
Introduction to
High Performance Computing

Gregory G. Howes
Department of Physics and Astronomy

University of Iowa

Iowa High Performance Computing Summer School
University of Iowa

Iowa City, Iowa
1-3 June 2011

Thank you

Jerry Protheroe
Ben Rogers
Glenn Johnson
Mary Grabe
Greg Johnson
Amir Bozorgzadeh
Bill Whitson

Information Technology Services
Information Technology Services
Information Technology Services
Information Technology Services
Information Technology Services
Information Technology Services
Purdue University

and
National Science Foundation

Rosen Center for Advanced Computing, Purdue University
Great Lakes Consortium for Petascale Computing

This presentation borrows heavily from information freely available on the web by
Ian Foster and Blaise Barney

(see references)

Thank you

Jerry Protheroe
Ben Rogers
Glenn Johnson
Mary Grabe
Bill Whitson

Information Technology Services
Information Technology Services
Information Technology Services
Information Technology Services
Purdue University

and
National Science Foundation

Rosen Center for Advanced Computing, Purdue University
Great Lakes Consortium for Petascale ComputingThis presentation borrows heavily from information freely available on the web by

Ian Foster and Blaise Barney
(see references)

Outline

• Introduction

• Thinking in Parallel

• Parallel Computer Architectures

• Parallel Programming Models

• Design of Parallel Algorithms

• References

Introduction

Why Use Parallel Computing?

• Single processor speeds are reaching their ultimate limits

• Multi-core processors and multiple processors are the most
promising paths to performance improvements

Definition of a parallel computer:

A set of independent processors that can work cooperatively
to solve a problem.

Disclaimer: High Performance Computing (HPC) is valuable to
a variety of applications over a very wide range of fields.
Many of my examples will come from the world of physics,
but I will try to present them in a general sense

Introduction

The March towards Petascale Computing
• Computing performance is defined in terms of

FLoating-point OPerations per Second (FLOPS)

1 GF = 109 FLOPS
1 TF = 1012 FLOPS
1 PF = 1015 FLOPS

GigaFLOP

TeraFLOP

PetaFLOP

• Petascale computing also refers to extremely large data sets

PetaByte 1 PB = 1015 Bytes

Introduction

Performance improves by factor of ~10 every 4 years!

Outline

• Introduction

• Thinking in Parallel

• Parallel Computer Architectures

• Parallel Programming Models

• Design of Parallel Algorithms

• References

Thinking in Parallel

DEFINITION Concurrency: The property of a parallel algorithm
that a number of operations can be performed by separate
processors at the same time.

Concurrency is the key concept in the design of parallel algorithms:
• Requires a different way of looking at the strategy to solve a

problem
• May require a very different approach from a serial program to

achieve high efficiency

Thinking in Parallel

DEFINITION Scalability: The ability of a parallel algorithm to
demonstrate a speedup proportional to the number of processors
used.

DEFINITION Speedup: The ratio of the serial wallclock time to the
parallel wallclock time required for execution.

S =
wallclock timeserial

wallclock timeparallel

• An algorithm that has good scalability will take half the time with
double the number of processors

• Parallel Overhead, the time required to coordinate parallel tasks
and communicate information between processors, degrades
scalability.

f(x)

x

Numerical Integration: Monte Carlo Method
• Choose points within the box of total area
• Determine the number of points falling below
• Integral value is I =

n

N
A

N
n

A
f(x)

How do we do this computation in parallel?

Example: Numerical Integration

Example: Numerical Integration

1) Give different ranges of
to different processors and
sum results

x 2) Give points to each
processor and sum results

N/4

Strategies for Parallel Computation of the Numerical Integral:

Example: Fibonacci Series

The Fibonacci series is defined by:
 with f(k + 2) = f(k + 1) + f(k) f(1) = f(2) = 1

The Fibonacci series is therefore (1, 1, 2, 3, 5, 8, 13, 21, . . .)

