
OpenMP Exercises

Erik Schnetter
(Dated: May 20-22, 2013, IHPC 2013, Iowa City)

There are three exercises, ordered by increasing level difficulty. In each exercise, a serial program
is given, and your task is to parallelise this program with OpenMP. The parallelised program should
run faster than the serial one (since this is the reason one wants to parallelise), and must still yield
the same result (otherwise there is an error).

The first and second exercises require Fortran programming. Fortran is easy to learn, and in
summer school settings, Fortran code is much easier to get correct than C or C++. Do not try
to rewrite the programs in C or C++ – even if you prefer these languages, you will learn more by
solving these exercises in Fortran.

Apply the methods outlined in the lecture to parallelise these codes. Use the Cheat Sheet for
instructions on how to compile and run OpenMP codes on Helium. There is a makefile for each
example program; use make to build the serial version of the program. Modify the makefile as
necessary.

The first and the second exercises are similar, except that the second is more complex. If you
find the first exercise too easy, skip to the second. The third exercise is open-ended and also
requires MPI programming. You may skip this exercise.

Each exercise comes with a brief outline of the numerical methods that are used in the respective
codes. You do not need to understand these methods to complete the exercise. It suffices to examine
the codes and understand their data dependencies (which variables are used where, and in what
way).

Exercise 1: Calculate π

We want to calculate an approximation to the number π = 3.14 While there exist many
very efficient methods to do this, we intentionally use an algorithm that is simple and requires
much computing power (aka is “stupid”). This will allow us to apply an OpenMP parallelisation
more easily.

We approximate π by calculating the area of the unit circle, which is π. We do this by integrating
over the first quadrant of the circle, i.e. we evaluate

∫ 1
0

√
1− x2 dx = π/4. We discretise the integral

into n vertical boxes, each with a width ∆x = 1/n, and with a height yi =
√

1− x2i where xi = i∆x,
and where i = 1 . . . n.

The example code is called calcpi.f90, and is a fully functional serial code.
Note that the code uses a non-default integer kind that provides at least 15 digits. This is

necessary because the default integer kind can only hold up to (about) 10 digits, and we will want
to use more than 1010 integration steps. (This corresponds to using long long in C.)

Your tasks are:

1. Run the serical code as-is. Modify the parameter n, which defines the number of integration
steps, and see how this influences the accuracy and the run-time.

2. Parallelise the code. Run the code with varying numbers of OpenMP threads. Ensure
that the result is the same as for the serial code, and is independent of the number of
OpenMP threads you are using. Remember to use the -openmp compiler flag, and to set
OMP NUM THREADS when running! See the Cheat Sheet.

2

3. Choose a large number of integration steps that runs for about a minute with the serial
code (maybe n = 1013?). Compare performance for different numbers of OpenMP threads
NOpenMP. Run on one of the 12-core nodes of Helium, and create a table comparing run

times for NOpenMP ∈ [1, 2, 3, 6, 12, 24]. Create a log-plot with the results: x axis shows
number of OpenMP threads with logarithmic scale, y axis shows wall time with a linear
scale beginning at 0.

4. Explain the behaviour of this graph.

Exercise 2: Poisson Equation

Many systems in science and engineering are described by PDEs (Partial Differential Equations).
A simple example for a PDE is the Poisson Equation, describing e.g. the gravitational potential or
the electric potential, if the mass or charge distribution is given. For simplicity, we consider here
a system with two spatial dimensions and Cartesian coordinates x and y.

