
Iowa High Performance Computing Summer School 2013

Getting Online

Welcome to the fifth annual Iowa High Performance Computing Summer School, May 20–22, 2013. I have compiled
these notes as a reference to help you get online on Helium, the 3508-core shared cluster here at the University of Iowa,
and on Moffett, the 4536-core SiCortex 5832 at the Rosen Center for Advanced Computing at Purdue University.

1 ITS Computer Training Room Workstations

For this course, we will be using the Macs in the ITS Computer Training Room, 2523 UCC. We use the Macs, rather
than Windows machines, because the Mac OS X operating system is based on Unix, and therefore is a good platform for
running Xwindows to connect remotely to the computer cluster. Here I outline how to get set up on the local workstation
for easy use during this course.

1. If the computer at your workstation displays a Windows username and password input, tap the “Scroll Lock” key
twice rapidly to toggle to the Mac.

2. Log onto the workstation using your HawkID and password.

3. Open a Finder window by clicking on the Finder (face icon) at the left hand side of the Dock at the bottom of the
screen.

4. Navigate to the Applications/Utilities/ directory and double click on X11 to start Xwindows. This will bring up
an xterm terminal window which we will use to connect to the remote machines.

5. Useful software on the Mac workstations:

(a) Emacs: This is a very useful editor for writing code, among other things. It can be found in the Applications
directory.
NOTE : We have had problems with this application hanging up. If, after starting Emacs from the Applications
directory, a window does not appear, follow these steps: (1) In the xterm window type
ps aux | grep Emacs

The second number after your username is the process ID, pid. (2) Issue the following command to kill Emacs:
kill pid

where pid is the integer number from the previous command. (3) Then launch Emacs again from the Appli-
cations directory, and it should work.

(b) gnuplot: Handy plotting program. Can be launched from the xterm window by typing gnuplot.

(c) Mission Control: Virtual desktop for the Mac operating system. Can be found in the dock at the bottom of
the screen in the position second from the left side. If you press and hold the option key, a tab appears at
the right that allows you to add virtual desktops. When not in the Mission Control view, you can navigate
left or right from one virtual desktop to another using the key combinations control-← and control-→.

1

2 Logging onto and Running Parallel Programs on Helium

The directions in this section will get you logged onto and running on Helium.

1. Helium is a 3508-core shared cluster computer on the University of Iowa campus. The 359 compute nodes consist
of the following configuration:
(A) 200 compute nodes of:

Dual Quad Core Intel(R) Xeon(R) CPU X5550 @ 2.67GHz Processors
24 Gb DDR3 1333MHz Memory
1Tb Storage
Most of the interconnect is Infiniband, although some of the nodes are connected only by Gigabit Ethernet.

(B) 159 compute nodes of:
Dual Hex-Core Intel(R) Xeon(R) Processors
24 Gb DDR3 Memory
1Tb Storage

2. Online documentation for Helium can be found at
https://www.icts.uiowa.edu/confluence/display/ICTSit/User+Documentation

3. Access to Helium uses Active Directory and requires your current HawkID and password. Accounts on Helium
have been set up for you for use during this course.

4. To get connected to Helium, be sure you have Xwindows running on your machine and pull up an xterm window.
Connect to helium using ssh,
ssh -X username@helium.hpc.uiowa.edu

where username is your HawkID, and enter your password at the prompt. This will put you into your home
directory on Helium. Note that the -X option enables Xforwarding so that you can pull up an Xwindow of an
application running on the remote machine (Helium) on the monitor of your local machine.

Note that if you are connecting to Helium from off-campus (not within the uiowa.edu domain), you must specify
that you want to connect on port 40 instead of the default port 22, using
ssh -p 40 -X username@helium.hpc.uiowa.edu

5. Module Set Up: The first time, and only the first time, that we log onto Helium, we need to set up our .bashrc

file so that the software modules that we need are loaded automatically.

(a) To view the modules that are already loaded, use the command module list, and to see available modules,
use module avail.

(b) To add the necessary lines to the .bashrc file, in your home directory, open the .bashrc file using emacs in
the background using
emacs .bashrc &

A window will open showing the contents of your .bashrc file. At the end of the file, after then line
User specific aliases and functions

add the following two lines
module load intel 11.1.072

module load openmpi intel 1.4.3

Next hit CTRL-x CTRL-s to save the changes, and CTRL-x CTRL-c to quit emacs.

(c) Now you may exit your login shell and follow the previous instruction to log in via ssh again. Once you have
logged on again, you may use module list to verify that the necessary modules are loaded.