The Fibonacci series can be calculated using the loop
f(1)=1
f(2)=1
do i=3, N
 f(i)=f(i-1)+f(i-2)
enddo

This calculation cannot be made parallel.
- We cannot calculate until we have and

- This is an example of data dependence that results in a non-
parallelizable problem

How do we do this computation in parallel?

f(k + 2) f(k + 1) f(k)

Example: Protein Folding

• Protein folding problems involve a large number of independent
calculations that do not depend on data from other calculations

• Concurrent calculations with no dependence on the data from
other calculations are termed Embarrassingly Parallel

• These embarrassingly parallel problems are ideal for solution by
HPC methods, and can realize nearly ideal concurrency and
scalability

Unique Problems Require Unique Solutions

• Each scientific or mathematical problem will, in general, require a
unique strategy for efficient parallelization

Thus, each of you may require a different parallel implementation
of your numerical problem to achieve good performance.

• Flexibility in the way a problem is solved is beneficial to finding a
parallel algorithm that yields a good parallel scaling.

• Often, one has to employ substantial creativity in the way a
parallel algorithm is implemented to achieve good scalability.

Understand the Dependencies

• One must understand all aspects of the problem to be solved, in
particular the possible dependencies of the data.

Example: Pressure Forces (Local) vs. Gravitational Forces (Global)

• It is important to understand fully all parts of a serial code that
you wish to parallelize.

Rule of Thumb

Computation is FAST

Communication is SLOW

Input/Output (I/O) is INCREDIBLY SLOW

When designing a parallel algorithm, always remember:

Other Issues

In addition to concurrency and scalability, there are a number of
other important factors in the design of parallel algorithms:

Locality

Granularity

Modularity

Flexibility

Load balancing

We’ll learn about these as we discuss the design of parallel
algorithms.

Outline

• Introduction

• Thinking in Parallel

• Parallel Computer Architectures

• Parallel Programming Models

• Design of Parallel Algorithms

• References

The Von Neumann Architecture

Virtually all computers follow this basic design

• Memory stores both instructions and data

• Control unit fetches instructions from memory,
decodes instructions, and then sequentially performs
operations to perform programmed task

• Arithmetic Unit performs mathematical operations

• Input/Output is interface to the user

Flynn’s Taxonomy

• SISD: This is a standard serial computer: one set of instructions, one data stream

• SIMD: All units execute same instructions on different data streams (vector)
- Useful for specialized problems, such as graphics/image processing
- Old Vector Supercomputers worked this way, also moderns GPUs

• MISD: Single data stream operated on by different sets of instructions, not
generally used for parallel computers

• MIMD: Most common parallel computer, each processor can execute different
instructions on different data streams
-Often constructed of many SIMD subcomponents

Parallel Computer Memory Architectures

Shared Memory

Hybrid Distributed Shared Memory

Distributed Memory

Relation to Parallel Programming Models

• OpenMP: Multi-threaded calculations occur within shared-memory components
of systems, with different threads working on the same data.

• MPI: Based on a distributed-memory model, data associated with another
processor must be communicated over the network connection.

• GPUs: Graphics Processing Units (GPUs) incorporate many (hundreds) of
computing cores with single Control Unit, so this is a shared-memory model.

• Processors vs. Cores: Most common parallel computer, each processor can
execute different instructions on different data streams

-Often constructed of many SIMD subcomponents

Outline

• Introduction

• Thinking in Parallel

• Parallel Computer Architectures

• Parallel Programming Models

• Design of Parallel Algorithms

• References

Parallel Programming Models

• Embarrassingly Parallel

• Master/Slave

• Threads

• Message Passing

• Single Program-Multiple Data (SPMD)
vs. Multiple Program-Multiple Data (MPMD)

• Other Parallel Implementations: GPUs and CUDA

Embarrassingly Parallel

• Refers to an approach that involves solving many similar but independent
tasks simultaneously

• Little to no coordination (and thus no communication) between tasks

• Each task can be a simple serial program

• This is the “easiest” type of problem to implement in a parallel manner.
Essentially requires automatically coordinating many independent calculations
and possibly collating the results.

