Thank you

Ben Rogers
Glenn Johnson
Mary Grabe
Amir Bozorgzadeh
Preston Smith

Information Technology Services
Information Technology Services
Information Technology Services
Information Technology Services
Purdue University

and

National Science Foundation

Rosen Center for Advanced Computing, Purdue University
Great Lakes Consortium for Petascale Computing
Outline

• Concepts for GPU Computing

• Programming Model for GPU Computing using CUDA C

• CUDA C Programming

• Advanced CUDA Capabilities
GPU Computing

Graphics Processing Units (GPUs) have been developed in response to strong market demand for realtime, high-definition 3D graphics (video games!)

GPUs are highly parallel, multithreaded, manycore processors

- Tremendous computational horsepower
- Very high memory bandwidth

We hope to access this power for scientific computing
GPU Programming Languages

- **CUDA** (Compute Unified Device Architecture) is the proprietary programming language for NVIDIA GPUs.

- **OpenCL** (Open Computing Language) is a portable language standard for general computing that can exploit capabilities of GPUs from any manufacturer.

Both languages provide extensions to C (as well as other languages) that enable the programmers to access the powerful computing capability for **general-purpose computing** on GPUs (**GPGPU**).

Today we will focus on the basics of **CUDA C programming**.
Parallel Computing Architectures

Different computer architectures suggest three approaches to parallel computing:

1) Message Passing (MPI)

2) Multithreading (OpenMP)

3) GPU (CUDA)
More Transistors to Data Processing

CPUs devote a significant fraction of transistors to data caching and flow control.

GPUs devote more transistors to data processing (arithmetic and logic units, ALU).
GPU vs. CPU Peak Performance

Floating point Operations Per Second (FLOPS)

Memory Access Bandwidth (GB/s)
Many Languages for GPU Computing

NVIDIA’s diverse offerings for GPU Computing
Outline

• Concepts for GPU Computing

• Programming Model for GPU Computing using CUDA C

• CUDA C Programming

• Advanced CUDA Capabilities
CUDA C Programming

CUDA C Programming Language

- Minimal set of extensions to the C programming language
- Core concepts:
 - Hierarchy of thread groups
 - Shared memory
 - Barrier synchronization

1) Kernel:
- C function executed \(N \) times in parallel by \(N \) CUDA threads
- Called by the Host (CPU) but executed on the Device (GPU)

2) Thread Hierarchy:
- Grid: Contains many blocks that can be solved independently in parallel
- Block: Contains many threads that can be solve cooperatively in parallel

3) Memory Functions:
- Allocate and Free memory space on Device (GPU),
- Copy data from Host (CPU) to Device (GPU), and vice versa
Thread Hierarchy: Grid of Blocks

Grid: Full problem to be solved by GPU is broken into blocks

Each block is independent. The blocks can be executed, in any order, concurrently or sequentially.

The Streaming Multiprocessors (SMs) control the execution of each block.

This model enables excellent scalability for a varying number of cores per GPU.
Thread Hierarchy: Block of Threads

Each block contains many threads

Threads within a block are executed in parallel, either cooperatively or independently
Memory Hierarchy

Very high memory bandwidth can be achieved using a hierarchy of memory.

Each thread has private local memory.

Each thread block has fast access to shared memory.

All threads have slower access to global memory.

All threads can also access read-only **Constant** and **Texture** memory, optimized for different memory usages.
General Flow of CUDA C Program

C Program
Sequential Execution

Serial code

Parallel kernel
Kernel0()
Outline

• Concepts for GPU Computing

• Programming Model for GPU Computing using CUDA C

• CUDA C Programming

• Advanced CUDA Capabilities
Programming in CUDA C

• Comparison of Multithreading and GPU Computing

• The Kernel
 - Thread Hierarchy

• Memory Functions

• Examples
Comparison to OpenMP Multithreading

General Implementation:

- Multithreading using OpenMP

- Parallel Computation on GPU device

All of this executes on the multicore host CPU with access to shared memory.
The Kernel in CUDA C

Kernels:

• CUDA C enables the programmer to define C functions, called kernels, that are executed \(N\) times in parallel on the GPU device.

• Declaration specifier: Kernels are defined using \texttt{__global__}

\texttt{__global_ __global_ void VecAdd(int *a, int *b, int *c)}

• Kernels are called from the host (CPU) using a new execution configuration syntax,

\texttt{<<<blocksPerGrid,threadsperBlock>>>}

\texttt{VecAdd<<<blocksPerGrid,threadsperBlock>>>(d_a,d_b,d_c);}

NOTE: Kernel functions are called from the host, but executed on the device!
Blocks and Threads

Thread Hierarchy:

• The execution configuration specifies:

 `blocksPerGrid`
 `threadsperBlock`

• These variables are 3-component integer vectors of type `dim3`

• For example,

 `dim3 threadsperBlock(N,N);`

 defines 2D thread blocks of size N by N

• In the kernel function, the thread ID is accessed through the variable `threadIdx`, where the two dimensions are given by `threadIdx.x` and `threadIdx.y`
Blocks and Threads

