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Introduction

Why Use Parallel Computing?

• Single processor speeds are reaching their ultimate limits

• Multi-core processors and multiple processors are the most
promising paths to performance improvements 

Definition of a parallel computer:

A set of independent processors that can work cooperatively
to solve a problem.

Disclaimer: High Performance Computing (HPC) is valuable to 
a variety of applications over a very wide range of fields.  
Many of my examples will come from the world of physics, 
but I will try to present them in a general sense



Introduction

The March towards Petascale Computing
• Computing performance is defined in terms of 

FLoating-point OPerations per Second (FLOPS)

1 GF = 109 FLOPS
1 TF = 1012 FLOPS
1 PF = 1015 FLOPS

GigaFLOP

TeraFLOP

PetaFLOP

• Petascale computing also refers to extremely large data sets

PetaByte 1 PB = 1015 Bytes



Introduction

Performance improves by factor of ~10 every 4 years!
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Thinking in Parallel

DEFINITION Concurrency: The property of a parallel algorithm 
that a number of operations can be performed by separate 
processors at the same time. 

Concurrency is the key concept in the design of parallel algorithms: 
• Requires a different way of looking at the strategy to solve a 

problem
• May require a very different approach from a serial program to 

achieve high efficiency
 



Thinking in Parallel

DEFINITION Scalability: The ability of a parallel algorithm to 
demonstrate a speedup proportional to the number of processors 
used. 

DEFINITION Speedup: The ratio of the serial wallclock time to the 
parallel wallclock time required for execution.

S =
wallclock timeserial

wallclock timeparallel

• An algorithm that has good scalability will take half the time with 
double the number of processors

• Parallel Overhead, the time required to coordinate parallel tasks 
and communicate information between processors, degrades 
scalability.



f(x)

x

Numerical Integration: Monte Carlo Method
• Choose     points within the box of total area 
• Determine the number of points     falling below 
• Integral value is I =

n

N
A

N
n

A
f(x)

How do we do this computation in parallel?

Example: Numerical Integration



Example: Numerical Integration

1) Give different ranges of
to different processors and 
sum results

x 2) Give         points to each
processor and sum results

N/4

Strategies for Parallel Computation of the Numerical Integral:



Example: Fibonacci Series

The Fibonacci series is defined by:
                                                 with f(k + 2) = f(k + 1) + f(k) f(1) = f(2) = 1

The Fibonacci series is therefore (1, 1, 2, 3, 5, 8, 13, 21, . . .)

The Fibonacci series can be calculated using the loop
f(1)=1
f(2)=1
do i=3, N
     f(i)=f(i-1)+f(i-2)
enddo

This calculation cannot be made parallel.
- We cannot calculate               until we have              and 

- This is an example of data dependence that results in a non-
parallelizable problem

How do we do this computation in parallel?

f(k + 2) f(k + 1) f(k)



Example: Protein Folding

• Protein folding problems involve a large number of independent 
calculations that do not depend on data from other calculations

• Concurrent calculations with no dependence on the data from 
other calculations are termed Embarrassingly Parallel 

• These embarrassingly parallel problems are ideal for solution by 
HPC methods, and can realize nearly ideal concurrency and 
scalability



Unique Problems Require Unique Solutions

• Each scientific or mathematical problem will, in general, require a 
unique strategy for efficient parallelization

Thus, each of you may require a different parallel implementation 
of your numerical problem to achieve good performance.

• Flexibility in the way a problem is solved is beneficial to finding a 
parallel algorithm that yields a good parallel scaling.

• Often, one has to employ substantial creativity in the way a 
parallel algorithm is implemented to achieve good scalability.



Understand the Dependencies

• One must understand all aspects of the problem to be solved, in 
particular the possible dependencies of the data.

Example: Pressure Forces (Local) vs. Gravitational Forces (Global)

• It is important to understand fully all parts of a serial code that 
you wish to parallelize.