• Examples:
- Computer Graphics and Image Processing
- Protein Folding Calculations in Biology
- Geographic Land Management Simulations in Geography
- Data Mining in numerous fields
- Event simulation and reconstruction in Particle Physics

Master/Slave

• Master Task assigns jobs to pool of slave
tasks

• Each slave task performs its job
independently

• When completed, each slave
returns its results to the
master, awaiting a new job

• Emabarrasingly parallel problems are often
well suited to this parallel programming model

Master

Slave
Slave

Slave

Slave
Slave

Slave

Multi-Threading

• Threading involves a single process that can have multiple, concurrent
execution paths

• Works in a shared memory architecture

• Most common implementation is OpenMP (Open Multi-Processing)

serial code
.
.
.

!$OMP PARALLEL DO
do i = 1,N
A(i)=B(i)+C(i)

enddo
!$OMP END PARALLEL DO

.

.

.
serial code

• Relatively easy to make inner loops of a
serial code parallel and achieve substantial
speedups with modern multi-core processors

Message Passing
• The most widely used model for parallel programming

• Message Passing Interface (MPI) is the most widely used implementation

• A set of tasks have their own local memory during the computation
(distributed-memory, but can also be used on shared-memory machines)

• Tasks exchange data by sending
and receiving messages, requires
programmer to coordinate explicitly
all sends and receives.

• One aim of this summer school will focus
on the use of MPI to write parallel programs.

SPMD vs. MPMD
Single Program-Multiple Data (SPMD)

• A single program executes on all tasks simultaneously

• At a single point in time, different tasks
may be executing the same or different
instructions (logic allows different tasks to execute different parts of the code)

Multiple Program-Multiple Data (MPMD)

• Each task may be executing the same or different programs than other tasks

• The different executable programs may
communicate to transfer data

Other Parallel Programming Models

• GPUs (Graphics Processing Units) contain many (hundreds) of processing
cores, allowing for rapid vector processing (Single Instruction, Multiple Data)

• CUDA (Compute Unified Device Architecture) programming allows one to
call on this powerful computing engine from codes written in C, Fortran,
Python, Java, and Matlab.

• This is an exciting new way to achieve massive computing power for little
hardware cost, but memory access bandwidth limitations constrain the possible
applications.

Outline

• Introduction

• Thinking in Parallel

• Parallel Computer Architectures

• Parallel Programming Models

• Design of Parallel Algorithms

• References

Design of Parallel Algorithms

• Ensure that you understand fully the problem and/or the serial code that
you wish to make parallel

• Identify the program hotspots
- These are places where most of the computational work is being done
- Making these sections parallel will lead to the most improvement
- Profiling can help to determine the hotspots (more on this tomorrow)

• Identify bottlenecks in the program
- Some sections of the code are disproportionately slow
- It is often possible to restructure a code to minimize the bottlenecks

• Sometimes it is possible to identify a different computational algorithm
that has much better scaling properties

P C A M

Methodological Approach to Parallel Algorithm Design:

1) Partitioning

2) Communication

3) Agglomeration

4) Mapping

Partitioning

• Split both the computation to be performed and the data into a large
number of small tasks (fine-grained)

Two primary ways of decomposing the problem:

• Domain Decomposition

• Functional Decomposition

Communication

• Identify the necessary communication between the fine-grained tasks to
perform the necessary computation

• For functional decomposition, this tasks is often relatively straightforward

• For domain decomposition, this can a challenging task.
We’ll consider some examples:

Finite Difference Relaxation:

f t+1
i,j =

4f t
i,j + f t

i−1,j + f t
i+1,j + f t

i,j−1 + f t
i,j+1

8

• This is a local communication,
involving only neighboring tasks

Communication

Gravitational N-Body Problems:

• This is a global communication,
requiring information from all
tasks

When communication is necessary, it is important to
employ a scheme that executes the communications
between different tasks concurrently.

