
Iowa High Performance Computing Summer School 2013

MPI Programming Exercise Set

May 20, 2013

Problem 1 Parallel “Hello, World!” Write a parallel version of the “Hello, World!” program
using MPI and run it to observe the output. You will need to use the Environment Management
routines MPI_Init, MPI_Comm_rank, MPI_Comm_size, and MPI_Finalize. Write the program
such that the output appears on the screen as rank 0: ‘‘Hello, World!’’. Run the program
using 16 processors. Does the output appear in order of ascending rank? If not, modify your
program so that it does.

Problem 2

(a) Send/Recv Example. Write a MPI program that passes one integer from process 0 to process
numprocs-1 through each process in between and adds one to it after each MPI_Recv. Run
your program using 16 processors. Choose 100 for the starting integer.

(b) Blocking vs. non-blocking Send/Recv. Compile and run Blaise Barney’s mpi bandwidth.[c,f]
and mpi bandwidth nonblock.[c,f] to observe the differences between blocking and
non-blocking communications. What do the programs tell you about MPI and its use of the
underlying hardware?

file url
mpi bandwidth.c https://computing.llnl.gov/tutorials/mpi/samples/C/mpi_bandwidth.c

mpi bandwidth nonblock.c https://computing.llnl.gov/tutorials/mpi/samples/C/mpi_bandwidth_nonblock.c

mpi bandwidth.f https://computing.llnl.gov/tutorials/mpi/samples/Fortran/mpi_bandwidth.f

mpi bandwidth nonblock.f https://computing.llnl.gov/tutorials/mpi/samples/Fortran/mpi_bandwidth_nonblock.f

Problem 3 Parallel Dot-Product. Develop a parallel code to take the scalar product of two N × 1
vectors x and y, i.e., xT y. Choose N = 5Np, where Np is the number of MPI processes. Initialize
the vectors x and y as [1, 2, . . . ,N]. Have the scalar answer stored on all processors. Use Np = 16
processors.

Problem 4 Parallel Matrix Transpose. Use MPI to write a parallel program that uses MPI_Alltoall
of a matrix A. The size of the global matrix A is 10Np × 10Np, where Np is the number of MPI
processes. Initialize the matrix A as A[i, j] = i ∗ j.

(a) First write a serial code that performs the same task on a 160 × 160 size matrix. Determine
the required run time.

(b) Write a parallel version using Np = 16 processors that does the same task. Verify that
your transposed matrix is correct. Use MPI_WTime to determine the required run time and
compare it to the serial case. Is it 16 times faster?

1


