Fourth Annual
Iowa High Performance Computing
Summer School

Gregory G. Howes
Department of Physics and Astronomy
University of Iowa

2523 UCC Training Room
University of Iowa
6-8 June 2012
Thank you

Ben Rogers Information Technology Services
Glenn Johnson Information Technology Services
Mary Grabe Information Technology Services
Amir Bozorgzadeh Information Technology Services
Preston Smith Purdue University

and

National Science Foundation
Rosen Center for Advanced Computing, Purdue University
Great Lakes Consortium for Petascale Computing
Outline

• Welcome and Introductions

• Aims of this Summer School

• Comments

• Getting Online
The IHPC 2012 Summer School is taught by three faculty members

Professor Gregory Howes
Department of Physics and Astronomy, University of Iowa

Professor Bill Dorland
Department of Physics, University of Maryland

Professor Erik Schnetter
Perimeter Institute for Theoretical Physics, Waterloo, Canada
Welcome and Introductions

• Students from three Big 10 Universities
 - University of Illinois
 - University of Iowa
 - Purdue University

• Students from a wide range of departments:
 - Aerospace Engineering
 - Biomedical Engineering
 - Chemical and Biochemical Engineering
 - Civil and Environmental Engineering
 - Earth and Atmospheric Sciences
 - Electrical and Computer Engineering
 - Industrial Engineering
 - Mechanical Engineering
 - Physics and Astronomy

• Please Introduce yourselves:
 - Name
 - Department
 - Academic Status and Year (ex. graduate student, 3rd year)
 - High Performance Computing Experience
 - Research Topic
Aims of this Summer School

To enable you to apply parallel computing to your own research

General Comments:
• Much of this material may be familiar to you
• We plan to explain things from a very basic level to make sure this group from such diverse backgrounds can follow
A few comments before we get started are in order:

1) **Terminology**: Terminology in this field is *not* standardized.
 - This field is new and evolves rapidly.

2) **HPC is valuable to a wide range of fields**:
 - Many examples I use will come from the field of physics.
 - I will try to present the specific problems in a relatively abstract way so that you can consider them simply mathematical problems to be solved.

3) **Software (programming) vs. Hardware (computers)**:
 - I am not going to talk a lot about different hardware options, but will focus on the software side, specifically how to design and implement parallel algorithms.
4) **Common approaches vs. Exhaustive coverage:**
 - This will not be an exhaustive review of all possible HPC approaches
 - I will focus on the most important and widely used approaches
 - In particular, we will talk a lot about MPI, OpenMP, and CUDA

5) **Specificity vs. Generality:**
 - I will try to strike a balance between specific examples, which are often most illuminating, vs. general considerations which may apply to a more wide variety of HPC applications
Getting Online

Each participant has accounts set up on several computers:

University of Iowa, Research Services:
• Helium
 359 compute nodes (3508 cores)
 helium.hpc.uiowa.edu
• Detailed information for running on Helium is available at
 https://www.icts.uiowa.edu/confluence/display/ICTSit/User+Documentation

Rosen Center for Advanced Computing, Purdue University:
• Moffett: SiCortex 5832
 756 compute nodes (4536 cores)
 moffett.rcac.purdue.edu
• Detailed information for running on Moffett is available at
 http://www.rcac.purdue.edu/userinfo/resources/moffett/newuser.cfm

• See handout for information on getting online and submitting both interactive and batch jobs
The website with all of the IHPC 2012 Materials can be found at