Background

Given a mass distribution ρ(x, y), the resulting gravitational potential U(x, y) is given by

∆U(x, y) = 4πρ(x, y) , (1)

where ∆ is the Laplace operator div · grad, i.e. ∂2x + ∂2y in our case.
A particularly simple way of calculating U(x, y) is the Jacobi Method, which is defined as follows:

1. Choose any initial guess for the potential, e.g. U(x, y) := 0

2. Evaluate the residual: r(x, y) := ∆U(x, y)− 4πρ(x, y)

3. Calculate the L2 norm of the residual: L2[r] :=
(∫
|r(x, y)|2 dx dy/V

)1/2
, where V is the

volume of the domain

4. If the L2 norm of the residual is small enough, we are done

5. Otherwise, add a small multiple of the residual to the potential: U(x, y)→ U(x, y)+αr(x, y)

6. Repeat from step 2

It is important to choose a good value for α > 0. If α is too large, the Jacobi method is unstable,
and the residual will grow without bounds. If α is small enough, the residual will converge to zero.

Note: This algorithm is both simple and spectacularly inefficient. We use it here
only because it leads to a simple code. Do not use this algorithm to solve a real-
world problem. Two much better classes of algorithms are multi-grid methods and
Krylov subspace methods. There exist efficient, generic, ready-to-use libraries for these
methods, such as e.g. PETSc.

We discretise the Poisson equation by employing finite differences. We represent the domain by
two-dimensional arrays [0, n]× [0, n], where n+ 1 is the number of grid points, and h = 1/n is the
spatial resolution. We discretise the Laplace operator via second-order centred finite differences:

(
∂2x + ∂2y

)
U(x, y) :=

Ui−1,j − 2Ui,j + Ui+1,j

h2
+
Ui,j−1 − 2Ui,j + Ui,j+1

h2
. (2)

3

Implementation

The example code is called potential.f90, and is a fully functional serial code. It consists of
three parts: Some declarations in the beginning, a set of subroutines for various tasks, and the
main program driving the calculation.

There are two parameters that can be modified. The parameter n defines the spatial resolution,
and the parameter niters specifies the number of iterations in the Jacobi method. Larger values for
these parameters will increase both the accuracy and the run time. The default settings of these
parameters is tuned for quick test runs; you will need to increase them for production simulations.

Tasks

Your tasks are:

1. Run the serical code as-is. Modify the parameters n and niters, and see how this influences
the accuracy and the run-time.

2. Examine the code. Which parts of the code can be parallelised? Where is most of the time
spent? Which parts should therefore be parallelised?

3. Parallelise the code. Run the code with varying numbers of OpenMP threads. Ensure that
the result is the same as for the serial code, and is independent of the number of OpenMP
threads you are using.

4. Set n = 200, and choose niters so that the code runs for about a minute (maybe niters = 104).
Compare performance for different numbers of OpenMP threads NOpenMP. Run on one
of the 12-core nodes of Helium, and create a table comparing run times for NOpenMP ∈
[1, 2, 3, 6, 12]. Create a log-plot with the results: x axis shows number of OpenMP threads
with logarithmic scale, y axis shows wall time with a linear scale beginning at 0.

5. Choose a large value for n, e.g. n = 104. Reduce niters correspondingly, e.g niters = 100.
Compare run times for different values of NOpenMP. What do you observe? Why?

Exercise 3: Hybrid Parallelism

This is an open-ended exercise for the adventurous. Its aim is to demonstrate that the methods
shown in this summer school do not stand in isolation, but may need to be combined in real-world
programs to achieve good performance.

Take one of the MPI examples from yesterday’s exercises, and add an OpenMP parallelisation.
That is, the resulting code should be parallelised via both MPI and OpenMP at the same time.
The basic idea is that each node of an HPC system will run one (or a few) MPI processes, and
each MPI process will in turn run on multiple cores via OpenMP multi-threading.

Note:

1. To keep things simple, ensure that all MPI calls remain in serial regions of the code.

2. What determines how many MPI processes should be running on a single compute node?
What determines how many OpenMP threads should be used on a compute node?

4

3. You will need to use both mpirun and set OMP NUM THREADS. You will need to look at the
system’s documentation to find out how to do this – this is usually not trivial.

4. Compare the performance of this code with various combinations of NMPI (number of MPI
processes) and NOpenMP (number of OpenMP threads). Examine in particular the cases
where NMPI = 1 or NOpenMP = 1.

