
Parallel Performance and
Optimization

Erik Schnetter
Gregory G. Howes

Iowa High Performance Computing Summer School
University of Iowa

Iowa City, Iowa
May 20-22, 2013

Wednesday, 22 May, 13

Thank you

Ben Rogers
Glenn Johnson
Mary Grabe
Amir Bozorgzadeh
Preston Smith

Information Technology Services
Information Technology Services
Information Technology Services
Information Technology Services
Purdue University

and
National Science Foundation

Rosen Center for Advanced Computing, Purdue University
Great Lakes Consortium for Petascale Computing

Wednesday, 22 May, 13

Outline

• General Comments on Optimization

• Measures of Parallel Performance

• Debugging Parallel Programs

• Profiling and Optimization

Wednesday, 22 May, 13

General Comments on Optimization

• Always keep in mind the Rule of Thumb

• If you can do extra work in an initialization step to reduce
the work done in each timestep, it is generally well worth the
effort

• Collect all of your communication at one point in your
program timestep

Computation is FAST Communication is SLOW

memory access is also
communication

relevant measure: flop/
byte;
modern systems: 10 flop/
byte (likely to increase)

Wednesday, 22 May, 13

Measures of Parallel Performance

• When you apply for time on a supercomputer, it is critical to
provide quantitative data on the parallel performance of your
application

• Algorithm vs. Parallel Scaling
- Algorithm scaling measures the increased computational
time as the size of computation is increased
- Parallel scaling measures the decrease in wallclock time as
more processors are used for the calculation

• Common measures of parallel scaling
- Strong Scaling: Time for fixed problem size as number of
processors is increased
-Weak Scaling: Time for fixed computational work per
processor as problem size is increased

Wednesday, 22 May, 13

Strong Scaling
• Measure time for fixed problem size as number of processors increases

• To get the best strong scaling, you want to find the largest problem size
that will fit on one processor

• Eventually, all but embarrassingly parallel applications will lead to a
turnover in the strong scaling plot:

-As number of processors increases, computational work per processor
decreases, and communication time typically increases.
-This reduces the granularity (time for local computation vs. time for
communication), and generally degrades parallel performance

• To get an impressive strong scaling curve, it will often take some
experimentation to identify parameters that allow ideal performance over
the widest range of processor number.

• Multi-core processors often lead to some complications in strong scaling
behaviors due to bandwidth limitations of memory access.

Wednesday, 22 May, 13

Strong Scaling for HYDRO

• Note: For ideal behavior, computational time is inversely proportional to
the number of processors.

Wednesday, 22 May, 13

Strong Scaling for AstroGK

• Note: Kraken (Cray XT5) nodes have dual hex-core processors, so performance
degrades as more cores/node are used due to memory bandwidth limitations

Wednesday, 22 May, 13

Weak Scaling
• Measure time for fixed computational work per processor as problem
size is increased

• Again, you want to find the largest problem size that will fit on one
processor

• It is usually easier to get a good weak scaling than a good strong scaling
-Since computational work per processor is constant, granularity only
decreases due to increased communication time

• Since the total problem size must increase, one has to choose how to
increase it.

- Ex: In HYDRO, you can increase either nx or ny
- Often weak scaling performance will depend on which choice you make

• Again, some exploration of parameters may be necessary to yield the most
impressive weak scaling curve

Wednesday, 22 May, 13

Weak Scaling for HYDRO

• Note: For ideal behavior, computational time should remain constant.

Wednesday, 22 May, 13

Weak Scaling for AstroGK

Wednesday, 22 May, 13

Speedup

• Another measure is the speedup, S =
Time on 1 processor

Time on N processors

Wednesday, 22 May, 13

Linear vs. Logarithmic Scaling

Wednesday, 22 May, 13

Additional Notes
• You need to choose what time you will use for the scaling tests:

-Do you want to include or exclude initialization time?

• Be sure that your code does not write to the disk or the screen at any
time during the scaling test (turn off output if possible), as this will lead to
degraded performance.

use compiler optimization

repeat benchmark runs

have nodes to yourself

Wednesday, 22 May, 13

Outline

• General Comments on Optimization

• Measures of Parallel Performance

• Debugging Parallel Programs

• Profiling and Optimization

Wednesday, 22 May, 13

Parallel Debuggers
• One can always debug by hand (inserting lines to write out output as the
code progresses).

-Generally the easiest approach
-Time consuming
-Difficult to debug problems particular to parallel codes, for example race
conditions.

• In addition to serial debuggers to find errors in your source, such as gdb,
a valuable tool for parallel programming is the use of parallel debuggers.

• Common parallel debuggers are TotalView and DDT (Distributed
Debugging Tool)

• Parallel debuggers treat all tasks in an MPI job simultaneously, giving the
user a view of the synchronization of different MPI tasks

- This enables the identification of race conditions and other problems
that are otherwise difficult to identify.

