
Design of Parallel Algorithms

Gregory G. Howes
Department of Physics and Astronomy

University of Iowa

Iowa High Performance Computing Summer School
University of Iowa

Iowa City, Iowa
1-3 May 2015

Thank you

Ben Rogers
Glenn Johnson
Mary Grabe
Sai Ramadugu
Brenna Miller
Tino Kaltsis
Ben Rothman

Information Technology Services
Information Technology Services
Information Technology Services
Information Technology Services
Information Technology Services
Information Technology Services
Information Technology Services

and
National Science Foundation

This presentation borrows heavily from information freely available on the web by
Ian Foster and Blaise Barney

(see references)

Outline

• Basics of Parallel Algorithm Design
- Partitioning
- Communication
- Agglomeration
- Mapping

• Final Thoughts

• References

Design of Parallel Algorithms

• Ensure that you understand fully the problem and/or the serial code that
you wish to make parallel

• Identify the program hotspots
- These are places where most of the computational work is being done
- Making these sections parallel will lead to the most improvement
- Profiling can help to determine the hotspots (more on this tomorrow)

• Identify bottlenecks in the program
- Some sections of the code are disproportionately slow
- It is often possible to restructure a code to minimize the bottlenecks

• Sometimes it is possible to identify a different computational algorithm
that has much better scaling properties

P C A M

Methodological Approach to Parallel Algorithm Design:

1) Partitioning

2) Communication

3) Agglomeration

4) Mapping

Partitioning

• Split both the computation to be performed and the data into a large
number of small tasks (fine-grained)

Two primary ways of decomposing the problem:

• Domain Decomposition

• Functional Decomposition

P C A M

Methodological Approach to Parallel Algorithm Design:

1) Partitioning

2) Communication

3) Agglomeration

4) Mapping

Communication

• Identify the necessary communication between the fine-grained tasks to
perform the necessary computation

• For functional decomposition, this tasks is often relatively straightforward

• For domain decomposition, this can a challenging task.
We’ll consider some examples:

Finite Difference Relaxation:

f t+1
i,j =

4f t
i,j + f t

i�1,j + f t
i+1,j + f t

i,j�1 + f t
i,j+1

8

• This is a local communication,
involving only neighboring tasks

Communication

Gravitational N-Body Problems:

• This is a global communication,
requiring information from all
tasks

When communication is necessary, it is important to
employ a scheme that executes the communications
between different tasks concurrently.

Schemes for Global Communication

Consider the problem of summing the values on N=8 different processors

• This is an example of a parallel process generically called reduction.

Method 1: Summing by a Manager task, S

• Two properties of this method hinder parallel execution:
- The algorithm is centralized, the manager participation in all interactions
- The algorithm is sequential, without communications occurring
 concurrently

• Requires N=8 communications

• If all processors require the sum, it will require 2N=16 communications

This is a poor parallel algorithm!

Schemes for Global Communication

Method 1I: Line or Ring Communications

• By decentralizing, one can achieve some savings

• Requires N-1=7 communications, but it
is still sequential

• If all processors require the sum, we can
achieve this result with the same number
of concurrent communications

- By arranging the communcations in a
ring, we can distribute the sum at all
processors in N-1=7 communication
steps.

7

6

5
4 3

2

0
1

Schemes for Global Communication

Method I1I: Tree Communications

• But we can do better by using a divide and conquer approach to the problem
-Split problem into two of equivalent size, to be performed concurrently

• Distribution of the sum to all processors
can be accomplished with the same
log2 N=3 communication steps.

This is called a hypercube communication scheme

N�1�

i=0

Xi =
N/2�1�

i=0

Xi +
N�1�

i=N/2

Xi

• Recursive application of this principle leads
to a tree approach

• Requires log2 N=3 communication steps

Hypercube Communication

In Hypercube Communications,
-All tasks communicate with one other tasks at each step,
-At each step, the task passes along all of the information it has
gathered up to that point

Communication: Latency vs. Bandwidth

Cost of Communications (Overhead):

• Latency: The time it takes to send a
minimal message (1 bit) from A to B

• Bandwidth: The amount of data that can
be communicated per unit of time

Factors to consider:

• Sending many small messages will cause latency to dominate the
communications overhead

- It is better to package many small messages into one large message

• The less information that needs to be transmitted, the less time the
communications will require.

• It is often best to have all necessary communication occur at the same time

Synchronous vs. Asynchronous Communication

Synchronous Communication:

• Task A sends the message, and must wait until task B receives message to
move on

• Also known as blocking communication

Asynchronous Communication:

• After task A has sent the message, it can move on to do other work.
When task B receives the message doesn’t matter to task A.

• Also known as non-blocking communication

• Requires care to insure that different tasks don’t get wildly out of step,
possibly leading to race conditions or deadlocks.

