Parallel Performance and
Optimization

Erik Schnetter
Gregory G. Howes

lowa High Performance Computing Summer School L
University of lowa
lowa City, lowa l
May 20-22,2013 THE
UNIVERSITY

OF lOWA

Wednesday, 22 May, 13

L

Thank you -

UNIVERSITY
OF lOWA
Ben Rogers Information Technology Services
Glenn Johnson Information Technology Services
Mary Grabe Information Technology Services
Amir Bozorgzadeh Information Technology Services
Preston Smith Purdue University
and

National Science Foundation

Rosen Center for Advanced Computing, Purdue University
Great Lakes Consortium for Petascale Computing

Wednesday, 22 May, 13

L

Outline mﬁ

UNIVERSITY
OF lOowA

* General Comments on Optimization
* Measures of Parallel Performance
* Debugging Parallel Programs

* Profiling and Optimization

Wednesday, 22 May, 13

L

General Comments on Optimization -

UNIVERSITY
OF lOowA

* Always keep in mind the Rule of Thumb
Computation is FAST Communication is SLOW

* If you can do extra work in an initialization step to reduce
the work done in each timestep, it is generally well worth the
effort

* Collect all of your communication at one point in your
program timestep

mewmory access is also
communication

relevant measure: flop/
byte;

wmodern systems: 10 flop/
byte (likely to increase)

Wednesday, 22 May, 13

L

Measures of Parallel Performance -

Uva‘Elem
* When you apply for time on a supercomputer, it is critical to” "

provide quantitative data on the parallel performance of your
application

* Algorithm vs. Parallel Scaling
- Algorithm scaling measures the increased computational
time as the size of computation is increased
- Parallel scaling measures the decrease in wallclock time as
more processors are used for the calculation

* Common measures of parallel scaling
- Strong Scaling: Time for fixed problem size as number of
processors is increased
-Weak Scaling: Time for fixed computational work per
processor as problem size is increased

Wednesday, 22 May, 13

L

Strong Scaling -

- UNIVElenY
* Measure time for fixed problem size as number of processors increases ' ‘©"A

* To get the best strong scaling, you want to find the largest problem size
that will fit on one processor

* Eventually, all but embarrassingly parallel applications will lead to a
turnover in the strong scaling plot:
-As number of processors increases, computational work per processor
decreases, and communication time typically increases.
-This reduces the granularity (time for local computation vs. time for
communication), and generally degrades parallel performance

* To get an impressive strong scaling curve, it will often take some
experimentation to identify parameters that allow ideal performance over
the widest range of processor number.

* Multi-core processors often lead to some complications in strong scaling
behaviors due to bandwidth limitations of memory access.

Wednesday, 22 May, 13

L

Strong Scaling for HYDRO -

UNIVERSITY
100 HYDRO Strong Scaling Performance OF lOwWA
: 1 1 IIIIII 1 1 IIIIII 1 1 IIIIII I:II
E Moffett, SiCortex 5832 E
@ 10 -]
S]
Q‘:' L .
Q
o i]
/)]
o
2 TF E
q) - -
E :
B L — - Ideal .
[o Time per step A |
0.1 \\\ =
N AN i
i 1 1 1 IIIIII 1 1 1 IIIIII 1 1 1 IIIIII 1 I-
1 10 100 1000
ssli I'lproc

* Note: For ideal behavior, computational time is inversely proportional to
the number of processors.

Wednesday, 22 May, 13

Strong Scaling for AstroGK

100

—
o

Time per step, t,,, (s)

0.1

_AstroGK Strong Scaling Performance

—
o

3 Kraken, Cray XTo6 7
[— Ideal (48) ”‘~>.;Q_o]
" - Ideal (384) o
— o Time per step =
| 1 1 IIIIIII 1 1 IIIIIII 1 1 IIIIIII 1 1 IIIIIII |
100 1000 10* 108

n

proc

L

THE ﬁﬁ

UNIVERSITY

OF lowA

* Note: Kraken (Cray XT5) nodes have dual hex-core processors, so performance
degrades as more cores/node are used due to memory bandwidth limitations

Wednesday, 22 May, 13

L

Weak Scaling -

UNIVERSITY
OF lOowA

* Measure time for fixed computational work per processor as problem
size is increased

* Again, you want to find the largest problem size that will fit on one
processor

* It is usually easier to get a good weak scaling than a good strong scaling
-Since computational work per processor is constant, granularity only
decreases due to increased communication time

* Since the total problem size must increase, one has to choose how to
Increase it.
- Ex:In HYDRO, you can increase either nx or ny

- Often weak scaling performance will depend on which choice you make

* Again, some exploration of parameters may be necessary to yield the most
impressive weak scaling curve

Wednesday, 22 May, 13

L

Weak Scaling for HYDRO -

UNIVERSITY
OF lOwWA
HYDRO Weak Scaling Performance
200 I I Illllll I Illllll I Illllll i
o o o——C © S © N

e
O
o

Moffett, SiCortex 5832

---- Ideal
—e— Measured

o)
o

Time per step, tg., (s)
o
S
LI | LI | LI | LI

O] IIIIIII|] IIIIIII|] IIIIIII|

10 100 1000

proc

j—

* Note: For ideal behavior, computational time should remain constant.