• Running out of memory is common problem in parallel applications

assert() / if() to check
conditions

Wednesday, 22 May, 13

Memory Checking

• A common source of errors are memory
access errors:

- uninitialised variables

- uninitialised pointers, dangling pointers

- passing wrong arguments to a subroutine

- accessing arrays out of bounds

• Memory checkers help find these problems

- a particularly thorough one is valgrind

Wednesday, 22 May, 13

Outline

• General Comments on Optimization

• Measures of Parallel Performance

• Debugging Parallel Programs

• Optimization and Profiling

Wednesday, 22 May, 13

Code Optimization

General approaches to code optimization:
• Automatic Optimization at compile time (mpif90 -O3)

-Level 3 optimization may produce incorrect results, so be careful

• Use libraries of optimized routines for common mathematical operations
- BLAS and LAPACK for matrix computations
- FFTW for Fast Fourier Transforms
-Intel’s Math Kernel Library (MKL) has routines optimized for particular

architectures

• By hand, ensure innermost loops do no unnecessary computation

• Profiling:
-Measuring the performance of the running code to generate a profile or
trace file
-Although it does introduce some overhead, it is a good way to measure
code performance using typical running conditions

Wednesday, 22 May, 13

Profiling
Profiling: Measure performance by collecting statistics of a running code

• Two methods for triggering when to collect data:

-Sampling
-Triggered by timer interrupt or hardware counter overflow

-Instrumentation
-Based on events in the code (function calls, etc.)
-Instrumentation code can be automatically generated or inserted by hand

• Two types of performance data:
-Profile: Summation of events over time
-Trace file: Detailed sequence of events over time

Wednesday, 22 May, 13

Tools for Profiling
• You’ll want to look at the system you are running on to see what profiling
tools are installed

• For Moffett, optimization is covered in Chapter 5 of the Programming Guide

• Example Software tools for profiling on Moffett
- PAPI: Measures general application performance
- MpiP: Measure’s MPI Performance
- HPCToolKit: Event based sampling and profiling related to source code
- TAU (Tuning and Analysis Utilities)
- Vampir from ParaTools
- GPTL (General Purpose Timing Library): Timers and counters
- IOex: Measure I/O statistics
- Pfmon: Performance monitor
- Oprofile: Single-node statistical profiler

• Many of the tools above are available on many different platforms

Wednesday, 22 May, 13

SiCortex Architecture

• L1 and L2 Cache and Memory access

Wednesday, 22 May, 13

Profiling Using PAPI and MpiP
• For the remainder of this talk, we do some profiling using the tools

PAPI and MpiP

• You may follow along using the instructions on the handout.

• On the following pages, we will look at metrics derived by PAPI and the load
balance and MPI statistics from MpiP.

Wednesday, 22 May, 13

Edward L. Bosworth, edwardbosworth.com
Wednesday, 22 May, 13

Edward L. Bosworth, edwardbosworth.com
Wednesday, 22 May, 13

PAPI Results on HYDRO
Total Computational Speed:

Floating-point vs. non-floating-point Instructions:

Floating-point instructions to compute your answer:

Computational Intensity and Cache Misses:

Wednesday, 22 May, 13

PAPI Results on HYDRO
Memory Stall:

Measured and Estimated Stall:
\

Ideal MFLOPS:

Parallel Communication Overhead:

Wednesday, 22 May, 13

PAPI Results on HYDRO
Memory Usage per Processor:

Wednesday, 22 May, 13

MpiP Results on HYDRO
MPI Time and Load Balance:

Wednesday, 22 May, 13

Ninja Performance Gap

!"
!10
!20
!30
!40
!50
!60

Nb
od

y

Ba
ck
Pr
oj
ec
tio

n

7"
Po

in
t!S

te
nc
il

LB
M

Lib
or

Co
m
pl
ex
!1
D

Bl
ac
kS
ch
ol
es

Tr
ee
Se
ar
ch

M
er
ge
So
rt

2D
!C
on

v

VR AV
G

Re
la
tiv

e!
Pe

rfo
rm

an
ce
!!o
f!B

es
t!

O
pt
im

ize
d!
Co

de
!o
ve
r!N

ai
ve
!S
er
ia
l

C!
co
de

!o
n!
Ea
ch
!P
la
tfo

rm

WSM
NHM
CNR

Figure 1: Growing performance gap between Naive serial C/C++ code and best-optimized code on a 2-core Conroe (CNR), 4-core
Nehalem (NHM) and 6-core Westmere (WSM) systems.

vectorization has been studied for a long time, there are many diffi-
cult issues such as dependency analysis, memory alias analysis and
control flow analysis which prevent the compiler from vectorizing
outer loops, loops with gathers (irregular memory accesses) and
even innermost loops where dependency and alias analysis fails.
A third reason for large performance gaps may be that the code
is bound by memory bandwidth - this may occur, for instance, if
the code is not blocked for cache hierarchies - resulting in cache
misses.

