
Iowa High Performance Computing Summer School 2013

HYDRO Example Parallel Hydrodynamics Program

HYDRO is a parallel code for the simulation of two-dimensional hydrodynamics problems, and serves as a relatively
simple but practical example of how parallel programming is used in practice. Here we outline the equations evolved by
the code and describe how to use the code.

1 Equations

The equations of hydrodynamics are
∂ρ

∂t
+ u · ∇ρ = −ρ∇ · u (1)

∂u

∂t
+ u · ∇u = −

1

ρ
∇p (2)

∂p

∂t
+ u · ∇p = −γp∇ · u (3)

where the convective derivative is given by
d

dt
≡

∂

∂t
+ u · ∇ (4)

and the adiabatic index is given by γ.
The system for linear sound waves is given by the matrix equation









ω −ρ0kx −ρ0ky 0
0 ω 0 −kx/ρ0

0 0 ω −ky/ρ0

0 −γp0kx −γp0ky ω

















ρ1

ux

uy

p1









= 0, (5)

giving the dispersion relation

ω2(ω2
− k2c2

s) = 0 (6)

where the equilibrium sound speed is given by c2
s = γp0/ρ0 and k2 = k2

x + k2
y. The eigenfrequency for the sound wave is

therefore

ω = ±kcs (7)

with an eigenfunction given by

ux = ±cs

kx

k

p1

γp0
, (8)

uy = ±cs

ky

k

p1

γp0
, (9)

and
ρ1 =

p1

c2
s

(10)

for a pressure perturbation with amplitude δp0 of the form

p1 = δp0 cos(kxux + kyuy − ωt). (11)

1

2 Compiling and Running HYDRO

HYDRO comes packed in a tar file with the Makefile necessary to compile it. If you are porting it to a new system, you may
have to modify the Makefile to get it to work, in particular specifying the compiler flags to specify automatic promotion
of real variables to double precision (typically -r8), the compiler optimization level you desire, and the debug flag -g if
you wish to do profiling or debugging.

To compile HYDRO on a system to which it has already been ported:

1. Create a directory called hydro and copy the tar file (for example, hyd100524.tar) into that directory.

2. Unpack that tar file using
tar -xvf hyd100524.tar

3. Type make to compile. This will produce the executable hydro.e

4. To test that everything has worked, you may run the sample1.in file on multiple rocessors (must be an even number
of processors), for example
mpirun-np 16 ./hydro.e sample1.in

The first (and only) argument of the executable is the name of the input file. Note the command to run HYDRO in
parallel will generally depend on the system.

5. To delete the current executable so that you can recompile, type make clean.

3 HYDRO Input File

A sample input file, sample1.in, comes packaged with HYDRO. This example is used to describe the variables in the input
file. The sample input file follows on the next page.

2

3.1 Sample HYDRO Input File

!==

! sample1.in Sample input file

! HYDRO SAMPLE INPUT FILE

!

! Greg Howes

! 2009 JUL 28

! NOTE: This is a dimensional code, with all variables in SI units

!==

! REQUIRED NAMELISTS

!==

! SYSTEM, PLASMA, AND MODEL PARAMETERS

&system

!Number of gridpoints--

nx = 128 !Number of gridpoints in x

ny = 128 !Number of gridpoints in y

!Length of simulation box (m)--

lx = 1.0 !Length of simulation domain in x

ly = 1.0 !Length of simulation domain in y

!Timestepping--

dt = 0.00025 !Timestep (s)

nsteps=4000 !Total number of timesteps to run

nsave=400 !Save output at each nsave steps

save0=.true. !T=Output Initial Conditions

!Initial conditions--

init = 0 ! 0 = sound wave initial conditions

/

!==

!==

! OPTIONAL NAMELISTS

!==

! Sound Wave Initialization

&sound

!Equilibrium conditions--

rho0 = 5.0 !Equilibrium density (kg/m**3)

p0 = 3.0 !Equilibrium pressure (N/m**2 = kg/(s**2 m))

ux0 = 0.0 !Equilibrium velocity in x (m/s)

uy0 = 0.0 !Equilibrium velocity in y (m/s)

gamma = 1.666667 !Adiabatic Index

!Sound wave solutions

nkx0 = 1 !Integral Sound Wavenumber in x (Number of wavelengths per lx)

nky0 = 0 !Integral Sound Wavenumber in y (Number of wavelengths per ly)

p1 = 0.003 !Pressure perturbation (N/m**2)