Wednesday, 22 May, 13

L

Weak Scaling for AstroGK -

UNIVERSITY

OF lOwWA
100 i 1 Illllll | L Illllll 1 Illllll LI Illllll | L IIII_
O : i
o« 80 B
B i S o i
o, 60 - _
3 - AstroGK Weak Scaling Performance i
n - -
L 40 Kraken, Cray XToS .
3 - - - Ideal -
g 20 —— Measured —
= i i
O i | | IIIIII| | | IIIIII| | | IIIIII| 11 IIIIII| | | IIIIll—

1 10 100 1000 104 10°
1’lproc

Wednesday, 22 May, 13

L

Speedup -

e [NV ERSITY
Time on 1 processor OF lowa

e Another measure is the speedup, S = —
P P Time on /N processors

HYDRO Speedup

1000:__ 1 1 1 IIIIII 1 1 IIIIII 1 1 1 IIIIII /l. l__ll
-) :
[Moffett, SiCortex 5832 7 i
i) T
L / -
- —— ldeal 7 _
- / _
°© Speedup
100 |~ —
o, f]
- ~ 4
§e - i
)
Q B -
o,
N - i
10]
1 :__ | | 11 IIIII | | 11 IIIII | | 11 IIIII | I__:
1 10 100 1000
ssli I'lproc

Wednesday, 22 May, 13

Linear vs. Logarithmic Scaling

100 HYDRO Strong Scaling Performance
: T T T IIIIII T T T IIIIII T T T IIIIII T T :
- Moffett, SiCortex 5832
@ top E
S0]
d-c - -
o |]
n
o
a, 15_ E
v - -
E]
e -+ —— Ideal .
o Time per step 1
0.1 | AN __
i 1 1 1 IIIIII 1 1 1 IIIIII 1 1 1 IIIIII 1 1 i
1 10 100 1000
ssi nproc
HYDRO Speedup
looo __ T T T IIIIII T T T IIIIII T T T IIIIII I. I__
- Moffett, SiCortex 5832 e
- —— Ideal R .
/ -
°© Speedup
100 |- -
a]
= C]
I'U - -
()]
o N i
a,
m - -
10 — 7
1 __ 1 1 1 IIIIII 1 1 1 IIIIII 1 1 1 IIIIII __
1 10 100 1000
ssi nproc

60

»
o

Time per step, t, , (s)

20

1000

800

Speedup

400

200

THE]

UNIVERSITY
I T T T T I T T T I T T T I T I T T T OF IOWA
Q
ol |
- () -
. |
|) | N S P lor 1
0 500 1000 1500 2000
ssl Ilproc
HYDRO Speedu
L e T
| Moffett, SiCortex 5832 /,'__
- ---- Ideal .
— ©° Speedup 7

Wednesday, 22 May, 13

Additional Notes - ﬁ

UNIVERSITY
OF lOowA

* You need to choose what time you will use for the scaling tests:
-Do you want to include or exclude initialization time?

* Be sure that your code does not write to the disk or the screen at any
time during the scaling test (turn off output if possible), as this will lead to
degraded performance.

use compiler optimization
repeat benchwmark runs

have nodes to yourself

Wednesday, 22 May, 13

L

Outline m-;ﬁ]_l'

UNIVERSITY
OF lOowA

* General Comments on Optimization
* Measures of Parallel Performance
* Debugging Parallel Programs

* Profiling and Optimization

Wednesday, 22 May, 13

L

Parallel Debuggers -

UNIVERSITY
* One can always debug by hand (inserting lines to write out output as the®" IoWA

code progresses).
. assert() / if() to check
-Generally the easiest approach conditions
-Time consuming
-Difficult to debug problems particular to paralls nple race
conditions.

7

* In addition to serial debuggers to find errors in your source, such as gdb,
a valuable tool for parallel programming is the use of parallel debuggers.

