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SIMD  



MIMD Shared Memory 
 Virtual view - single 

globally addressable 
memory 

 May be a single memory 
or several memories  

 Access time can vary 
(NUMA) based on how 
close a memory is to the 
referencing processor 

Virtual School of Computational 
Science and Engineering 

Bus-based shared-memory MIMD architecture  

Shared-memory MIMD architecture 



MIMD Distributed Memory  

 Each processor has its own private memory 

 Data must be explicitly sent from one processor to 
another over the network to share data 

Virtual School of Computational 
Science and Engineering 



Symmetric Multi-Processing  
 Shared memory within a node 

 Multiple sockets 
 Multicore chip in each socket 

 Distributed memory across nodes 

Virtual School of Computational 
Science and Engineering 



 
 
 
 
    Multicore Processor 



 Tools for parallel Programming 
  In 1997 MPI (message Passing Interface ) for 

distributed memory systems. In 2008 OpenMPI  
(open source version) was made available. 

 Pthreads or OpenMP (1997) for shared memory 
programming on computers and processors. OpenMP 
application programming interface (API) was 
developed by  the OpenMP ARB (arch. Review board) 

 CUDA (2003) for host-device architectures  GPU’s and 
also recently Intel’s OpenCL. Graphics GPU’s used 
OpenGL which is good for graphics application but 
very difficult for numerical software development. 
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Massively Parallel Processor with GPUs 
 A quiet revolution and potential build-up 

 Calculation: 367 GFLOPS vs. 32 GFLOPS 
 Memory Bandwidth: 86.4 GB/s vs. 8.4 GB/s 
 Until 2007, programmed through graphics API 

 
 
 

 
 
 
 
 
 

 
 
 
 
 
 GPU in every PC and workstation – massive volume and potential 

impact 
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CPU GPU 
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Load/store 

Global Memory 

Thread Execution Manager 
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Host 
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Parallel Data 
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Parallel Data 
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Architecture of a CUDA GPU( 2007  on) 



11 

Arrays of Parallel Threads 

• A CUDA kernel is executed by an array of 
threads 
– All threads run the same code (SPMD)‏ 

– Each thread has an ID that it uses to compute memory addresses and make 
control decisions 

 

7 6 5 4 3 2 1 0 

… 

float x = input[threadID]; 

float y = func(x); 

output[threadID] = y; 

… 

threadID 
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… 

float x = 

input[threadID]; 

float y = func(x); 

output[threadID] = y; 

… 

threadID 

Thread Block 0 

… 
… 

float x = 

input[threadID]; 

float y = func(x); 

output[threadID] = y; 

… 

Thread Block 0 

… 

float x = 

input[threadID]; 

float y = func(x); 

output[threadID] = y; 

… 

Thread Block N - 1 

Thread Blocks: Scalable 
Cooperation 
 Divide monolithic thread array into multiple blocks 

 Threads within a block cooperate via shared memory, 
atomic operations and barrier synchronization 

 Threads in different blocks cannot cooperate 

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 
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Block IDs and Thread IDs 
 
• Each thread uses IDs to decide 

what data to work on 

– Block ID: 1D or 2D 

– Thread ID: 1D, 2D, or 3D  

 

• Simplifies memory 
addressing when processing 
multidimensional data 

– Image processing 

– Solving PDEs on volumes 

– … 
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CUDA Memory Model Overview 

 Global memory 

 Main means of 
communicating R/W 
Data between host and 
device 

 Contents visible to all 
threads 

 Long latency access 

 We will focus on global 
memory for now 

Grid 

Global Memory 

Block (0, 0)‏ 

Shared Memory 

Thread (0, 0)‏ 

Registers 

Thread (1, 0)‏ 

Registers 

Block (1, 0)‏ 

Shared Memory 

Thread (0, 0)‏ 

Registers 

Thread (1, 0)‏ 

Registers 

Host 
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CUDA Device Memory  
• cudaMalloc()‏ 

–Allocates object in the 
device Global Memory 

–Requires two parameters 

• Address of a pointer to the 
allocated object 

• Size of of allocated object 

• cudaFree()‏ 

–Frees object fromdevice 
Global Memory 

 

Grid 

Global 
Memory 

Block (0, 0)‏ 

Shared Memory 

Thread (0, 0)‏ 

Registers 

Thread (1, 0)‏ 

Registers 

Block (1, 0)‏ 

Shared Memory 

Thread (0, 0)‏ 

Registers 

Thread (1, 0)‏ 

Registers 

Host 
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CUDA Device Memory Allocation (cont.)‏ 
Code example:  

