
Project: Performance on GPU’s
• Log in in one of the Computer Science Department computers with GPUs

(follow handout instructions) and determine the properties of the GPU in
the computer you access.

• Consider the dot product between two vectors using the CUDA code for the
kernel presented in the notes.

• Write a main code for multiplying two vectors. This can been accomplished
by using the global void dot kernel in the notes

1. Define N= 33*1024, threadsPerBlock=256, blocksPerGrid= min(32,
(N+threadsPerBlock-1)/threadsPerBlock)

2. define the kernel

3. start the main code:

(a) Define a, b, c , partial c (c is a scalar)
(b) Define dev a, dev b, dev partial c‘
(c) allocate memory on the CPU side for the 3 vectors in (a)
(d) use cudaMalloc for allocating memory on the device for the three

vectors in b
(e) Initialize vectors a and b
(f) use cudaMemcpy for copying a, b to dev a and dev b respectively.
(g) Launch the Kernel
(h) use cudaMemcpy to copy dev partial c into partial c
(i) add the values of vector partial c into c and print its value.

• To do later: compare the performances of the CPU code with the CUDA
code. The comparisons should be in terms of speed up and efficiency. To
measure the performance of GPU codes we use a CUDA event API such as
shown below:

cudaEvent t start, stop;

cudaEventCreate(&start);

cudaEventCreate(&stop);

cudaEventRecord(start, 0);

//

1

// ... do some work on GPU ...

//

cudaEventRecord(stop, 0);

cudaEventSynchronize(stop);

float elapsedTime;

cudaEventElapsedTime(&elapsedTime, start, stop);

printf("elapsed time = %g msec\n", elapsedTime);

After using the timers, you can destroy them:

cudaEventDestroy(start);

cudaEventDestroy(stop);

2

