

IHPC 2011, June 1-3rd 2011

Parallel Programming with GPUs

Professor S. Oliveira, University of Iowa. Computer
Science and Mathematics Departments and AMCS
program member.

SIMD

MIMD Shared Memory
 Virtual view - single

globally addressable
memory

 May be a single memory
or several memories

 Access time can vary
(NUMA) based on how
close a memory is to the
referencing processor

Virtual School of Computational
Science and Engineering

Bus-based shared-memory MIMD architecture

Shared-memory MIMD architecture

MIMD Distributed Memory

 Each processor has its own private memory

 Data must be explicitly sent from one processor to
another over the network to share data

Virtual School of Computational
Science and Engineering

Symmetric Multi-Processing
 Shared memory within a node

 Multiple sockets
 Multicore chip in each socket

 Distributed memory across nodes

Virtual School of Computational
Science and Engineering

 Multicore Processor

 Tools for parallel Programming
 In 1997 MPI (message Passing Interface) for

distributed memory systems. In 2008 OpenMPI
(open source version) was made available.

 Pthreads or OpenMP (1997) for shared memory
programming on computers and processors. OpenMP
application programming interface (API) was
developed by the OpenMP ARB (arch. Review board)

 CUDA (2003) for host-device architectures GPU’s and
also recently Intel’s OpenCL. Graphics GPU’s used
OpenGL which is good for graphics application but
very difficult for numerical software development.

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE 408, University of Illinois, Urbana-Champaign 8

Massively Parallel Processor with GPUs
 A quiet revolution and potential build-up

 Calculation: 367 GFLOPS vs. 32 GFLOPS
 Memory Bandwidth: 86.4 GB/s vs. 8.4 GB/s
 Until 2007, programmed through graphics API

 GPU in every PC and workstation – massive volume and potential

impact

© David Kirk/NVIDIA and Wen-
mei W. Hwu, 2007-2010
ECE 408, University of Illinois,
Urbana-Champaign 9

DRAM

Cache

ALU

Control

ALU

ALU

ALU

DRAM

CPU GPU

© David Kirk/NVIDIA and Wen-
mei W. Hwu, 2007-2010
ECE 408, University of Illinois,
Urbana-Champaign 10

Load/store

Global Memory

Thread Execution Manager

Input Assembler

Host

Texture Texture Texture Texture Texture Texture Texture Texture Texture

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Load/store Load/store Load/store Load/store Load/store

Architecture of a CUDA GPU(2007 on)

11

Arrays of Parallel Threads

• A CUDA kernel is executed by an array of
threads
– All threads run the same code (SPMD)‏

– Each thread has an ID that it uses to compute memory addresses and make
control decisions

7 6 5 4 3 2 1 0

…

float x = input[threadID];

float y = func(x);

output[threadID] = y;

…

threadID

© 2009 David Kirk/NVIDIA and Wen-mei W. Hwu
Recorded for the Virtual School of Computational Science and Engineering

…

float x =

input[threadID];

float y = func(x);

output[threadID] = y;

…

threadID

Thread Block 0

…
…

float x =

input[threadID];

float y = func(x);

output[threadID] = y;

…

Thread Block 0

…

float x =

input[threadID];

float y = func(x);

output[threadID] = y;

…

Thread Block N - 1

Thread Blocks: Scalable
Cooperation
 Divide monolithic thread array into multiple blocks

 Threads within a block cooperate via shared memory,
atomic operations and barrier synchronization

 Threads in different blocks cannot cooperate

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

© 2009 David Kirk/NVIDIA and Wen-mei W. Hwu
Recorded for the Virtual School of Computational Science and Engineering

Block IDs and Thread IDs

• Each thread uses IDs to decide

what data to work on

– Block ID: 1D or 2D

– Thread ID: 1D, 2D, or 3D

• Simplifies memory
addressing when processing
multidimensional data

– Image processing

– Solving PDEs on volumes

– …

© 2009 David Kirk/NVIDIA and Wen-mei W. Hwu
Recorded for the Virtual School of Computational Science and Engineering

CUDA Memory Model Overview

 Global memory

 Main means of
communicating R/W
Data between host and
device

 Contents visible to all
threads

 Long latency access

 We will focus on global
memory for now

Grid

Global Memory

Block (0, 0)‏

Shared Memory

Thread (0, 0)‏

Registers

Thread (1, 0)‏

Registers

Block (1, 0)‏

Shared Memory

Thread (0, 0)‏

Registers

Thread (1, 0)‏

Registers

Host

© 2009 David Kirk/NVIDIA and Wen-mei W. Hwu
Recorded for the Virtual School of Computational Science and Engineering

