
medium	513	8192	24:00:00
large	8193	49536	24:00:00
capability	32769	99072	24:00:00

- Remote Computing at National Supercomputing Centers
- Data Management
- Code Management
- Scientific Validation and Benchmarking
- Managing a Computational Research Program
- Applying for a Computing Allocation

Data Management

- Standard Procedure for Supercomputing Centers:
 - HOME directory is for source code and small files
 - SCRATCH directory is where you code will produce output
 - -Usually this directory has faster access to the compute nodes
 - -This directory is not backed up
 - ARCHIVAL STORAGE is where you will store your large data sets
- Transferring Files to/from Offsite:
 - Moving TB of data is a very slow process
 - You can use secure parallel file copy facilities such as bbcp
 - You'll often want to work with support staff to figure out the best way
- Compressed, Portable, Self-Describing data formats are highly recommended
 - NetCDF (Network Common Data Form)
 - HDF (Hierarchical Data Format) also has parallel I/O capability
 - You can link your code using these widely used, standardized libraries

- Remote Computing at National Supercomputing Centers
- Data Management
- Code Management
- Scientific Validation and Benchmarking
- Managing a Computational Research Program
- Applying for a Computing Allocation

Code Management

If you are developing a code that may be widely used, here is some advice:

- Use the standard language, not specialized extensions of a specific compiler
- Comments, Comments!
- Software tools for team development
 - Subversion http://subversion.apache.org/
 - Other older packages: CVS (Concurrent Versions System), RCS, PRCS
- Packaging code so that it is easy to transport and compile
 - tar archives are useful to allow unpack the entire directory structure
 - Makefiles make compiling easy
 - HYDRO gives an example of how to do this
- Porting
 - If many people use your code, porting to different computers is important
- Documentation
 - Also important is to write up clear documentation on how to use code
- Making a Code Publicly Available
 - Sourceforge (http://sourceforge.net/) will host open source software that is to be shared with the community

- Remote Computing at National Supercomputing Centers
- Data Management
- Code Management
- Scientific Validation and Benchmarking
- Managing a Computational Research Program
- Applying for a Computing Allocation

Scientific Validation and Benchmarking

- Scientific codes need to be validated before most will accept the results
 - Publish results of validation tests in peer-reviewed scientific journals (i.e. Journal of Computational Physics, etc.)
 - Often you can find standard test problems in the literature
- When packaging up code for distribution:
 - Include input files for the suite of test runs that you used for validation
 - A benchmark run is helpful
 - The benchmark is a relatively short run that test the full capability of the code and will only yield the correct answer if the code works correctly
 - This is good to verify proper compilation and installation and can be used to compare code performance on different computers

- Remote Computing at National Supercomputing Centers
- Data Management
- Code Management
- Scientific Validation and Benchmarking
- Managing a Computational Research Program
- Applying for a Computing Allocation

Managing a Computational Research Program

- Organization of simulation runs is fundamentally important
 - You need to keep good records of runs performed in the past
 - What were the parameters, where is the data, etc.
 - I keep a notebook with all of my large-scale runs logged into it.
- Think hard about the research questions you want to answer
 - What are the critical runs that will enable you to answer those questions?
- Allocation Management:
 - It is always better to use up your allocation before the end of the award period than to have some left over
 - Often when this happens, they will give you a little more if you need it

- Remote Computing at National Supercomputing Centers
- Data Management
- Code Management
- Scientific Validation and Benchmarking
- Managing a Computational Research Program
- Applying for a Computing Allocation

Applying for a Computing Allocation

- National Supercomputing Resources:
 - NSF TeraGrid

```
https://www.teragrid.org/
```

- DOE Office of Advanced Scientific Computing Research and http://www.er.doe.gov/ascr/

- NASA Advanced Supercomputing Division http://www.nas.nasa.gov/

- NIH Center for Information Technology http://www.cit.nih.gov/science.html

Computing Proposal:

- Describe the scientific problem you want to solve
- Describe your code (algorithm, parallelization strategy, etc.)
- Provide parallel performance results (strong and/or weak scaling)

Applying through NSF TeraGrid

Startup Allocation

- The application procedure for a startup allocation is rather simple
- Cannot apply as a graduate student, but can as a postdoc
 - But you can apply with your advisor as PI and then your advisor can set you up with an account
- Can apply for up to 200,000 SUs (valid for I year)
- Application requires only:
 - Estimate of computing time needed
 - Short abstract of computational project
 - CV for the PI
- Review of your proposal will be returned within I week

Research Allocation

- Requires a 10-15 page proposal (depending on size of request)
- Requires supporting code performance and scaling information
- Reviewed quarterly with multiple reviewers

Local Resources at the University of Iowa

Research Services of ITS

- Supports computational research at the University -Jerry Protheroe, Manager, jerry-protheroe@uiowa.edu
- Local Clusters open to University researchers:
 - -rs-001.its.uiowa.edu (32 bit, 44 cores)
 - rs-003.its.uiowa.edu (64 bit, 64 cores)
 - Jeff DeReus administers these clusters, jeffrey-dereus@uiowa.edu
 - Not much documentation, but contact Jeff for more information
- New Shared Computer Cluster (about 1000 cores) is coming this summer
 - Although largely owned by a group of 12 researchers, it is managed by Research Services and university researchers will have limited access