6. We are going to copy an example parallel code, HYDRO, to Helium using scp. Follow the instructions below:

2

https://www.icts.uiowa.edu/confluence/display/ICTSit/User+Documentation

(a) Create a directory named hydro in your home directory on Helium
mkdir hydro

(b) Go to the IHPC 2013 website at http://www.physics.uiowa.edu/∼ghowes/teach/ihpc13/index.html and
follow the Examples link. Download the tar file of HYDRO, hyd120605.tar, to a directory on your local machine.

(c) Open a new xterm window on your machine and navigate to the directory in which you just put hyd120605.tar.

(d) Now, we will copy this tar file over to your home directory on Helium using scp

scp hyd120605.tar username@helium.hpc.uiowa.edu:∼/hydro/

and enter your password at the prompt.

Note that if you are off-campus, specification of port 40 uses -P 40, so use
scp -P 40 hyd120605.tar username@helium.hpc.uiowa.edu:∼/hydro/

(e) In the window on Helium, go into the hydro directory and unpack the tar file
tar -xvf hyd120605.tar

7. Compiling the parallel code HYDRO:

(a) The tar file for HYDRO contains a Makefile that allows for easy compilation of the code on different platforms
(different computers). HYDRO is written in Fortran90 using MPI for parallelization.

(b) Compile the code by typing
make

This will produce an executable hydro.e

8. Running parallel programs on Helium

(a) Helium uses the Sun Grid Engine (SGE) as a scheduler for parallel jobs. More information can be found online
at https://www.icts.uiowa.edu/confluence/display/ICTSit/Basic+Job+Submission

(b) The examples below will use HYDRO with the sample input file sample1.in. The code requires the first
argument after the executable to be the input file, thus the command will be
hydro.e sample1.in

(c) We can choose to run either interactively or in batch mode. Interactive runs generally run immediately (if
resources are available), whereas running in batch mode puts the job into a queue to be run when resources
become available. As we write our first parallel codes today, we will generally run in interactive mode, since
we want the results right away (and since we have resources reserved for this course). Typically, when running
your codes at a national supercomputing center, you will almost exclusively run in batch mode.

(d) BATCH MODE: The usual method for running on a shared cluster or at a national supercomputing center is
to run in batch mode, submitting your jobs using a script.

i. An example shell script for running on Helium is included in the tar archive, sample1 helium.sh, for
submitting a batch job to SGE to run HYDRO (for the input file sample1.in) follows:
#!/bin/sh

Job Submission script

#$ -q IHPC

#$ -pe 12cpn 24

#$ -l h rt=00:10:00

#$ -N sample1

#$ -o sample1.log

#$ -j y

#$ -V

#$ -cwd

3

http://www.physics.uiowa.edu/~ghowes/teach/ihpc13/index.html
https://www.icts.uiowa.edu/confluence/display/ICTSit/Basic+Job+Submission

#$ -l ib=1

echo "Job begin:"‘date‘

echo "Run sample1 on Helium, 24 proc"

mpirun -n 24 hydro.e sample1.in

echo "Job end:"‘date‘

ii. Each of the options on the lines above specifies a different aspect of the run:
-q IHPC specifies the IHPC training queue for the job (another option is all.q)
-l h rt=00:10:00 specifies the time limit in HH:MM:SS format
-pe 12cpn 24 requests 24 cores using 12 cores per node
-N sample1 specifies the name name of the job
-o sample1.log specifies the name of the file to send the standard output
-j y merges the stdout and stderr output,
-V imports environmental variables to the parallel SGE environment
-cwd places the output files in the current working directory.
-l ib=1 requests Infiniband nodes only
The echo lines above simply write to the log file a few useful comments, but are not necessary.

iii. To submit the job, use
qsub sample1 helium.sh

iv. You may then check to see that the job is in the queue or running using qstat -u username. This will
produce output that looks like
job-ID prior name user state submit/start at queue slots ja-task-ID

736050 0.50944 sample1 ghowes r 05/31/2012 21:59:58 IHPC@compute-6-177.local 16

The job-ID in this example is 736050.

v. If you are having to wait a long time for your job to start, you can change the processor request line in
the script above to
-pe orte 24 (requests any 24 cores using OpenMPI)
This command will take any 24 available cores, but since those cores may be on many different nodes,
performance will likely suffer.

vi. To delete a job, submit a qdel command followed by the job-ID
qdel 736050

(e) INTERACTIVE MODE: The qlogin command is used to create an interactive session via SGE. Unlike many
schedulers, using qlogin with SGE is unusually complicated, requiring the user to perform a number of steps
that are normally handled by the scheduler for batch jobs. More details about this can be found in the online
documentation at
https://www.icts.uiowa.edu/confluence/display/ICTSit/Qlogin+for+interactive+sessions

