
Iowa High Performance Computing Summer School 2012

GPU Programming Using CUDA

This document describes how to get set up to write and run CUDA C codes for execution on the NVIDIA GeForce
GTX 580 GPU that is installed on the Helium cluster at the University of Iowa.

1 Getting Started with the GPU on Helium

1. Note that somewhat minimal information on the GPU on the Helium cluster is available in the online Helium
documentation at
https://www.icts.uiowa.edu/confluence/display/ICTSit/GPU+computer

2. VERY IMPORTANT NOTE: There is only one GPU available for use in this summer school. Therefore, any
students wishing to try out CUDA programming need to share this resource with the other students in the class.
Only one person can be logged onto the computer with the GPU at one time (via qlogin, see below). It is necessary
to be logged onto the machine to compile (using nvcc) or to run your CUDA C code on the GPU. Editing of your
code, on the other hand, does not need to be done on the GPU computer.

Therefore, you should write your program while are you are not logged into the GPU computer, and only log in to
compile and run, then log out from the GPU to let someone else have an opportunity.

3. To log into the GPU computer on Helium, first check that no one else is using the GPU using the command
qstat -q GPU

If the command returns nothing, then the GPU is available. To login to the GPU computer, use the command
qlogin -q GPU

4. Load the CUDA module to set up the environment
module load cuda 4.0.17

5. To compile your CUDA C code cuda add.cu, use the command
nvcc -o cuda add.e cuda add.cu

6. To run the CUDA code, there is no queuing system (since there is only a single machine, and if you are logged onto
the machine, you have full control of it—again, during this IHPC 2012 Summer School course, please be considerate
of others who may want to use the GPU). So you can simply run the compiled executable
cuda add.e

7. To install the Software Developer Kit (SDK) from NVIDIA in your home directory, follow these steps:

(a) First, be sure the you have installed the cuda 4.0.17 module (see above).

(b) Issue the command
sh /share/apps/CUDA/gpucomputingsdk 4.0.17 linux.run

and follow the instructions (you can just hit enter at the prompts for the default installation in your home
directory).

(c) Navigate into the newly installed directory
cd NVIDIA GPU Computing SDK/

Inside this directory in the src directory are a number of example CUDA C source codes. You can look at
these for inspiration, however all of these examples are incredibly complicated (in particular, error checking
and other supplementary routines easily obscure the important lines of code necessary to compute on the
GPU).

1

(d) WARNING: This step takes about 5 min, and if others are waiting to use the GPU, this could present a

problem. To compile all of the example codes in the SDK, make the SDK installation
make cuda-install=/opt/cuda

This will compile all of the example codes in the NVIDIA GPU Computing SDK. The codes will show up in
the directory C/bin/linux/release. You can run these tests that will use the GPU, but I have not found
them to be particularly illuminating.

2 CUDA C Programming

The general concept of GPU programming is to use the tremendous computational horsepower of the GPU to perform
calculations in parallel and achieve significant speedups over a serial code. The programmer defines C functions, called
kernels, that are called by the host (CPU) and are executed N times in parallel on the device (GPU) by N different
CUDA threads. The host and device have separate physical memory, and the GPU can only perform a computation
using data on device memory. Therefore, the programmer must first copy the data from the host memory to the device
memory, then call the kernel to compute using the GPU, and finally copy the result back from the device memory to the
host memory.

1. An excellent resource for learning to program CUDA C is the NVIDIA CUDA C Programming Guide, version 4.2,
available at
http://developer.nvidia.com/nvidia-gpu-computing-documentation

This document is a very thorough introduction to CUDA programming, both presenting the main concepts of GPU
programming with CUDA as well as discussing in detail the programming interface. I highly recommend anyone
interested in learning GPU computing to spend the time reading through this valuable guide. As well, the NVIDIA
website contains a lot of interesting and useful information about GPU computing
http://www.nvidia.com/object/what-is-gpu-computing.html

2. Declaration specifications

(a) Kernel functions are called by the host (CPU), but executed on the device (GPU). Kernel functions are
specified by global .

(b) In addition, there is a host specification for functions that are called from the host and executed on the
host (these are normal C functions, in which case the host specifier is unnecessary), and a device

specification for functions that are called from the device and executed on the device.

(c) To summarize
Specifier Executed on Called from
global Device Host
device Device Device
host Host Host

3. Memory functions

(a) To allocate memory on the GPU device, use cudaMalloc, for example
cudaMalloc(&d A, size);

(b) To free allocated memory,
cudaFree(d A);

(c) To copy data from host memory to device memory, or vice versa, use cudaMemcpywith the cudaMemcpyHostToDevice
or cudaMemcpyDeviceToHost argument, for example
cudaMemcpy(dev a, a, N * sizeof(int), cudaMemcpyHostToDevice);

cudaMemcpy(c, dev c, N * sizeof(int), cudaMemcpyDeviceToHost);

2

4. Kernel functions

(a) Kernel functions are declared with specifier global

(b) Kernels only operate on data stored in device memory

(c) The kernel function is a typical C function, but the loop over which the operation is to be performed is
removed. For example, when perform a computation on a 1D array (vector), instead of
for (int i=0; i < n; i++)

y[i]= a*x[i] + y[i];

you will have
int i=blockIdx.x*blockDim.x + threadIdx.x;

if (i < n) y[i]= a*x[i] + y[i];

(d) The kernel is invoked using the new execution configuration syntax,
VecAdd<<<blocksPerGrid,threadsperBlock>>>(d a,d b,d c);

where the execution configuration parameter define the thread hierarchy for the parallel computation on the
GPU device.

(e) The number of threads per block threadsperBlock is limited by the number of cores the GPU has. For the
GeForce GTX 580, threadsperBlock≤ 512.

(f) The number of blocks used for the computation is unlimited, and generally depends on the size of the problem
being computed. For example, for the vector addition of two N element vectors, the number of blocks is
effectively the total number of elements divided by the number of threads per block,
int blocksPerGrid=(N+threadsPerBlock-1)/threadsPerBlock;

(g) The variables blocksPerGrid and threadsperBlock can be specified as 1D, 2D, or 3D unsigned integer arrays.
To allow the kernel to access the appropriate thread ID and use it to compute the correct matrix element to
operate on, there are several built-in variables from CUDA:
threadIdx

blockDim

blockIdx

To access the appropriate dimension of these built in variables, you use threadIdx.x, threadIdx.y, or
threadIdx.z.

3 GPU Specifications on Helium

NVIDIA GeForce GTX 580 Graphics Processing Unit (GPU):

CUDA cores 512
Fermi Architecture Compute Capability 2
Memory 1536 MB
Core clock 772 MHz
Processor clock 1544 MHz
Effective Memory clock 4008 MHz

3