Rule of  Thumb

Computation is FAST

Communication is SLOW

Input/Output (I/O) is INCREDIBLY SLOW

When designing a parallel algorithm, always remember:



Other Issues

In addition to concurrency and scalability, there are a number of 
other important factors in the design of parallel algorithms:

Locality

Granularity

Modularity

Flexibility

Load balancing

We’ll learn about these as we discuss the design of parallel 
algorithms.
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The Von Neumann Architecture

Virtually all computers follow this basic design

• Memory stores both instructions and data

• Control unit fetches instructions from memory, 
decodes instructions, and then sequentially performs 
operations to perform programmed task

• Arithmetic Unit performs mathematical operations

• Input/Output is interface to the user



Flynn’s Taxonomy

• SISD:  This is a standard serial computer: one set of instructions, one data stream

• SIMD:  All units execute same instructions on different data streams (vector)
- Useful for specialized problems, such as graphics/image processing
- Old Vector Supercomputers worked this way, also moderns GPUs

• MISD: Single data stream operated on by different sets of instructions, not 
generally used for parallel computers 

• MIMD: Most common parallel computer, each processor can execute different 
instructions on different data streams
-Often constructed of many SIMD subcomponents



Parallel Computer Memory Architectures

Shared Memory

Hybrid Distributed Shared Memory

Distributed Memory



Relation to Parallel Programming Models

• OpenMP:  Multi-threaded calculations occur within shared-memory components 
of systems, with different threads working on the same data.

• MPI:  Based on a distributed-memory model, data associated with another 
processor must be communicated over the network connection.

• GPUs: Graphics Processing Units (GPUs) incorporate many (hundreds) of 
computing cores with single Control Unit, so this is a shared-memory model.

• Processors vs. Cores: Most common parallel computer, each processor can 
execute different instructions on different data streams

-Often constructed of many SIMD subcomponents
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Parallel Programming Models

• Embarrassingly Parallel

• Master/Slave

• Threads

• Message Passing

• Single Program-Multiple Data (SPMD) 
vs. Multiple Program-Multiple Data (MPMD)

• Other Parallel Implementations: GPUs and CUDA



Embarrassingly Parallel

• Refers to an approach that involves solving many similar but independent 
tasks simultaneously

• Little to no coordination (and thus no communication) between tasks

• Each task can be a simple serial program

• This is the “easiest” type of problem to implement in a parallel manner.  
Essentially requires automatically coordinating many independent calculations 
and possibly collating the results.

• Examples: 
- Computer Graphics and Image Processing
- Protein Folding Calculations in Biology
- Geographic Land Management Simulations in Geography
- Data Mining in numerous fields
- Event simulation and reconstruction in Particle Physics



Master/Slave

• Master Task assigns jobs to pool of slave
tasks

• Each slave task performs its job 
independently

• When completed, each slave
returns its results to the 
master, awaiting a new job

• Emabarrasingly parallel problems are often
well suited to this parallel programming model

Master

Slave
Slave

Slave

Slave
Slave

Slave



Multi-Threading

• Threading involves a single process that can have multiple, concurrent 
execution paths

• Works in a shared memory architecture

• Most common implementation is OpenMP (Open Multi-Processing)

serial code
.
.
.

!$OMP PARALLEL DO
do i = 1,N
A(i)=B(i)+C(i)

enddo
!$OMP END PARALLEL DO

.

.

.
serial code

• Relatively easy to make inner loops of a 
serial code parallel and achieve substantial 
speedups with modern multi-core processors



Message Passing
• The most widely used model for parallel programming

• Message Passing Interface (MPI) is the most widely used implementation

• A set of tasks have their own local memory during the computation 
(distributed-memory, but can also be used on shared-memory machines)

• Tasks exchange data by sending 
and receiving messages, requires
programmer to coordinate explicitly
all sends and receives.

• One aim of this summer school will focus 
on the use of MPI to write parallel programs.