* Common parallel debuggers are TotalView and DDT (Distributed
Debugging Tool)

* Parallel debuggers treat all tasks in an MPI job simultaneously, giving the
user a view of the synchronization of different MPI tasks
- This enables the identification of race conditions and other problems
that are otherwise difficult to identify.

* Running out of memory is common problem in parallel applications

Wednesday, 22 May, 13

L

Memory Checking o B

UNIVERSITY
OF lOowA

® A common source of errors are memory
aCCeSS errors.

- uninitialised variables
- uninitialised pointers, dangling pointers
- passing wrong arguments to a subroutine
- accessing arrays out of bounds
® Memory checkers help find these problems

- a particularly thorough one is valgrind

Wednesday, 22 May, 13

L

Outline Tm.;ﬁ]_l'

UNIVERSITY
OF lOowA

* General Comments on Optimization
* Measures of Parallel Performance
* Debugging Parallel Programs

* Optimization and Profiling

Wednesday, 22 May, 13

L
Code Optimization -

UNIVERSITY
OF lOowA

General approaches to code optimization:
* Automatic Optimization at compile time (mpi£90 -03)

-Level 3 optimization may produce incorrect results, so be careful

* Use libraries of optimized routines for common mathematical operations
- BLAS and LAPACK for matrix computations
- FFTWV for Fast Fourier Transforms
-Intel’s Math Kernel Library (MKL) has routines optimized for particular
architectures

* By hand, ensure innermost loops do no unnecessary computation

* Profiling:
-Measuring the performance of the running code to generate a profile or
trace file
-Although it does introduce some overhead, it is a good way to measure
code performance using typical running conditions

Wednesday, 22 May, 13

L

Profiling -

s ([N [VERSITY
Profiling: Measure performance by collecting statistics of a running code * IOWA

* Two methods for triggering when to collect data:

-Sampling
-Triggered by timer interrupt or hardware counter overflow

-Instrumentation
-Based on events in the code (function calls, etc.)
-Instrumentation code can be automatically generated or inserted by hand

* Two types of performance data:
-Profile: Summation of events over time
-Trace file: Detailed sequence of events over time

Wednesday, 22 May, 13

L

Tools for Profiling -

UNIVERSITY
*You'll want to look at the system you are running on to see what profiling” lowA

tools are installed

* For Moffett, optimization is covered in Chapter 5 of the Programming Guide

* Example Software tools for profiling on Moffett
- PAPI: Measures general application performance
- MpiP: Measure’s MPI Performance
- HPCToolKit: Event based sampling and profiling related to source code
- TAU (Tuning and Analysis Utilities)
- Vampir from ParaTools

- GPTL (General Purpose Timing Library): Timers and counters
- |Oex: Measure I/O statistics

- Pfmon: Performance monitor
- Oprofile: Single-node statistical profiler

* Many of the tools above are available on many different platforms

Wednesday, 22 May, 13

* LI and L2 Cache and Memory access

from other
nodes ——p

SiCortex Architecture

32 & 32KB (data & instructions)

* 64KB cache

DMA Engine

Fabric
Switch

-————b e - ——-

o

5

(64b)

Processor

' L1 cache

Processor

(64b)

"L1 cache

Cache Control Switch

L2

L2

PCle
controller

1

Memory
controller
64b
DDR=2 DIMM
1-4 GB
v to other
—® nodes

1

Memory
controller

64b

DDR=2 DIMM
1-4 GB

Figure 4. Arclutecture of the SiCortex node

A

External |/O

L

THE m

UINIVERSITY
OF lOowA

Wednesday, 22 May, 13

L

Profiling Using PAPI and MpiP -

UNIVERSITY
OF lOowA

* For the remainder of this talk, we do some profiling using the tools
PAPI and MpiP

* You may follow along using the instructions on the handout.

* On the following pages, we will look at metrics derived by PAPI and the load
balance and MPI statistics from MpiP.

Wednesday, 22 May, 13

Edward L. Bosworth, edwardbosworth.com

Wednesday, 22 May, 13

-'l.

Ouid Ofder-
 Control *

Edward L. Bosworth, edwardbosworth.com

Wednesday, 22 May, 13

L

PAPI Results on HYDRO e {0

UNIVERSITY
Total Computational Speed: OF lowA
MELOPS Agpregate: (WallcloCk)" wiww s o o 332.93
This is the total floating-point computational speed of your parallel computation
DU NI 000 s i 50 A0 A KA TR i K85 24.16

Average floating-point computational speed per processor.