Blocks:
• The block ID and block dimensions are similarly accessed through `blockIdx` giving `blockIdx.x` and `blockIdx.y`
 `blockDim` giving `blockDim.x` and `blockDim.y`
• A general formula for computing the appropriate index based on multiple blocks is
 \[
 \text{int } i = \text{blockIdx.x} \times \text{blockDim.x} + \text{threadIdx.x}.
 \]

Limitations:
• The maximum number of threads per block is the number of GPU cores, 512 for the GeForce GTX580.
• The number of blocks per grid is unlimited, and is determined by the number of blocks required to do the entire calculation.
• For a 2D computation of size \(N\) by \(N\)
 \[
 \text{dim3 } \text{numBlocks}(N/\text{threadsPerBlock}.x, N/\text{threadsPerBlock}.y);
 \]
CUDA Kernel

Standard serial C function

```c
/* Function to compute y=a*x+y */
void saxpy_serial(int n, float a, float *x, float *y)
{
    for (int i=0; i < n; i++)
        y[i]= a*x[i] + y[i];
}

/* Call Function from main() */
saxpy_serial(4096*256, 2.0, x, y);
```

Parallel CUDA C kernel

```c
__global__ void saxpy_parallel(int n, float a, float *x, float *y)
{
    int i=blockIdx.x*blockDim.x + threadIdx.x;
    if (i < n)  y[i]= a*x[i] + y[i];
}

/* Call Function from main() */
saxpy_parallel<<<4096,256>>>(4096*256, 2.0, x, y);
```
CUDA Kernel

General Comments:

• The kernel contains only the commands within the loop
• The kernel call is asynchronous
 - After the kernel is called, the host can continue processing before the GPU has completed the kernel computation

<table>
<thead>
<tr>
<th>Type</th>
<th>Function</th>
<th>Executed on the:</th>
<th>Only callable from the:</th>
</tr>
</thead>
<tbody>
<tr>
<td>device</td>
<td>float DeviceFunc()</td>
<td>device</td>
<td>device</td>
</tr>
<tr>
<td>global</td>
<td>void KernelFunc()</td>
<td>device</td>
<td>host</td>
</tr>
<tr>
<td>host</td>
<td>float HostFunc()</td>
<td>host</td>
<td>host</td>
</tr>
</tbody>
</table>

• The computations in the kernel can only access data in device memory

Therefore, a critical part of CUDA programming is handling the transfer of data from host memory to device memory and back!
CUDA Memory Functions

- Device memory is allocated and freed using

  ```
cudaMalloc()
cudaFree()
```

Example:

```c
size_t size = N * sizeof(float);
float* d_A;
cudaMalloc(&d_A, size);
```

- Data is transferred using

  ```
cudaMemcpy()
```

Example:

```c
/* Allocate array in host memory */
float* h_A = (float*)malloc(size);
/* Copy array from host memory to device memory */
cudaMemcpy(d_A, h_A, size, cudaMemcpyHostToDevice);
```
Example CUDA code for Vector Addition

```c
#include <stdio.h>
#include <cuda.h>
#define N 100 /* Size of vectors */

/* Define CUDA kernel */
__global__ void add( int *a, int *b, int *c ) {
    int tid = blockIdx.x*blockDim.x+threadIdx.x;
    if (tid < N)
        c[tid] = a[tid] + b[tid];
}
```
Example CUDA code for Vector Addition

```c
int main() {
    int a[N], b[N], c[N];
    int *dev_a, *dev_b, *dev_c;

    /* allocate the memory on the GPU */
    cudaMalloc( (void**)&dev_a, N * sizeof(int) );
    cudaMalloc( (void**)&dev_b, N * sizeof(int) );
    cudaMalloc( (void**)&dev_c, N * sizeof(int) );

    /* Copy the arrays 'a' and 'b' from CPU host to GPU device*/
    cudaMemcpy( dev_a, a, N * sizeof(int), cudaMemcpyHostToDevice );
    cudaMemcpy( dev_b, b, N * sizeof(int), cudaMemcpyHostToDevice );

    int threadsPerBlock=512;
    int blocksPerGrid=(N+threadsPerBlock-1)/threadsPerBlock;
    add<<<blocksPerGrid,threadsPerBlock>>>( dev_a, dev_b, dev_c );

    /* Copy the array 'c' back from GPU device to CPU host*/
    cudaMemcpy( c, dev_c, N * sizeof(int), cudaMemcpyDeviceToHost );

    /* Free the memory allocated on the GPU device*/
    cudaFree( dev_a );
    cudaFree( dev_b );
    cudaFree( dev_c );
}
```
Outline

• Concepts for GPU Computing

• Programming Model for GPU Computing using CUDA C

• CUDA C Programming

• Advanced CUDA Capabilities
Advanced CUDA Capabilities

- Shared Memory

- Concurrent memory copy and kernel execution

- Asynchronous concurrent execution

- Lower-level CUDA driver API

- Multiple devices on host system with peer-to-peer memory access

- Texture and surface memory

- Graphics functions with OpenGL and Direct3D Application Programming Interfaces (APIs)