Allocate a  64 * 64 single precision float array 

Attach the allocated storage to Md 

 “d” is often used to indicate a device data 
structure 

TILE_WIDTH = 64; 
Float* Md; 
int size = TILE_WIDTH * TILE_WIDTH * sizeof(float); 

cudaMalloc((void**)&Md, size); 

cudaFree(Md); 
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CUDA Host-Device Data Transfer 
 cudaMemcpy() - synchronous 

 memory data transfer 

 Requires four parameters 

 Pointer to destination  

 Pointer to source 

 Number of bytes copied 

 Type of transfer  

 Host to Host 

 Host to Device 

 Device to Host 

 Device to Device 

 Asynchronous transfer 

 cudaMemcpyAsync() 

Grid 

Global 
Memory 

Block (0, 0)‏ 

Shared Memory 

Thread (0, 0)‏ 

Registers 

Thread (1, 0)‏ 

Registers 

Block (1, 0)‏ 

Shared Memory 

Thread (0, 0)‏ 

Registers 

Thread (1, 0)‏ 

Registers 

Host 
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CUDA Host-Device Data Transfer 

 Code example:  

 Transfer a  64 * 64 single precision float array 

 M is in host memory and Md is in device memory 

 cudaMemcpyHostToDevice and 
cudaMemcpyDeviceToHost are symbolic constants 

 
cudaMemcpy(Md, M, size, cudaMemcpyHostToDevice); 
 
cudaMemcpy(M, Md, size, cudaMemcpyDeviceToHost); 
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 Declspecs 

 global, device, shared, 
constant 

 

 Keywords 

 threadIdx, blockIdx 

 Intrinsics 

 __syncthreads 

 

 Runtime API 

 Memory, symbol, 
execution 
management 

 

 Function launch 

__device__ float filter[N];  

 

__global__ void convolve (float *image)  { 

 

  __shared__ float region[M]; 

  ...  

 

  region[threadIdx] = image[i];  

 

  __syncthreads()   

  ...  

 

  image[j] = result; 

} 

 

// Allocate GPU memory 

cudaMalloc((void **)&myimage, bytes)‏; 
 

 

 

 

// 100 blocks, 10 threads per block 

convolve<<<100, 10>>> (myimage); 
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   __device__ functions cannot have their 
address taken 

For functions executed on the device: 

No recursion 

No static variable declarations inside the 
function 

No variable number of arguments 
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CUDA Function Declarations 

host host __host__   float HostFunc()‏ 

host device __global__ void  KernelFunc()‏ 

device device __device__ float DeviceFunc()‏ 

Only callable 
from the: 

Executed 
on the: 

•  __global__ defines a kernel function 

Must return void 

•  __device__ and __host__ can be used together 
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Calling a Kernel Function – Thread Creation 
 A kernel function must be called with an execution 

configuration: 
 

__global__ void KernelFunc(...); 

dim3   DimGrid(100, 50);    // 5000 thread blocks  

dim3   DimBlock(4, 8, 8);   // 256 threads per block  

size_t SharedMemBytes = 64; // 64 bytes of shared 

memory 

KernelFunc 

<<< DimGrid, DimBlock, SharedMemBytes >>>(...); 

 Any call to a kernel function is asynchronous – host 
can continue processing after the kernel call 
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Choosing the GPU 

int main( void ) { 

    cudaDeviceProp  prop; 

    int dev; 

 

    cudaGetDevice( &dev ); 

    printf( "ID of current CUDA device:  %d\n", dev ); 

 

    memset( &prop, 0, sizeof( cudaDeviceProp ) ); 

    prop.major = 1; 

    prop.minor = 3; 

    cudaChooseDevice( &dev, &prop ); 

    printf( "ID of CUDA device closest to revision 1.3:  %d\n", dev ); 

 

    cudaSetDevice( dev ); 

} 



Adding two vectors on GPU 
// Example 1: Uses 1 thread per block 

#define N   100  // size of vectors 

 

__global__ void add( int *a, int *b, int *c ) { 

    int tid = blockIdx.x;    // tid = block index for 1 thread/block (N blocks) 

    int tid = threadIdx.x;  // tid = thread index for 1 block kernel launch 

    if (tid < N) 

        c[tid] = a[tid] + b[tid]; 

} 

 

int main( void ) { 

    int a[N], b[N], c[N]; 

    int *dev_a, *dev_b, *dev_c; 

 

    // allocate the memory on the GPU 

    cudaMalloc( (void**)&dev_a, N * sizeof(int) ); 

    cudaMalloc( (void**)&dev_b, N * sizeof(int) ); 

    cudaMalloc( (void**)&dev_c, N * sizeof(int) ); 

 

     



// copy the arrays 'a' and 'b' to the GPU 

    cudaMemcpy( dev_a, a, N * sizeof(int), cudaMemcpyHostToDevice ); 

    cudaMemcpy( dev_b, b, N * sizeof(int), cudaMemcpyHostToDevice ); 