Floating-point vs. non-floating-point Instructions:
Non-FP Instructions 7o v . 76 .87
EP TS ERUCTHDNE [st o b et ntavaiiodvsrapass snas vty e 23.13

Floating-point instructions to compute your answer:

FP Arith. Instructions 7o mennnnn. 7.79
FMA Instructions b & v v i et ittt ettt eeennenes 1.87

Computational Intensity and Cache Misses:
Flops per’ Load/SEore .. uim s iemnsdann sanns ins 0.23

Fiops ‘por 1l /1) -cachiel MESE . wacue e ot mstpussiemms 3.70

Wednesday, 22 May, 13

PAPI Results on HYDRO

Memory Stall:
Total. Est.: Memozy DRalll 56 s o sasmvswnummss wiagseess 36.32
Measured and Estimated Stall:
Total Maasnred SEAlLl: i o oo ime s we s s e 12.64
Total Underestimated Stall % 40.05
Total Do restIMatad SEal 1l L conrse i sonoas i s Siowmn 48 .96
ldeal MFLOPS:
Ideal MFLOPS (max. dual)cuuuuiumnuunn. 62.14
Ideal MELBPS (cur: dual) il iaciiisitsss 64 .67
Parallel Communication Overhead:

2.08

MEIE ENICTIEENE o comernonsspommpions s apmep Aar e s o st AT it e

L

THEﬂﬁﬁ

UNIVERSITY
OF lowA

Wednesday, 22 May, 13

L

PAPI Results on HYDRO e {0

UNIVERSITY
Memory Usage per Processor: OF lowA
task O. Gt Mo, Tesident peak KB .o s mamesne siesmasmmmmysms 62464
taskil . tXEIMEN.: Tesident, peak KB .o sivmmg semmswmme 61696
Eask 10Xt Mol Tesident peak KB wwns wues v iais §aousaess 61888
Eask livbxtiMem.:: resident peak KB T olluldaiiiaisisie e 61824
BaBK DU EXheNen. | BOSHAORG: PEAK MBI Solui i wsimom sasuin @ b o mtms 61824
task 13 .cxt:Men. recident pealt KB oo iliamnssieiv s vun sinsies 59136
Gask 2. 6Xt Mem,; Tesident pealt BB z:.:523 iaiidicihsdists iiag 61696
bask .3 XL INON,. ToSIAoNE PO BB .o i onmmes memmpEcE e 61888
task 4. EXtiMen.. Yosident . peak KB . cuns swews semmm e e 61696
BasK H.EXE Mo, rosSldent peak KB . swsnossws siesssionst g 61824
tasSk 6. CXL Men.:: Tesident pealk BB ucusassigsisim iangnigas 61824
task . txtiMem; Tosident peal KB i oisus inalililiah ahlei v 61824
taskiS.TXCIMeN: TeosSident peal KB ' tulsd disadviviins Honnd s sisda 61824
Eask DutxXt Mol ITeosident pealk BB . suien o aumna iams s aigs s 61824

Wednesday, 22 May, 13

MpiP Results on HYDRO

MPI| Time and Load Balance:

Task AppTime
96 .
96 .
96 .
96 .
96 .
96 .
96 .
96 .
96 .
96 .
96 .
96 .
96 .
96 .

O© 00O NO”TOTL b WD -~ O

N T T
W N = O

CO 0O 0O CO CO 0O 0 0 0 O O 0 0 O

MPITime
0.411
3.09
0.513
0.287
0. 10T
0.378
0.442
3.09
0.454
2.93
1.69
158
La6T
16.4

= = = WO WO OO0 OO Wwo
NS
(0)'

2
16.90

L

THE m

UNIVERSITY
OF lOowA

Wednesday, 22 May, 13

Ninja Performance Gap

_J 60
mh

Q
ngSO
0'51—,40
gz
c = a 30
c 9
§°m20
O O w
t T ¢
o © 010 -
a O

Q
Q O T
> 0 o - |
.;.EU >
SES 3
8 o
(@) P

>

1%lilllll .

BackProjection
7-Point Stencil
Libor

Complex 1D
BlackScholes
TreeSearch
MergeSort

2D Conv

AVG

Nadathur Satisht, Changkyu Kimt, Jatin Chhuganit, Hideki Saito+, Rakesh Krishnaiyer+, Mikhail Smelyanskiyt, Milind Girkar+, and Pradeep Dubeyt

“Can Traditional Programming Bridge the Ninja Performance Gap for Parallel Computing Applications?”
http://software.intel.com/sites/default/files/article/301480/isca-20 | 2-paper.pdf

Wednesday, 22 May, 13

http://software.intel.com/sites/default/files/article/301480/isca-2012-paper.pdf
http://software.intel.com/sites/default/files/article/301480/isca-2012-paper.pdf