CUDA Device Memory
• cudaMalloc()‏

–Allocates object in the
device Global Memory

–Requires two parameters

• Address of a pointer to the
allocated object

• Size of of allocated object

• cudaFree()‏

–Frees object fromdevice
Global Memory

Grid

Global
Memory

Block (0, 0)‏

Shared Memory

Thread (0, 0)‏

Registers

Thread (1, 0)‏

Registers

Block (1, 0)‏

Shared Memory

Thread (0, 0)‏

Registers

Thread (1, 0)‏

Registers

Host

© 2009 David Kirk/NVIDIA and Wen-mei W. Hwu
Recorded for the Virtual School of Computational Science and Engineering

CUDA Device Memory Allocation (cont.)‏
Code example:

Allocate a 64 * 64 single precision float array

Attach the allocated storage to Md

 “d” is often used to indicate a device data
structure

TILE_WIDTH = 64;
Float* Md;
int size = TILE_WIDTH * TILE_WIDTH * sizeof(float);

cudaMalloc((void**)&Md, size);

cudaFree(Md);

© 2009 David Kirk/NVIDIA and Wen-mei W. Hwu
Recorded for the Virtual School of Computational Science and Engineering

CUDA Host-Device Data Transfer
 cudaMemcpy() - synchronous

 memory data transfer

 Requires four parameters

 Pointer to destination

 Pointer to source

 Number of bytes copied

 Type of transfer

 Host to Host

 Host to Device

 Device to Host

 Device to Device

 Asynchronous transfer

 cudaMemcpyAsync()

Grid

Global
Memory

Block (0, 0)‏

Shared Memory

Thread (0, 0)‏

Registers

Thread (1, 0)‏

Registers

Block (1, 0)‏

Shared Memory

Thread (0, 0)‏

Registers

Thread (1, 0)‏

Registers

Host

© 2009 David Kirk/NVIDIA and Wen-mei W. Hwu
Recorded for the Virtual School of Computational Science and Engineering

CUDA Host-Device Data Transfer

 Code example:

 Transfer a 64 * 64 single precision float array

 M is in host memory and Md is in device memory

 cudaMemcpyHostToDevice and
cudaMemcpyDeviceToHost are symbolic constants

cudaMemcpy(Md, M, size, cudaMemcpyHostToDevice);

cudaMemcpy(M, Md, size, cudaMemcpyDeviceToHost);

© 2009 David Kirk/NVIDIA and Wen-mei W. Hwu
Recorded for the Virtual School of Computational Science and Engineering

 Declspecs

 global, device, shared,
constant

 Keywords

 threadIdx, blockIdx

 Intrinsics

 __syncthreads

 Runtime API

 Memory, symbol,
execution
management

 Function launch

__device__ float filter[N];

__global__ void convolve (float *image) {

 __shared__ float region[M];

 ...

 region[threadIdx] = image[i];

 __syncthreads()

 ...

 image[j] = result;

}

// Allocate GPU memory

cudaMalloc((void **)&myimage, bytes)‏;

// 100 blocks, 10 threads per block

convolve<<<100, 10>>> (myimage);

© 2009 David Kirk/NVIDIA and Wen-mei W. Hwu
Recorded for the Virtual School of Computational Science and Engineering

 __device__ functions cannot have their
address taken

For functions executed on the device:

No recursion

No static variable declarations inside the
function

No variable number of arguments

© 2009 David Kirk/NVIDIA and Wen-mei W. Hwu
Recorded for the Virtual School of Computational Science and Engineering

CUDA Function Declarations

host host __host__ float HostFunc()‏

host device __global__ void KernelFunc()‏

device device __device__ float DeviceFunc()‏

Only callable
from the:

Executed
on the:

• __global__ defines a kernel function

Must return void

• __device__ and __host__ can be used together

© 2009 David Kirk/NVIDIA and Wen-mei W. Hwu
Recorded for the Virtual School of Computational Science and Engineering

Calling a Kernel Function – Thread Creation
 A kernel function must be called with an execution

configuration:

__global__ void KernelFunc(...);

dim3 DimGrid(100, 50); // 5000 thread blocks

dim3 DimBlock(4, 8, 8); // 256 threads per block

size_t SharedMemBytes = 64; // 64 bytes of shared

memory

KernelFunc

<<< DimGrid, DimBlock, SharedMemBytes >>>(...);

 Any call to a kernel function is asynchronous – host
can continue processing after the kernel call

© 2009 David Kirk/NVIDIA and Wen-mei W. Hwu
Recorded for the Virtual School of Computational Science and Engineering

Choosing the GPU

int main(void) {

 cudaDeviceProp prop;

 int dev;

 cudaGetDevice(&dev);

 printf("ID of current CUDA device: %d\n", dev);

 memset(&prop, 0, sizeof(cudaDeviceProp));

 prop.major = 1;

 prop.minor = 3;

 cudaChooseDevice(&dev, &prop);

 printf("ID of CUDA device closest to revision 1.3: %d\n", dev);

 cudaSetDevice(dev);

}

Adding two vectors on GPU
// Example 1: Uses 1 thread per block

#define N 100 // size of vectors

__global__ void add(int *a, int *b, int *c) {

 int tid = blockIdx.x; // tid = block index for 1 thread/block (N blocks)

 int tid = threadIdx.x; // tid = thread index for 1 block kernel launch

 if (tid < N)

 c[tid] = a[tid] + b[tid];