/

!==

!==

3

Although most of the input file parameters are self-explanatory, we discuss a couple of the parameters here.
The input save0 is a logical variable: a value of .true. will write to disk the initial conditions at time zero. Since

saving to disk is a very expensive process, setting this to .false. prevents this step.
The timestep dt must be chosen to be small enough to satisfy the Courant-Friedrichs-Lewis (CFL) timestep criterion

for stability,

fCFL =
∆tvmax

∆x
< 1. (12)

For the case of a simple sound wave, the maximum wave speed is the sound speed,

cs =

√

γp0

ρ0
, (13)

or in the case of the input variables, cs0=

√

gamma p0
rho0 . For the minimum grid spacing dr = min(∆x,∆ y) and timestep

dt, the CFL condition becomes

fCFL =
dt cs0

dr
< 1, (14)

or simply

dt <
dr

cs0
. (15)

4 Discretization

The code HYDRO is based on a finite difference scheme for the spatial derivatives and a third-order Adams-Bashforth
scheme for advancing the equations in time. A two-dimensional grid of nx by ny gridpoints is set up to discretization a
two-dimensional simulation domain of size lx by ly with periodic boundary conditions. The 2-D hydrodynamic system
involves the independent spatial variables (x, y) and the dependent fluid variables (ρ, ux, uy, p). The spatial positions are
defined in 1-D array variables
rx(-1:nx)

and
ry(-1:ny),
where the simulation domain runs over the nx positions from (0:nx-1) and the boundary conditions are handled using
“ghost zones” at -1 and nx.

The dependent fluid variables are contained in a three dimensional array
qq(i,ix,iy)

where the first index i determines the fluid variable using indexing integers,
irho = 1 !Density

iux = 2 !x-velocity

iuy = 3 !y-velocity

ip = 4 !Pressure

Spatial derivatives are discretized using centered finite differences

∂qi,j

∂x
=

qi+1,j − qi−1,j

xi+1 − xi−1
(16)

where the fluid variable at x = xi and y = yj is given by qi,j . Time derivatives are discretized using a third-order
Adams-Bashforth scheme,

∂q

∂t
=

q(n+1)
− q(n)

t(n+1) − t(n)
=

23

12

∂q

∂t

∣

∣

∣

∣

(n)

−
4

3

∂q

∂t

∣

∣

∣

∣

(n−1)

+
5

12

∂q

∂t

∣

∣

∣

∣

(n−2)

(17)

4

5 Initialization

The initial conditions for HYDRO are set by choosing the appropriate parameter for the input variable init. At present,
the only initial conditions is that for a sound wave, init=0. This choice sets up a sound wave according the the linear
eigenfunction described in Section (1).

Since the third-order Adams-Bashforth scheme requires a knowledge of the time derivatives at the previous two
timesteps, the timesteps need to be initialized. This is accomplished by taking two first-order Eulerian timesteps with
timesteps ∆t = dt/16. Then, another 30 steps are taken using the third-order Adams-Bashforth scheme with timestep
∆t = dt/16. The values of the time derivatives at t = 0, dt, 2dt are all kept, enabling the commencement of the
third-order Adams-Bashforth scheme at t = 2dt using timestep ∆t = dt.

6 Parallelization

The code HYDRO is parallelized using the MPI library and employs a simple domain decomposition in the x direction.
For nproc MPI tasks, the simulation domain is split up into nproc subdomains each of size nx/nproc. Note that if nx is
not divisible by nproc, then not all of the processors will have the same number of gridpoints in x; the code does handle
this by allowing the last processor to have fewer than nx/nproc gridpoints in x. Although this parallelization scheme is
simple, under certain conditions it can lead to poor scaling (see In-Class Exercises #2).

The code handles passing information between processors by setting up the local dependent fluid variable array to
have size nx/nproc+2, so that there are “ghost zones” on both x boundaries.

At the beginning of each timestep, HYDRO passes the necessary boundary information needed by each subdomain using
send and receive calls to the MPI tasks handling the neighboring subdomains. Care is taken to avoid a deadlock by
ensuring that the sends and receives are performing in a unique order. The rule for determining which processors sends
first is that the processor with the even number sends first. This effectively prevents the code from allowing odd numbers
of processors. All of this code is contained in the module hydro bcs.f90.

7 Output from HYDRO

Presently HYDRO collects dependent variable information from all processors onto the master processor (processor 0),
and then writes the information into a single file on the disk. This is NOT a scalable approach, but is taken here for
simplicity. For scaling runs of the algorithm (not including saving the output), one can merely set save0=.false. and
set nsave > nsteps and the code will never attempt to save the data, enabling one to simulate large simulation sizes on
large numbers of processors.