Recent compiler technologies have made significant progress in
enabling parallelization and vectorization with relatively low pro-
grammer effort. Parallelization can be achieved using OpenMP
pragmas that only involve annotation of the loop that is to be par-
allelized. For vectorization, recent compilers such as the Intel®

Composer XE 2011 version have introduced the use of a pragma
for the programmer to force loop vectorization by circumventing
the need to do dependency and alias analysis. This version of the
compiler also has the ability to vectorize outer level loops, and the
Intel® Cilk™ Plus feature [22] helps the programmer to use this new
functionality when it is not triggered automatically.2. Using these
features, we show that the Ninja gap reduces to an average of
2.95X for Westmere. The remaining gap is either a result of band-
width bottlenecks in the code or the fact that the code gets only par-
tially vectorized due to irregular memory accesses. While the im-
provement in the gap is significant, the gap will however inevitably
increase on future architectures with growing SIMD widths and de-
creasing bandwidth-to-compute ratios. To overcome this gap, pro-
grammer intervention in the form of algorithmic changes is then
required.

We identify and suggest three critical algorithmic changes: block-
ing for caches, bandwidth/SIMD friendly data layouts and in some
cases, choosing an alternative SIMD-friendly algorithm. An im-
portant class of algorithmic changes involves blocking the data struc-
tures to fit in the cache, thus reducing the memory bandwidth pres-
sure. Another class of changes involves eliminating the use of
memory gather/scatter operations. Such irregular memory opera-
tions can both increase latency and bandwidth usage, as well as
limit the scope of compiler vectorization. A common data layout
change is to convert data structures written in an Array of Struc-
tures (AOS) representation to a Structure of Arrays (SOA) repre-
sentation. This helps prevent gathers when accessing one field of
the structure across the array elements, and helps the compiler vec-
torize loops that iterate over the array. Finally, in some cases, the
code cannot be vectorized due to back-to-back dependencies be-
tween loop iterations, and in those cases a different SIMD-friendly
algorithm may need to be chosen. We also discuss hardware sup-

2For more complete information about compiler optimizations, see
the optimization notice at [24]

port for programmability, that can further improve productivity
by reducing the impact of these algorithmic changes.

We show that after performing algorithmic changes, we have
an average performance gap of only 1.3X between best-optimized
and compiler-generated code. Although this requires some pro-
grammer effort, this effort is amortized across different processor
generations and also across different computing platforms such as
GPUs. Since the underlying hardware trends towards increasing
cores, SIMD width and slowly increasing bandwidth have been op-
timized for, a small and predictable performance gap will remain
across future architectures. We demonstrate this by repeating our
experiments for the new Intel® MIC architecture [41], the first
x86 based manycore platform. We show that the Ninja gap is al-
most the same (1.2X). In fact, the addition of hardware gather sup-
port makes programmability easier for at least one benchmark. We
believe this is the first paper to show programmability results for
MIC. Thus the combination of algorithmic changes coupled with
modern compiler technology is an important step towards enabling
programmers to ride the trend of parallel processing using tradi-
tional programming.

2. BENCHMARK DESCRIPTION
For our study, we analyze compute and memory characteristics

of recently proposed benchmark suites [3, 11, 4], and choose a rep-
resentative set of benchmarks from the suite of throughput com-
puting applications. Throughput workloads deal with processing
large amounts of data in a given amount of time, and require a fast
response time for all the data processed as opposed to the response
time for a single data element. These include workloads from the
areas of High Performance Computing, Financial Services, EDA,
Image Processing, Computational Medicine, Databases, etc [11].
Throughput computing applications have plenty of data- and thread-
level parallelism, and have been identified as one of the most im-
portant classes of future applications [3, 4, 11], with compute and
memory characteristics influencing the design of current and up-
coming multi-/many-core processors [16]. Furthermore, they offer
the most opportunity for exploiting architectural resources – lead-
ing to large Ninja gaps if naive code does not take advantage of the
increasing computational resources. We formulated a representa-
tive set of benchmarks described below that cover this wide range
of application domains of throughput computing.

1. NBody: NBody computations are used in many scientific
applications, including the fields of astrophysics [1] and statistical
learning algorithms [20]. For given N bodies, the basic compu-
tation is an O(N 2) algorithm that has two loops over the bodies,
and computes pair-wise interactions between them. The resulting

2

Nadathur Satish†, Changkyu Kim†, Jatin Chhugani†, Hideki Saito⋆, Rakesh Krishnaiyer⋆, Mikhail Smelyanskiy†, Milind Girkar⋆, and Pradeep Dubey†
“Can Traditional Programming Bridge the Ninja Performance Gap for Parallel Computing Applications?”

http://software.intel.com/sites/default/files/article/301480/isca-2012-paper.pdf

Wednesday, 22 May, 13

http://software.intel.com/sites/default/files/article/301480/isca-2012-paper.pdf
http://software.intel.com/sites/default/files/article/301480/isca-2012-paper.pdf

