
! 1!

Iowa High Performance Computing Summer School 2015
GPU Programming Using CUDA

By Michael J. Schnieders and Gregory G. Howes

This document describes how to get set up to write and run CUDA C codes for execution on the NVIDIA
Kepler GPUs installed on the Neon cluster at The University of Iowa.

1 Getting Started with Kepler GPUs on Neon

1. Note that there is CUDA information for the Neon cluster available in the online

documentation at https://wiki.uiowa.edu/display/hpcdocs/CUDA

2. Important Note: There are three Kepler GPU nodes available for use in this summer

school. Therefore, any students wishing to try out CUDA programming need to share
this resource with the other students in the class. Keep in mind that editing of code
does not need to be done on a GPU node.

3. To log into a GPU computer on Neon, use the command

qlogin -q IHPC -l kepler

4. To edit, compile or run CUDA code, load the CUDA module to set up the

environment
module load cuda/6.5

5. To compile your CUDA C code cuda_add.cu, use the command

nvcc -o cuda_add.e cuda_add.cu

6. The CUDA executable can be run while logged into a Kepler node:

cuda_add.e
Or, it can be run via a qsub job with the following additional lines added to the file:
#$ -l kepler
module load cuda/6.5
cuda_add.e

7. To install CUDA samples from NVIDIA into your home directory, follow these

steps:
a) First, be sure you have installed the cuda 6.5 module (see above).

b) Issue the command
 cuda-install-samples-6.5.sh samples

c) Navigate into the newly installed directory

 cd samples/NVIDIA_CUDA-6.5_Samples
Inside this directory are a number of example CUDA C source codes. You can
look at these for inspiration, however, most of these examples are incredibly

! 2!

complicated (in particular, error checking and other supplementary routines easily
obscure the important lines of code necessary to compute on the GPU).

d) WARNING: This step takes considerable time, and if others are waiting to use a

GPU node, this could present a problem. To compile all of the examples, make
the installation
make
This will compile all of the example codes in the NVIDIA GPU Computing SDK.
The codes will show up in the directory
bin/x86_64/linux/release
You can run these tests that will use the GPU, but I have not found them to be
particularly illuminating.

2 CUDA C Programming

The general concept of GPU programming is to use the tremendous computational
horsepower of the GPU to perform calculations in parallel and achieve significant
speedups over a serial code. The programmer defines C functions, called kernels, that are
called by the host (CPU) and are executed N times in parallel on the device (GPU) by N
different CUDA threads. The host and device have separate physical memory, and the
GPU can only perform a computation using data on device memory. Therefore, the
programmer must first copy the data from the host memory to the device memory, then
call the kernel to compute using the GPU, and finally copy the result back from the
device memory to the host memory.

1. An excellent resource for learning to program CUDA C is the NVIDIA CUDA C

Programming Guide, version 7.0, available at
http://docs.nvidia.com/cuda/cuda-c-programming-guide
This document is a very thorough introduction to CUDA programming, both
presenting the main concepts of GPU programming with CUDA as well as discussing
in detail the programming interface. I highly recommend anyone interested in
learning GPU computing to spend the time reading through this valuable guide. As
well, the NVIDIA website contains a lot of interesting and useful information about
GPU computing:
http://www.nvidia.com/object/what-is-gpu-computing.html

2. Declaration specifications

a) Kernel functions are called by the host (CPU), but executed on the device (GPU).
Kernel functions are specified by __global__.

b) In addition, there is a __host__ specification for functions that are called from

the host and executed on the host (these are normal C functions, in which case the
host specifier is unnecessary), and a __device__ specification for functions
that are called from the device and executed on the device.

c) To summarize

Specifier Executed on Called from

! 3!