The most important issue here is that it is up to the user to ensure that any MPI job started using qlogin

employs only the hosts allocated by SGE. Therefore, it is very important to follow the directions below carefully
to set up an interactive session using qlogin:

i. Begin an interactive session using 16 cores using the command
qlogin -l ib=1 -pe orte 16 -q IHPC -l h rt=02:00:00

The options for this commmand specify the following:
-l ib=1 requests Infiniband nodes
-pe orte 16 requests 16 cores using OpenMPI
-q IHPC employs nodes in the IHPC training queue (all.q is another option)
-l h rt=01:00:00 specifies an interactive session time in hh:mm:ss

4

https://www.icts.uiowa.edu/confluence/display/ICTSit/Qlogin+for+interactive+sessions

ii. The qlogin command will produce a result something like
Your job 734954 ("QLOGIN") has been submitted

waiting for interactive job to be scheduled ...

Your interactive job 734954 has been successfully scheduled.

Establishing builtin session to host compute-3-63.local ...

As long as cores are available, you should not have to wait very long. The two important pieces of
information here are the job number (734954) on line 2 and the masterq host (compute-3-63.local) on
the last line.

iii. You may query the schedule to see only your own running jobs using the qstat command,
qstat which will produce output something like the following,
qstat

job-ID prior name user state submit/start at queue slots ja-task-ID

--

734954 0.50948 QLOGIN ghowes r 05/31/2012 14:19:15 all.q@compute-3-63.local 16

Here you can see that your interactive session is running on the queue IHPC using compute-3-63.local

as the masterq host.

iv. To see the hosts that have been assigned to your interactive job using SGE, you can use the following com-
mand, cat /opt/gridengine/default/spool/compute-3-63/active jobs/734954.1/pe hostfile

where you replace 734954 with your job number from line 2 and compute-3-63 with your masterq host.
A sample of the output follows:
compute-3-63.local 8 all.q@compute-3-63.local UNDEFINED

compute-3-64.local 8 all.q@compute-3-64.local UNDEFINED

v. The tricky part about using qlogin for an interactive session is that you need to specify the hosts in a
way that OpenMPI will understand. To do so, you can use the command
cat /opt/gridengine/default/spool/compute-3-63/active jobs/734954.1/pe hostfile | awk ’{print
$1,"slots="$2}’ > hostfile

to create the file hostfile which consists of the following lines:
compute-3-63.local slots=8

compute-3-64.local slots=8

vi. Now that you have everything set up, you are ready to perform and interactive run using the mpirun

command. First, however, you will need to navigate to the directory that contains the parallel code that
you want to run (note that launching qlogin will have landed you back in your home directory, which is
probably not the directory in which you want to work). Thus, change directory to /hydro

cd hydro

vii. Run the test case sample1.in using the following command:
mpirun -n 16 hydro.e sample1.in

In this case, because you are running interactively, the output of HYDRO for this run will be sent to standard
output (the screen).

viii. IMPORTANT: When you are finished running your interactive session, you should exit so that you free
up the reserved cores for other jobs
exit

5

3 Logging onto and Running Parallel Programs on Moffett

The directions in this section will get you logged onto and running on Moffett.

1. Moffett is a 4536-core SiCortex 5832 located at the Rosen Center for Advanced Computing at Purdue University.
You will be set up with a guest account on this machine during your participation in this course. Your guest
account username and password will be given to you on paper. Detailed instructions on the use of Moffett can be
found online at
http://www.rcac.purdue.edu/userinfo/resources/moffett/newuser.cfm

2. To get connected to Moffett, be sure you have Xwindows running on your machine and pull up an xterm window.
Connect to moffett using ssh,
ssh -X username@moffett.rcac.purdue.edu

and enter your password at the prompt. This will put you into your home directory on Moffett. Note that the
-X enables Xforwarding so that you can pull up an Xwindow of an application running on the remote machine
(Moffett) on the monitor of your local machine.

3. We are going to copy and example parallel code, HYDRO, to Moffett using scp. Follow the instructions below:

(a) Create a directory named hydro in your home directory on Moffett
mkdir hydro

(b) Go to the IHPC 2013 website at http://www.physics.uiowa.edu/∼ghowes/teach/ihpc13/index.html and
follow the Examples link. Download the tar file of HYDRO, hyd120605.tar, to a directory on your local machine.

(c) Open a new xterm window on your machine and navigate to the directory in which you just put hyd120605.tar.

(d) Now, we will copy this tar file over to Moffett using scp

scp hyd120605.tar username@moffett.rcac.purdue.edu:∼/hydro/
and enter your password at the prompt.