 

    add<<<N,1>>>( dev_a, dev_b, dev_c );   // kernel launch: 1 thread/block, N blocks 

    add<<<1,N>>>( dev_a, dev_b, dev_c);    // kernel launch: N threads/block, 1 block 

 

    // copy the array 'c' back from the GPU to the CPU 

    cudaMemcpy( c, dev_c, N * sizeof(int), cudaMemcpyDeviceToHost ); 

 

    // and display the results… 

 

    // free the memory allocated on the GPU 

    cudaFree( dev_a ); 

    cudaFree( dev_b ); 

    cudaFree( dev_c ); 

 

    return 0; 

} 



General case: B blocks, T threads/block 
#define N  (32 * 1024) 

#define B 128 

#define T 128 

 

__global__ void add( int *a, int *b, int *c ) { 

    int tid = threadIdx.x + blockIdx.x*blockDim.x; 

    while (tid < N) { 

        c[tid] = a[tid] + b[tid]; 

        tid += blockDim.x*gridDim.x; 

    } 

} 

 

Max # blocks = 65,535  

Max # threads/block usually = 512 

Choosing 128 threads/block: B = (N+127)/128 



Using the kernel 
int main( void ) { 

    int a[N], b[N], c[N]; 

    int *dev_a, *dev_b, *dev_c; 

    // allocate memory on device 

    cudaMalloc( (void**)&dev_a, N * sizeof(int) ); 

    cudaMalloc( (void**)&dev_b, N * sizeof(int) ); 

    cudaMalloc( (void**)&dev_c, N * sizeof(int) ); 

 

    // initialize vectors a & b… 

    // copy a & b to device (dev_a & dev_b) 

    cudaMemcpy( dev_a, a, N * sizeof(int), cudaMemcpyHostToDevice ); 

    cudaMemcpy( dev_b, b, N * sizeof(int), cudaMemcpyHostToDevice ); 

 

     add<<<B,T>>>( dev_a, dev_b, dev_c );  // kernel launch: T threads/block, B blocks 

 

    // copy from device and use results 

   cudaMemcpy( c, dev_c, N * sizeof(int), cudaMemcpyDeviceToHost); 

} 

 



Inner products 
__global__ void dot(float *a, float *b, float *c) { 

    __shared__ float cache[threadsPerBlock]; 

    int tid = threadIdx.x + blockIdx.x*blockDim.x; 

    int cacheIndex = threadIdx.x; 

 

    float temp = 0; 

    while ( tid < N )  { 

        temp += a[tid]*b[tid]; 

        tid     += blockDim.x * gridDim.x; 

    } 

    cache[cacheIndex] = temp; 

 

    __syncthreads(); 

 



     // parallel reduction: threadsPerblock must be a power of two! 

    int i = blockDim.x / 2; 

    while ( i != 0 )  { 

        if ( cacheIndex < i ) 

            cache[cacheIndex] += cache[cacheIndex + i]; 

        __syncthreads(); 

        i /= 2; 

    } 

    // cache[0]  is now the sum of a[i]*b[i] for all i for this thread block 

 

    if ( cacheIndex == 0 ) 

        c[blockIdx.x] = cache[0]; 

} 

 



More on this… 
22C:177  High performance and Parallel Computing 

(cross-listed with 22M:178) Fall 2011 

 

Covers:  

• MPI 

• OpenMP 

• CUDA (OpenCL?) 

 

See http://www.cs.uiowa.edu/~oliveira/C177-F11/C177-
F11-description.html 



Dr. Oliveira Current Research  
• Granular flow simulation on GPU’s 

simulating interactions between rocks or balls as 
they slide and roll; highly dynamic sparse interact’ns 

• Clustering for large databases: algorithms for 
grouping PPN functional modules, grouping genes 
activated simultaneously  in CNS of rats 

• Issues about GPUs 
Redesigning algorithms; ML algorithms 

• Other applications using MPI and OpenMP 
Applications  involving PDEs, ODEs, linear and no 
linear solvers, preconditioners (recursive algorithms) 



Some references…… 
• Using OpenMP, Chapman, Jost and van der Pas, MIT Press 

(2008) 

• Art of Concurrency, Clay Breshears (2009) 

•  CUDA by Example: An Introduction to General-Purpose GPU 
Programming, Sanders & Kandrot (2010) 

•  Programming Massively Parallel Computers, Kirk & Hwu, 
Morgan Kauffman (2010) 

•  Writing Scientific Software, Oliveira & Stewart, Cambridge 
University Press (2006) 

•  Parallel Programming with MPI, Pacheco,  Morgan Kauffman 
(1996) 