__global__ Device Host
__device__ Device Device
__host__ Host Host

3. Memory functions

a) To allocate memory on the GPU device, use cudaMalloc, for example
cudaMalloc(&d_A, size);

b) To free allocated memory
cudaFree(d_A);

c) To copy data from host memory to device memory, or vice versa, use
cudaMemcpy with the cudaMemcpyHostToDevice or
cudaMemcpyDeviceToHost argument, for example
cudaMemcpy(dev_a,a,N*sizeof(int),cudaMemcpyHostToDevice);
cudaMemcpy(c,dev_c,N*sizeof(int),cudaMemcpyDeviceToHost);

4. Kernel functions

a) Kernel functions are declared with specifier __global__

b) Kernels only operate on data stored in device memory.

c) The kernel function is a typical C function, but the loop over which the operation

is to be performed is removed. For example, when perform a computation on a 1D
array (vector), instead of
for (int i=0; i < n; i++)
 y[i]= a*x[i] + y[i];
you will have
int i=blockIdx.x*blockDim.x + threadIdx.x;
if (i < n) y[i]= a*x[i] + y[i];

d) The kernel is invoked using the new execution configuration syntax,

VecAdd<<<blocksPerGrid,threadsperBlock>>>(d_a,d_b,d_c);
where the execution configuration parameter define the thread hierarchy for the
parallel computation on the GPU device.

e) The number of threads per block threadsperBlock is limited by the GPU
specification. For the Neon Kepler GPUs, threadsperBlock <= 1024.

f) The number of blocks used for the computation is unlimited, and generally

depends on the size of the problem being computed. For example, for the vector
addition of two N element vectors, the number of blocks is effectively the total
number of elements divided by the number of threads per block,
int blocksPerGrid=(N+threadsPerBlock-1)/threadsPerBlock;

g) The variables blocksPerGrid and threadsperBlock can be specified as

1D, 2D, or 3D unsigned integer arrays. To allow the kernel to access the

! 4!

appropriate thread ID and use it to compute the correct matrix element to operate
on, there are several built-in variables from CUDA:
threadIdx
blockDim
blockIdx
To access the appropriate dimension of these built in variables, you use
threadIdx.x, threadIdx.y, or threadIdx.z.

3 GPU Specifications on Neon

Device 0: "Tesla K20m"
 CUDA Driver Version / Runtime Version 6.5 / 6.5
 CUDA Capability Major/Minor version number: 3.5
 Total amount of global memory: 4800 MBytes (5032706048 bytes)
 (13) Multiprocessors, (192) CUDA Cores/MP: 2496 CUDA Cores
 GPU Clock rate: 706 MHz (0.71 GHz)
 Memory Clock rate: 2600 Mhz
 Memory Bus Width: 320-bit
 L2 Cache Size: 1310720 bytes
 Maximum Texture Dimension Size (x,y,z) 1D=(65536),2D=(65536,65536),3D=(4096,4096,4096)
 Maximum Layered 1D Texture Size, (num) layers 1D=(16384), 2048 layers
 Maximum Layered 2D Texture Size, (num) layers 2D=(16384, 16384), 2048 layers
 Total amount of constant memory: 65536 bytes
 Total amount of shared memory per block: 49152 bytes
 Total number of registers available per block: 65536
 Warp size: 32
 Maximum number of threads per multiprocessor: 2048
 Maximum number of threads per block: 1024
 Max dimension size of a thread block (x,y,z): (1024, 1024, 64)
 Max dimension size of a grid size (x,y,z): (2147483647, 65535, 65535)
 Maximum memory pitch: 2147483647 bytes
 Texture alignment: 512 bytes
 Concurrent copy and kernel execution: Yes with 2 copy engine(s)
 Run time limit on kernels: No
 Integrated GPU sharing Host Memory: No
 Support host page-locked memory mapping: Yes
 Alignment requirement for Surfaces: Yes
 Device has ECC support: Enabled
 Device supports Unified Addressing (UVA): Yes
 Device PCI Bus ID / PCI location ID: 130 / 0
 Compute Mode:
 < Default (multiple host threads can use ::cudaSetDevice() with device
simultaneously) >