Schemes for Global Communication

Consider the problem of summing the values on N=8 different processors

• This is an example of a parallel process generically called reduction.

Method 1: Summing by a Manager task, S

• Two properties of this method hinder parallel execution:
- The algorithm is centralized, the manager participation in all interactions
- The algorithm is sequential, without communications occurring
 concurrently

• Requires N=8 communications

• If all processors require the sum, it will require 2N=16 communications

This is a poor parallel algorithm!

Schemes for Global Communication

Method 1I: Line or Ring Communications

• By decentralizing, one can achieve some savings

• Requires N-1=7 communications, but it
is still sequential

• If all processors require the sum, we can
achieve this result with the same number
of concurrent communications

- By arranging the communcations in a
ring, we can distribute the sum at all
processors in N-1=7 communication
steps.

7

6

5
4 3

2

0
1

Schemes for Global Communication

Method I1I: Tree Communications

• But we can do better by using a divide and conquer approach to the problem
-Split problem into two of equivalent size, to be performed concurrently

• Distribution of the sum to all processors
can be accomplished with the same
log2 N=3 communication steps.

This is called a hypercube communication scheme

N−1∑

i=0

Xi =
N/2−1∑

i=0

Xi +
N−1∑

i=N/2

Xi

• Recursive application of this principle leads
to a tree approach

• Requires log2 N=3 communication steps

Hypercube Communication

In Hypercube Communications,
-All tasks communicate with one other tasks at each step,
-At each step, the task passes along all of the information it has
gathered up to that point

Communication: Latency vs. Bandwidth

Cost of Communications (Overhead):

• Latency: The time it takes to send a
minimal message (1 bit) from A to B

• Bandwidth: The amount of data that can
be communicated per unit of time

Factors to consider:

• Sending many small messages will cause latency to dominate the
communications overhead

- It is better to package many small messages into one large message

• The less information that needs to be transmitted, the less time the
communications will require.

• It is often best to have all necessary communication occur at the same time

Synchronous vs. Asynchronous Communication

Synchronous Communication:

• Task A sends the message, and must wait until task B receives message to
move on

• Also known as blocking communication

Asynchronous Communication:

• After task A has sent the message, it can move on to do other work.
When task B receives the message doesn’t matter to task A.

• Also known as non-blocking communication

• Requires care to insure that different tasks don’t get wildly out of step,
possibly leading to race conditions or deadlocks.

Consider a communication involving a message sent from task A to task B

P C A M

Methodological Approach to Parallel Algorithm Design:

1) Partitioning

2) Communication

3) Agglomeration

4) Mapping

Agglomeration

Agglomeration:

• Combine the many fine-grained tasks from partitioning into fewer coarse-
grained tasks of larger size

• This task must take into account the details
of the problem in order to achieve an algorithm
with good scaling properties and good
efficiency

• Fine-grained partitioning of a problem is generally not an efficient parallel
design
- Requires too much communication of data to be efficient

• Agglomeration is required to achieve data locality and good performance

Granularity

Granularity is the ratio of local computation to communication.

• Agglomeration is used to increase the
granularity, improving performance
since communication is slow
compared to computation.

• By combining many finely grained tasks,
we reduce both:
(i) number of communications
(ii) size of communications

• In (a), updating 16 points requires
(i) 16x4=64 communications
(ii) passing 64 “bits”

• In (b), updating 16 points requires
(i) 4 communications
(ii) passing 16 “bits”

Surface-to-Volume in Domain Decomposition
For domain decomposition in problems with local data dependency,
(ex. finite difference):

- Communication is proportional to subdomain surface area
- Computation is proportional to volume of the subdomain

For this 2-D problem:
(a) Surface & Area

Thus,

(b) Surface & Area

Thus,

S = 4d A = d2

A = 16d2S = 16d

S

A
=

4
d

S

A
=

1
d

Decrease of surface-to-volume ratio is
equivalent to increased granularity

Other Factors in Agglomeration

Maintaining flexibility:

• It is possible to make choices in designing a parallel
algorithm that limit flexibility

• For example, if 3-D data is decomposed in only 1-D,
it will limit the scalability of the application

We’ll see this later in the weak scaling example of HYDRO

Replication of Data and/or Computation:

• Sometimes significant savings in communication can be made by replicating
either data or computation

• Although from a serial point of view this seems inefficient and wasteful,
because communication is much slower than computation, it can often
lead to significant improvements in performance.

P C A M

Methodological Approach to Parallel Algorithm Design:

1) Partitioning

2) Communication

3) Agglomeration

4) Mapping

Mapping

• For many domain decomposition approaches, the agglomeration stage
decreases the number of coarse-grained tasks to exactly the number of
processors, and the job is done

• In general, however, one wants to map tasks to achieve good load balancing

Mapping Coarse-grained Tasks to Processors:

• Goal: To minimize total execution time

• Guidelines:
- Tasks that can execute concurrently map to different processors
- Tasks that communicate frequently map to the same processor

Load Balancing
• Good parallel scaling and efficiency requires that all processors have an

equal amount of work
• Otherwise, some processors will sit around idle, while others are

completing their work, leading to a less efficient computation
• Complicated Load Balancing algorithms often must

be employed.

Load Balancing

• For problems involving functional decomposition or a master/slave design,
load balancing can be a very significant challange

Parting Thoughts

• But, consider the time required to code a given parallel implementation
- You can use a less efficient method if the implementation is much easier.
- You can always improve the parallelization scheme later. Just focus on making
 the code parallel first.

TIME is the ultimate factor is choosing a parallelization strategy---Your Time!

• Part of the challenge of parallel computing is that the most efficient
parallelization strategy for each problem generally requires a unique solution.

• It is generally worthwhile spending significant time considering alternative
algorithms to find an optimal one, rather than just implementing the first thing
that comes to mind

References
Introductory Information on Parallel Computing
• Designing and Building Parallel Programs, Ian Foster

http://www.mcs.anl.gov/~itf/dbpp/
-Somewhat dated (1995), but an excellent online textbook with detailed discussion about
many aspects of HPC. This presentation borrowed heavily from this reference

• Introduction to Parallel Computing, Blaise Barney
https://computing.llnl.gov/tutorials/parallel_comp/
-Up to date introduction to parallel computing with excellent links to further information

• MPICH2: Message Passage Inteface (MPI) Implementation
http://www.mcs.anl.gov/research/projects/mpich2/
-The most widely used Message Passage Interface (MPI) Implementation

• OpenMP
http://openmp.org/wp/
-Application Program Interface (API) supports multi-platform shared-memory parallel
programming in C/C++ and Fortran

• Numerical Recipes
http://www.nr.com/
-Incredibly useful reference for a wide range of numerical methods, though not focused on
parallel algorithms.

• The Top 500 Computers in the World
http://www.top500.org/
-Updated semi-annually list of the Top 500 Supercomputers

http://www.mcs.anl.gov/research/projects/mpich2/
http://www.mcs.anl.gov/research/projects/mpich2/
http://www.nr.com
http://www.nr.com
http://www.top500.org
http://www.top500.org

References
Introductory Information on Parallel Computing
• Message Passing Interface (MPI), Blaise Barney

https://computing.llnl.gov/tutorials/mpi/
-Excellent tutorial on the use of MPI, with both Fortran and C example code

• OpenMP, Blaise Barney
https://computing.llnl.gov/tutorials/openMP/
-Excellent tutorial on the use of OpenMP, with both Fortran and C example code

• High Performance Computing Training Materials, Lawrence Livermore National Lab
https://computing.llnl.gov/?set=training&page=index
-An excellent online set of webpages with detailed tutorials on many aspects of high
performance computing.