The output each time the code saves the output is put into a file runname.out.####. This is an ASCII text file with
data in the following columns:
Column Value
1 time
2 ix
3 iy
4 x
5 y
6 ρ
7 ux

8 uy

9 p
10 iproc

Note that, for the current scheme collecting all data on proc0 for output, the last column iproc=0 always.
The output from HYDRO can easily be viewed using gnuplot. The following steps will explain how to plot the output

and make postscript figures from this output.

5

1. Run HYDRO with the input file sample1.in.

2. Navigate into the data directory of HYDRO. A listing of the directory will show
sample1.out.0000 sample1.out.0003 sample1.out.0006 sample1.out.0009

sample1.out.0001 sample1.out.0004 sample1.out.0007 sample1.out.0010

sample1.out.0002 sample1.out.0005 sample1.out.0008

3. Start gnuplot with the command
gnuplot

In gnuplot, you can get help for any command by using
help command

4. Set the data style to plot lines rather than points
set style data lines

5. Plot out the final values of ux vs. x using the command
plot ’sample1.out.0010’ u 4:7

If Xforwarding has been enabled when you issued your ssh command to log onto the remote machine, an Xwindow
will pop up with your plot (this may take a little time for the secure connection to be established).

6. To add another curve, such as the initial condition to the same plot, use
replot ’sample1.out.0000’ u 4:7

These two curves should be very close to each other, as the last plot is exactly one period of the wave after the
first plot. You can plot two or more curves together with a single command
plot ’sample1.out.0000’ u 4:7, ’sample1.out.0010’ u 4:7

7. To see how the wave evolves in time over the course of the simulations, plot every other snapshot in time as follows:
plot ’sample1.out.0000’ u 4:7

replot ’sample1.out.0002’ u 4:7

replot ’sample1.out.0004’ u 4:7

replot ’sample1.out.0006’ u 4:7

replot ’sample1.out.0008’ u 4:7

replot ’sample1.out.0010’ u 4:7

You can also label the axes using
set xlabel "x"

set ylabel "u x"

8. To output a plot to a Postscript file:
set terminal postscript enhanced linewidth 2.0 set output "sample1.ps" Then issue all of your plot-
ting commands again. Note that the plot on screen will not update with these commands.

Finally, return the output to the screen by using
set output

set terminal x11

9. Because ghostview is not installed on Moffett, you will need to copy the resulting postscript file back to your local
machine to look at it using gv. Thus, use the commands
scp username@moffett.rcac.purdue.edu: /hydro/data/sample1.ps ./

gv sample1.ps &

The resulting file is plotted in Figure 1.

6

-0.0008

-0.0006

-0.0004

-0.0002

 0

 0.0002

 0.0004

 0.0006

 0.0008

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

u x

x

’sample1.out.0000’ u 4:7
’sample1.out.0002’ u 4:7
’sample1.out.0004’ u 4:7
’sample1.out.0006’ u 4:7
’sample1.out.0008’ u 4:7
’sample1.out.0010’ u 4:7

Figure 1: Postscript file output of HYDRO data for run sample1.in generated using gnuplot.

7

-0.1

-0.08

-0.06

-0.04

-0.02

 0

 0.02

 0.04

 0.06

 0.08

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

u x

x

’sample2.out.0000’ u 4:7
’sample2.out.0002’ u 4:7
’sample2.out.0004’ u 4:7
’sample2.out.0006’ u 4:7
’sample2.out.0008’ u 4:7
’sample2.out.0010’ u 4:7

Figure 2: Postscript file output of HYDRO data for the nonlinear run sample2.in generated using gnuplot.

10. Nonlinear evolution of a finite amplitude sound wave: The output in Figure 1 is relatively boring because it
corresponds to strictly linear waves, with negligible change of the waveform in time. However, if we change the
amplitude of the sound wave in the input file from p1 = 0.003 to p1 = 0.4 and run the simulation again, we find
the results in Figure 2. Here we can see that the leading edge of the sound wave steepens while the trailing edge
flattens. This is due to the change of the sound speed with position due to changes in the density and pressure.

8 Timing Statistics from HYDRO

1. HYDRO also outputs timing information in the file sample1.time as follows:
Output from run sample1.in using 16 processing cores

Initialization 7.971010E-01 sec (0.0133 min) 4.725 %

Save 6.122648E+00 sec (0.1020 min) 36.293 %

Advance 9.946471E+00 sec (0.1658 min) 58.960 %

Local 8.304620E+00 sec (0.1384 min) 49.227 %

Communication 1.268621E+00 sec (0.0211 min) 7.520 %

Total 1.686998E+01 sec (0.2812 min)

8