}

int main(void) {

 int a[N], b[N], c[N];

 int *dev_a, *dev_b, *dev_c;

 // allocate the memory on the GPU

 cudaMalloc((void**)&dev_a, N * sizeof(int));

 cudaMalloc((void**)&dev_b, N * sizeof(int));

 cudaMalloc((void**)&dev_c, N * sizeof(int));

// copy the arrays 'a' and 'b' to the GPU

 cudaMemcpy(dev_a, a, N * sizeof(int), cudaMemcpyHostToDevice);

 cudaMemcpy(dev_b, b, N * sizeof(int), cudaMemcpyHostToDevice);

 add<<<N,1>>>(dev_a, dev_b, dev_c); // kernel launch: 1 thread/block, N blocks

 add<<<1,N>>>(dev_a, dev_b, dev_c); // kernel launch: N threads/block, 1 block

 // copy the array 'c' back from the GPU to the CPU

 cudaMemcpy(c, dev_c, N * sizeof(int), cudaMemcpyDeviceToHost);

 // and display the results…

 // free the memory allocated on the GPU

 cudaFree(dev_a);

 cudaFree(dev_b);

 cudaFree(dev_c);

 return 0;

}

General case: B blocks, T threads/block
#define N (32 * 1024)

#define B 128

#define T 128

__global__ void add(int *a, int *b, int *c) {

 int tid = threadIdx.x + blockIdx.x*blockDim.x;

 while (tid < N) {

 c[tid] = a[tid] + b[tid];

 tid += blockDim.x*gridDim.x;

 }

}

Max # blocks = 65,535

Max # threads/block usually = 512

Choosing 128 threads/block: B = (N+127)/128

Using the kernel
int main(void) {

 int a[N], b[N], c[N];

 int *dev_a, *dev_b, *dev_c;

 // allocate memory on device

 cudaMalloc((void**)&dev_a, N * sizeof(int));

 cudaMalloc((void**)&dev_b, N * sizeof(int));

 cudaMalloc((void**)&dev_c, N * sizeof(int));

 // initialize vectors a & b…

 // copy a & b to device (dev_a & dev_b)

 cudaMemcpy(dev_a, a, N * sizeof(int), cudaMemcpyHostToDevice);

 cudaMemcpy(dev_b, b, N * sizeof(int), cudaMemcpyHostToDevice);

 add<<<B,T>>>(dev_a, dev_b, dev_c); // kernel launch: T threads/block, B blocks

 // copy from device and use results

 cudaMemcpy(c, dev_c, N * sizeof(int), cudaMemcpyDeviceToHost);

}

Inner products
__global__ void dot(float *a, float *b, float *c) {

 __shared__ float cache[threadsPerBlock];

 int tid = threadIdx.x + blockIdx.x*blockDim.x;

 int cacheIndex = threadIdx.x;

 float temp = 0;

 while (tid < N) {

 temp += a[tid]*b[tid];

 tid += blockDim.x * gridDim.x;

 }

 cache[cacheIndex] = temp;

 __syncthreads();

 // parallel reduction: threadsPerblock must be a power of two!

 int i = blockDim.x / 2;

 while (i != 0) {

 if (cacheIndex < i)

 cache[cacheIndex] += cache[cacheIndex + i];

 __syncthreads();

 i /= 2;

 }

 // cache[0] is now the sum of a[i]*b[i] for all i for this thread block

 if (cacheIndex == 0)

 c[blockIdx.x] = cache[0];

}

More on this…
22C:177 High performance and Parallel Computing

(cross-listed with 22M:178) Fall 2011

Covers:

• MPI

• OpenMP

• CUDA (OpenCL?)

See http://www.cs.uiowa.edu/~oliveira/C177-F11/C177-
F11-description.html

Dr. Oliveira Current Research
• Granular flow simulation on GPU’s

simulating interactions between rocks or balls as
they slide and roll; highly dynamic sparse interact’ns

• Clustering for large databases: algorithms for
grouping PPN functional modules, grouping genes
activated simultaneously in CNS of rats

• Issues about GPUs
Redesigning algorithms; ML algorithms

• Other applications using MPI and OpenMP
Applications involving PDEs, ODEs, linear and no
linear solvers, preconditioners (recursive algorithms)

Some references……
• Using OpenMP, Chapman, Jost and van der Pas, MIT Press

(2008)

• Art of Concurrency, Clay Breshears (2009)

• CUDA by Example: An Introduction to General-Purpose GPU
Programming, Sanders & Kandrot (2010)

• Programming Massively Parallel Computers, Kirk & Hwu,
Morgan Kauffman (2010)

• Writing Scientific Software, Oliveira & Stewart, Cambridge
University Press (2006)

• Parallel Programming with MPI, Pacheco, Morgan Kauffman
(1996)