Consider a communication involving a message sent from task A to task B

P C A M

Methodological Approach to Parallel Algorithm Design:

1) Partitioning

2) Communication

3) Agglomeration

4) Mapping

Agglomeration

Agglomeration:

• Combine the many fine-grained tasks from partitioning into fewer coarse-
grained tasks of larger size

• This task must take into account the details
of the problem in order to achieve an algorithm
with good scaling properties and good
efficiency

• Fine-grained partitioning of a problem is generally not an efficient parallel
design
- Requires too much communication of data to be efficient

• Agglomeration is required to achieve data locality and good performance

Granularity

Granularity is the ratio of local computation to communication.

• Agglomeration is used to increase the
granularity, improving performance
since communication is slow
compared to computation.

• By combining many finely grained tasks,
we reduce both:
(i) number of communications
(ii) size of communications

• In (a), updating 16 points requires
(i) 16x4=64 communications
(ii) passing 64 “bits”

• In (b), updating 16 points requires
(i) 4 communications
(ii) passing 16 “bits”

Surface-to-Volume in Domain Decomposition
For domain decomposition in problems with local data dependency,
(ex. finite difference):

- Communication is proportional to subdomain surface area
- Computation is proportional to volume of the subdomain

For this 2-D problem:
(a) Surface & Area

Thus,

(b) Surface & Area

Thus,

S = 4d A = d2

A = 16d2S = 16d

S

A
=

4
d

S

A
=

1
d

Decrease of surface-to-volume ratio is
equivalent to increased granularity

Other Factors in Agglomeration

Maintaining flexibility:

• It is possible to make choices in designing a parallel
algorithm that limit flexibility

• For example, if 3-D data is decomposed in only 1-D,
it will limit the scalability of the application

We’ll see this later in the weak scaling example of HYDRO

Replication of Data and/or Computation:

• Sometimes significant savings in communication can be made by replicating
either data or computation

• Although from a serial point of view this seems inefficient and wasteful,
because communication is much slower than computation, it can often
lead to significant improvements in performance.

P C A M

Methodological Approach to Parallel Algorithm Design:

1) Partitioning

2) Communication

3) Agglomeration

4) Mapping

Mapping

• For many domain decomposition approaches, the agglomeration stage
decreases the number of coarse-grained tasks to exactly the number of
processors, and the job is done

• In general, however, one wants to map tasks to achieve good load balancing

Mapping Coarse-grained Tasks to Processors:

• Goal: To minimize total execution time

• Guidelines:
- Tasks that can execute concurrently map to different processors
- Tasks that communicate frequently map to the same processor

Load Balancing
• Good parallel scaling and efficiency requires that all processors have an

equal amount of work
• Otherwise, some processors will sit around idle, while others are

completing their work, leading to a less efficient computation
• Complicated Load Balancing algorithms often must

be employed.

Load Balancing

• For problems involving functional decomposition or a master/slave design,
load balancing can be a very significant challange

Parting Thoughts

• But, consider the time required to code a given parallel implementation
- You can use a less efficient method if the implementation is much easier.
- You can always improve the parallelization scheme later. Just focus on making
 the code parallel first.

TIME is the ultimate factor is choosing a parallelization strategy---Your Time!

• Part of the challenge of parallel computing is that the most efficient
parallelization strategy for each problem generally requires a unique solution.

• It is generally worthwhile spending significant time considering alternative
algorithms to find an optimal one, rather than just implementing the first thing
that comes to mind

References
Introductory Information on Parallel Computing
• Designing and Building Parallel Programs, Ian Foster

http://www.mcs.anl.gov/~itf/dbpp/
-Somewhat dated (1995), but an excellent online textbook with detailed discussion about
many aspects of HPC. This presentation borrowed heavily from this reference

• Introduction to Parallel Computing, Blaise Barney
https://computing.llnl.gov/tutorials/parallel_comp/
-Up to date introduction to parallel computing with excellent links to further information

• MPICH2: Message Passage Inteface (MPI) Implementation
http://www.mcs.anl.gov/research/projects/mpich2/
-The most widely used Message Passage Interface (MPI) Implementation

• OpenMP
http://openmp.org/wp/
-Application Program Interface (API) supports multi-platform shared-memory parallel
programming in C/C++ and Fortran

• Numerical Recipes
http://www.nr.com/
-Incredibly useful reference for a wide range of numerical methods, though not focused on
parallel algorithms.

• The Top 500 Computers in the World
http://www.top500.org/
-Updated semi-annually list of the Top 500 Supercomputers

http://www.mcs.anl.gov/research/projects/mpich2/
http://www.mcs.anl.gov/research/projects/mpich2/
http://www.nr.com
http://www.nr.com
http://www.top500.org
http://www.top500.org

References
Introductory Information on Parallel Computing
• Message Passing Interface (MPI), Blaise Barney

https://computing.llnl.gov/tutorials/mpi/
-Excellent tutorial on the use of MPI, with both Fortran and C example code

• OpenMP, Blaise Barney
https://computing.llnl.gov/tutorials/openMP/
-Excellent tutorial on the use of OpenMP, with both Fortran and C example code

• High Performance Computing Training Materials, Lawrence Livermore National Lab
https://computing.llnl.gov/?set=training&page=index
-An excellent online set of webpages with detailed tutorials on many aspects of high
performance computing.