SPMD vs. MPMD
Single Program-Multiple Data (SPMD)

•  A single program executes on all tasks simultaneously

• At a single point in time, different tasks
may be executing the same or different
instructions (logic allows different tasks to execute different parts of the code)

Multiple Program-Multiple Data (MPMD)

• Each task may be executing the same or different programs than other tasks

• The different executable programs may
communicate to transfer data



Other Parallel Programming Models

•  GPUs (Graphics Processing Units) contain many (hundreds) of processing 
cores, allowing for rapid vector processing (Single Instruction, Multiple Data)

• CUDA (Compute Unified Device Architecture) programming allows one to 
call on this powerful computing engine from codes written in C, Fortran, 
Python, Java, and Matlab.

• This is an exciting new way to achieve massive computing power for little 
hardware cost, but memory access bandwidth limitations constrain the possible 
applications.
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Design of Parallel Algorithms

• Ensure that you understand fully the problem and/or the serial code that
you wish to make parallel

• Identify the program hotspots
- These are places where most of the computational work is being done
- Making these sections parallel will lead to the most improvement 
- Profiling can help to determine the hotspots (more on this tomorrow)

• Identify bottlenecks in the program
- Some sections of the code are disproportionately slow
- It is often possible to restructure a code to minimize the bottlenecks

• Sometimes it is possible to identify a different computational algorithm
that has much better scaling properties



P C A M

Methodological Approach to Parallel Algorithm Design:

1) Partitioning

2) Communication

3) Agglomeration

4) Mapping



Partitioning

• Split both the computation to be performed and the data into a large 
number of small tasks (fine-grained)

Two primary ways of decomposing the problem:

• Domain Decomposition

• Functional Decomposition



Communication

• Identify the necessary communication between the fine-grained tasks to 
perform the necessary computation

• For functional decomposition, this tasks is often relatively straightforward

• For domain decomposition, this can a challenging task. 
We’ll consider some examples:

Finite Difference Relaxation:

f t+1
i,j =

4f t
i,j + f t

i−1,j + f t
i+1,j + f t

i,j−1 + f t
i,j+1

8

• This is a local communication,
involving only neighboring tasks



Communication

Gravitational N-Body Problems:

• This is a global communication,
requiring information from all 
tasks

When communication is necessary, it is important to 
employ a scheme that executes the communications 
between different tasks concurrently.



Schemes for Global Communication

Consider the problem of summing the values on N=8 different processors 

• This is an example of a parallel process generically called reduction.

Method 1: Summing by a Manager task, S

• Two properties of this method hinder parallel execution:
- The algorithm is centralized, the manager participation in all interactions
- The algorithm is sequential, without communications occurring    
     concurrently

• Requires N=8 communications

• If all processors require the sum, it will require 2N=16 communications

This is a poor parallel algorithm!



Schemes for Global Communication

Method 1I: Line or Ring Communications

• By decentralizing, one can achieve some savings

• Requires N-1=7 communications, but it 
is still sequential

• If all processors require the sum, we can 
achieve this result with the same number 
of concurrent communications

- By arranging the communcations in a 
ring, we can distribute the sum at all 
processors in N-1=7 communication 
steps.

7

6

5
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Schemes for Global Communication

Method I1I: Tree Communications

• But we can do better by using a divide and conquer approach to the problem
-Split problem into two of equivalent size, to be performed concurrently

• Distribution of the sum to all processors 
can be accomplished with the same
log2 N=3 communication steps.

This is called a hypercube communication scheme

N−1∑

i=0

Xi =
N/2−1∑

i=0

Xi +
N−1∑

i=N/2

Xi

• Recursive application of this principle leads 
to a tree approach

• Requires log2 N=3 communication steps



Hypercube Communication

In Hypercube Communications, 
-All tasks communicate with one other tasks at each step, 
-At each step, the task passes along all of the information it has 
gathered up to that point



Communication: Latency vs. Bandwidth

Cost of Communications (Overhead):

• Latency:  The time it takes to send a 
minimal message (1 bit) from A to B

• Bandwidth: The amount of data that can 
be communicated per unit of time

Factors to consider:

• Sending many small messages will cause latency to dominate the 
communications overhead

- It is better to package many small messages into one large message

• The less information that needs to be transmitted, the less time the 
communications will require.