(e) In the window on Moffett, go into the hydro directory and unpack the tar file
tar -xvf hyd120605.tar

4. Compiling the parallel code HYDRO:

(a) The tar file for HYDRO contains a Makefile that will allows for easy compilation of the code on different
platforms (different computers). This code is written in Fortran90 using MPI for parallelization.

(b) First, open up the Makefile using emacs running in the background
emacs Makefile &

Edit the Makefile by changing the SYSTEM options variable
SYSTEM=SiCortex

and save the changes (using CTRL-x CTRL-s).

(c) Compile the code by typing
make

This will produce an executable hydro.e

5. Running parallel programs on Moffett

(a) Unlike many parallel computers which use Portable Batch System, or PBS, for job scheduling, Moffett uses
the Simple Linux Utility for Resource Management, or SLURM. Although the syntax of the commands
differs between these two systems, in general the operation is similar. Here we will give you a few of
the basics on running parallel codes using SLURM on Moffett. Much more detail can be found online at
http://www.rcac.purdue.edu/userinfo/resources/moffett/newuser.cfm

6

http://www.rcac.purdue.edu/userinfo/resources/moffett/newuser.cfm
http://www.physics.uiowa.edu/~ghowes/teach/ihpc13/index.html
http://www.rcac.purdue.edu/userinfo/resources/moffett/newuser.cfm

(b) The examples below will use HYDRO with the sample input file sample1.in. The code requires the first
argument after the executable to be the input file, thus the command will be
hydro.e sample1.in

(c) We can choose to run either interactively or in batch mode. Interactive runs generally run immediately (if
resources are available), whereas running in batch mode puts the job into a queue to be run when resources
become available. As we write our first parallel codes today, we will generally run in interactive mode, since
we want the results right away (and since we have resources reserved for this course). Typically, when running
your codes at a national supercomputing center, you will almost exclusively run in batch mode.

(d) INTERACTIVE MODE: To run interactively, the following syntax applies
srun -p <partition> -n <tasks> <executable> [args]

Here, we select the default partition on Moffett, scx-comp. The number of tasks is the number of MPI
processes, or equivalently the number of cores you choose to use. In the case of running HYDRO on 16 cores,
we would use
srun -p scx-comp -n 16 ./hydro.e sample1.in

In this case, because you are running interactively, the output of HYDRO for this run will be sent to standard
output (the screen).

(e) To check the queue, use the command
squeue

(f) To cancel a job that has been submitted or kill a job that is running, use
scancel <jobid>

(g) BATCH MODE: The usual method for running on a shared cluster or at a national supercomputing center is
to run in batch mode, submitting your jobs using a script. The scripts for SLURM are different from those
using PBS, so here we will provide an example for using SLURM on Moffett. Here is a shell script named
sample1 moffett.sh for running the sample1.in run with HYDRO using 16 cores
#!/bin/sh

#SBATCH -n 16

#SBATCH -t 00:10:00

#SBATCH -o sample1.log

#SBATCH -e sample1.err

#SBATCH -J sample1

#SBATCH -p scx-comp

echo Running hydro on 16 processors

srun ./hydro.e sample1.in

echo hydro run complete

Each of the options on the lines above specifies a different aspect of the run:
-n specifies the number of cores,
-t specifies the time limit in HH:MM:SS format,
-o specifies the name of the file to send the standard output,
-e specifies the name of the file to send the error output,
-J specifies the name of the submitted job,
-p specifies the partition on which to submit the job.
The echo lines above simply write to the log file a few useful comments, but are not necessary.

To submit the job, use
sbatch sample1 moffett.sh

You may then check to see that the job is in the queue or running using squeue.

7

4 Compiling Your Own Parallel Code

To compile an MPI code on either Helium or Moffett, you use mpif90 for Fortran 90 or mpicc for C. Examples are below.

1. FORTRAN 90: If your code is name program.f90, you can compile using
mpif90 -o program.e program.f90

where the option -o program.e names the resulting executable program.e (the default behavior is to name the
resulting executable a.out).

2. C: If your code is name program.c, you can compile using
mpicc -o program.e program.c

where the option -o program.e names the resulting executable program.e (the default behavior is to name the
resulting executable a.out).

3. Note that on Helium, you must be sure that the following modules are loaded
intel 11.1.072

openmpi intel 1.4.3

You should have this set up in your .bashrc file, but if not you can load the modules yourself by issuing the module
load commands yourself, for example, module load intel 11.1.072.

8

	ITS Computer Training Room Workstations
	Logging onto and Running Parallel Programs on Helium
	Logging onto and Running Parallel Programs on Moffett
	Compiling Your Own Parallel Code

