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Design of Parallel Algorithms

• Ensure that you understand fully the problem and/or the serial code that
you wish to make parallel

• Identify the program hotspots
- These are places where most of the computational work is being done
- Making these sections parallel will lead to the most improvement 
- Profiling can help to determine the hotspots (more on this tomorrow)

• Identify bottlenecks in the program
- Some sections of the code are disproportionately slow
- It is often possible to restructure a code to minimize the bottlenecks

• Sometimes it is possible to identify a different computational algorithm
that has much better scaling properties
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Partitioning

• Split both the computation to be performed and the data into a large 
number of small tasks (fine-grained)

Two primary ways of decomposing the problem:

• Domain Decomposition

• Functional Decomposition
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Communication

• Identify the necessary communication between the fine-grained tasks to 
perform the necessary computation

• For functional decomposition, this tasks is often relatively straightforward

• For domain decomposition, this can a challenging task. 
We’ll consider some examples:

Finite Difference Relaxation:
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• This is a local communication,
involving only neighboring tasks



Communication

Gravitational N-Body Problems:

• This is a global communication,
requiring information from all 
tasks

When communication is necessary, it is important to 
employ a scheme that executes the communications 
between different tasks concurrently.



Schemes for Global Communication

Consider the problem of summing the values on N=8 different processors 

• This is an example of a parallel process generically called reduction.

Method 1: Summing by a Manager task, S

• Two properties of this method hinder parallel execution:
- The algorithm is centralized, the manager participation in all interactions
- The algorithm is sequential, without communications occurring    
     concurrently

• Requires N=8 communications

• If all processors require the sum, it will require 2N=16 communications

This is a poor parallel algorithm!



Schemes for Global Communication

Method 1I: Line or Ring Communications

• By decentralizing, one can achieve some savings

• Requires N-1=7 communications, but it 
is still sequential

• If all processors require the sum, we can 
achieve this result with the same number 
of concurrent communications

- By arranging the communcations in a 
ring, we can distribute the sum at all 
processors in N-1=7 communication 
steps.
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Schemes for Global Communication

Method I1I: Tree Communications

• But we can do better by using a divide and conquer approach to the problem
-Split problem into two of equivalent size, to be performed concurrently

• Distribution of the sum to all processors 
can be accomplished with the same
log2 N=3 communication steps.

This is called a hypercube communication scheme
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• Recursive application of this principle leads 
to a tree approach

• Requires log2 N=3 communication steps



Hypercube Communication

In Hypercube Communications, 
-All tasks communicate with one other tasks at each step, 
-At each step, the task passes along all of the information it has 
gathered up to that point



Communication: Latency vs. Bandwidth

Cost of Communications (Overhead):

• Latency:  The time it takes to send a 
minimal message (1 bit) from A to B

• Bandwidth: The amount of data that can 
be communicated per unit of time

Factors to consider:

• Sending many small messages will cause latency to dominate the 
communications overhead

- It is better to package many small messages into one large message

• The less information that needs to be transmitted, the less time the 
communications will require.

• It is often best to have all necessary communication occur at the same time



Synchronous vs. Asynchronous Communication

Synchronous Communication:

• Task A sends the message, and must wait until task B receives message to 
move on

• Also known as blocking communication

Asynchronous Communication:

• After task A has sent the message, it can move on to do other work.  
When task B receives the message doesn’t matter to task A.

• Also known as non-blocking communication

• Requires care to insure that different tasks don’t get wildly out of step,
possibly leading to race conditions or deadlocks.

Consider a communication involving a message sent from task A to task B
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Agglomeration

Agglomeration:

• Combine the many fine-grained tasks from partitioning into fewer coarse-
grained tasks of larger size

• This task must take into account the details
of the problem in order to achieve an algorithm
with good scaling properties and good
efficiency 

• Fine-grained partitioning of a problem is generally not an efficient parallel
design
- Requires too much communication of data to be efficient

• Agglomeration is required to achieve data locality and good performance



Granularity

Granularity is the ratio of local computation to communication.

• Agglomeration is used to increase the 
granularity, improving performance 
since communication is slow 
compared to computation.

• By combining many finely grained tasks,
we reduce both:
(i) number of communications 
(ii) size of communications

• In (a), updating 16 points requires
(i) 16x4=64 communications
(ii) passing 64 “bits”

• In (b), updating 16 points requires
(i) 4 communications
(ii) passing 16 “bits”



Surface-to-Volume in Domain Decomposition
For domain decomposition in problems with local data dependency,
(ex. finite difference):

- Communication is proportional to subdomain surface area
- Computation is proportional to volume of the subdomain

For this 2-D problem:
(a) Surface                  &  Area

Thus,

(b) Surface                  &  Area

Thus,
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A = 16d2S = 16d
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Decrease of surface-to-volume ratio is
equivalent to increased granularity



Other Factors in Agglomeration

Maintaining flexibility:

• It is possible to make choices in designing a parallel 
algorithm that limit flexibility

• For example, if 3-D data is decomposed in only 1-D,
it will limit the scalability of the application

We’ll see this later in the weak scaling example of HYDRO

Replication of Data and/or Computation:

• Sometimes significant savings in communication can be made by replicating 
either data or computation

• Although from a serial point of view this seems inefficient and wasteful, 
because communication is much slower than computation, it can often 
lead to significant improvements in performance.
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Mapping

• For many domain decomposition approaches, the agglomeration stage 
decreases the number of coarse-grained tasks to exactly the number of 
processors, and the job is done

• In general, however, one wants to map tasks to achieve good load balancing 

Mapping Coarse-grained Tasks to Processors:

• Goal: To minimize total execution time

• Guidelines:
- Tasks that can execute concurrently map to different processors
- Tasks that communicate frequently map to the same processor



Load Balancing
• Good parallel scaling and efficiency requires that all processors have an 

equal amount of work
• Otherwise, some processors will sit around idle, while others are 

completing their work, leading to a less efficient computation
• Complicated Load Balancing algorithms often must 

be employed.



Load Balancing

• For problems involving functional decomposition or a master/slave design,
load balancing can be a very significant challange



Parting Thoughts

• But, consider the time required to code a given parallel implementation
- You can use a less efficient method if the implementation is much easier.
- You can always improve the parallelization scheme later.  Just focus on making
    the code parallel first.

TIME is the ultimate factor is choosing a parallelization strategy---Your Time!

• Part of the challenge of parallel computing is that the most efficient 
parallelization strategy for each problem generally requires a unique solution.

• It is generally worthwhile spending significant time considering alternative 
algorithms to find an optimal one, rather than just implementing the first thing 
that comes to mind
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