• It is often best to have all necessary communication occur at the same time



Synchronous vs. Asynchronous Communication

Synchronous Communication:

• Task A sends the message, and must wait until task B receives message to 
move on

• Also known as blocking communication

Asynchronous Communication:

• After task A has sent the message, it can move on to do other work.  
When task B receives the message doesn’t matter to task A.

• Also known as non-blocking communication

• Requires care to insure that different tasks don’t get wildly out of step,
possibly leading to race conditions or deadlocks.

Consider a communication involving a message sent from task A to task B
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Agglomeration

Agglomeration:

• Combine the many fine-grained tasks from partitioning into fewer coarse-
grained tasks of larger size

• This task must take into account the details
of the problem in order to achieve an algorithm
with good scaling properties and good
efficiency 

• Fine-grained partitioning of a problem is generally not an efficient parallel
design
- Requires too much communication of data to be efficient

• Agglomeration is required to achieve data locality and good performance



Granularity

Granularity is the ratio of local computation to communication.

• Agglomeration is used to increase the 
granularity, improving performance 
since communication is slow 
compared to computation.

• By combining many finely grained tasks,
we reduce both:
(i) number of communications 
(ii) size of communications

• In (a), updating 16 points requires
(i) 16x4=64 communications
(ii) passing 64 “bits”

• In (b), updating 16 points requires
(i) 4 communications
(ii) passing 16 “bits”



Surface-to-Volume in Domain Decomposition
For domain decomposition in problems with local data dependency,
(ex. finite difference):

- Communication is proportional to subdomain surface area
- Computation is proportional to volume of the subdomain

For this 2-D problem:
(a) Surface                  &  Area

Thus,

(b) Surface                  &  Area

Thus,

S = 4d A = d2

A = 16d2S = 16d

S

A
=

4
d

S

A
=

1
d

Decrease of surface-to-volume ratio is
equivalent to increased granularity



Other Factors in Agglomeration

Maintaining flexibility:

• It is possible to make choices in designing a parallel 
algorithm that limit flexibility

• For example, if 3-D data is decomposed in only 1-D,
it will limit the scalability of the application

We’ll see this later in the weak scaling example of HYDRO

Replication of Data and/or Computation:

• Sometimes significant savings in communication can be made by replicating 
either data or computation

• Although from a serial point of view this seems inefficient and wasteful, 
because communication is much slower than computation, it can often 
lead to significant improvements in performance.
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Mapping

• For many domain decomposition approaches, the agglomeration stage 
decreases the number of coarse-grained tasks to exactly the number of 
processors, and the job is done

• In general, however, one wants to map tasks to achieve good load balancing 

Mapping Coarse-grained Tasks to Processors:

• Goal: To minimize total execution time

• Guidelines:
- Tasks that can execute concurrently map to different processors
- Tasks that communicate frequently map to the same processor



Load Balancing
• Good parallel scaling and efficiency requires that all processors have an 

equal amount of work
• Otherwise, some processors will sit around idle, while others are 

completing their work, leading to a less efficient computation
• Complicated Load Balancing algorithms often must 

be employed.



Load Balancing

• For problems involving functional decomposition or a master/slave design,
load balancing can be a very significant challange



Parting Thoughts

• But, consider the time required to code a given parallel implementation
- You can use a less efficient method if the implementation is much easier.
- You can always improve the parallelization scheme later.  Just focus on making
    the code parallel first.

TIME is the ultimate factor is choosing a parallelization strategy---Your Time!

• Part of the challenge of parallel computing is that the most efficient 
parallelization strategy for each problem generally requires a unique solution.

• It is generally worthwhile spending significant time considering alternative 
algorithms to find an optimal one, rather than just implementing the first thing 
that comes to mind
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