GPU Programming Using CUDA

Michael J. Schnieders
Depts. of Biomedical Engineering & Biochemistry
The University of lowa
&
Gregory G. Howes
Department of Physics and Astronomy
The University of lowa

lowa High Performance Computing Summer School L
The University of lowa
lowa City, lowa '
-3 June 2015 THE
UNIVERSITY

OF lOWA

L
Outline Tm-;ﬂl]_ﬂ

UNIVERSITY
OF lowA

* Concepts for GPU Computing
* Programming Model for GPU Computing using CUDA C
* CUDA C Programming

* Advanced CUDA Capabilities

L

GPU Computing o [

UNIVERSITY
OF lowA

Graphics Processing Units (GPUs) have been developed in
response to strong market demand for realtime, high-definition

3D graphics (video games!)

GPUs are highly parallel,
multithreaded,
manycore processors

* Tremendous computational horsepower
*Very high memory bandwidth

We hope to access this power for scientific computing

GPU Programming Languages - fl;_ﬂ

UNIVERSITY
OF lowA

* CUDA (Compute Unified Device Architecture) is the
proprietary programming language for NVIDIA GPUs

* OpenCL (Open Computing Language) is portable language
standard for general computing that can exploit capabilities of
GPUs from any manufacturer.

* OpenACC (Open Accelerators) is portable like OpenCL, but
features a directive syntax that is compatible with OpenMP

Each language provide extensions to C (as well as other
languages) that enable the programmers to access the powerful
computing capability for general-purpose computing on GPUs

(GPGPU)

Today we will focus on the basics of CUDA C programming

L

Parallel Computing Architectures i

UNlVElRSl”[Y
Different computer architectures suggest three approaches to~ ©'

parallel computing: 3) GPU (CUDA)
1) Message Passing (MPI) Host
CPUg(SeriaI)

= = Device GPU (Para”el)
Grid 0

Block (0, 0) Block(1,0) Block(2,0)

2) Multith reading (O pen M P) Block (0,1) Block (1,1) Block (2, 1)

—— ——
master
thread

{ parallel region } { parallel region }

Z H O g

Host

CPUg(SeriaI)

L

More Transistors to Data Processing meﬁ

Control

ALU

ALU

ALU

ALU

CPU

CPUs devote a significant

fraction of transistors to data

caching and flow control

UNIVERSITY
OF lowA

~
- |
~
-
:I}

|

|

-
1
-

GPUs devote more transistors
to data processing (arithmetic
and logic units, ALU)

[[] | | [
[L[] | | []
| L[] | | |
| [[] | | ||
[[[] | | [|
[L[] | | []
[L[] | | [
HEN | | [

L

GPU vs. CPU Peak Performance mgﬁ

UNIVERSITY
OF lowA

FLoating point Operations Per Second Memory Access Bandwidth
(FLOPS) (GB/s)

Peak Double Precision FLOPS Peak Memory Bandwidth

GFLOPS
3500

3000

2500

2000

1500

M1060

201 2012 2013 2014 2008 2009 2010 2011 2012 2013 2014
~#—-NVIDIAGPU ~0-—x86 CPU ~#—~NVIDIA GPU ~0--x86 CPU

L

ThE ﬁ

UNIVERSITY
OF lowA

Many Languages for GPU Computing

NVIDIA’ s diverse offerings for GPU Computing
GPU Computing Applications

Libraries and 'Middleware
t VSIPIS

Java
Python
Wrappers

NVIDIA GPU
with the CUDA Parallel Computing Architecture

11 g
Mathematica

Fhys¥ Iy,

OptiX! RealitySerer

Directives
(e.g. OpenACC)

Direct

tm
Compute CpencL

Fortran

Fermi Architecture
(compute capabilities 2.x)

GeForce 400 Series Tesla 20 Series

Tesla Architecture
(compute capabilities 1.x)

Tesla 10 Series

I Proféssional

s Graphics

nce
Computing

L
Outline mﬁ

UNIVERSITY
OF lowA

* Concepts for GPU Computing
* Programming Model for GPU Computing using CUDA C
* CUDA C Programming

* Advanced CUDA Capabilities

L

CUDA C Programming o [

UNIVERSITY
OF lowA

CUDA C Programming Language
* Minimal set of extensions to the C programming language
* Core concepts:

- Hierarchy of thread groups

- Shared memory

- Barrier synchronization

|) Kernel:
* C function executed N times in parallel by N CUDA threads

* Called by the Host (CPU) but executed on the Device (GPU)
2) Thread Hierarchy:

* Grid: Contains many blocks that can be solved independently in parallel
* Block: Contains many threads that can be solve cooperatively in parallel

3) Memory Functions:
* Allocate and Free memory space on Device (GPU),
* Copy data from Host (CPU) to Device (GPU), and vice versa

Thread Hierarchy: Grid of Blocks THEﬁ

UNIVERSITY
OF lowA

Grid: Full problem to be solved
Multithreaded CUDA Program < by GPU is broken into blocks

\

GPU with 2 SMs GPU with 4 SMs Each block is independent.
SMO SM1 SM2 SM3 The blocks can be executed,

in any order, concurrently or
ko,)| sequentially

SMO0

The Streaming Multiprocessors (SMs) control the
execution of each block

(7))
=
[y

This model enables excellent scalability for a varying number of cores per GPU

L

Thread Hierarchy: Block of Threads i

Grid

Block (0,0) Block (1,0) Block (2, 0)

Block (0, 1)" Block (1,1) Block (2, 1)

-
-

Block (1, 1)

UNIVERSITY
OF lowA

Each block contains
many threads

Threads within a block are
executed in parallel, either
cooperatively or independently

L
Memory Hierarchy o [
UNIVERSITY
Very high memory bandwidth can be achieved using a hierarchy of memory OF lowa

All threads have slower

access to global memory

Each thread has private local memory —

Thread Block (0, 0) | Block (1,0) Block (2, 0)

. _ Per-thread local
g - v memory
Block (0,1) Block(1,1) Block(2,1)
Thread Block R
M » Per-block shared
> > memory
+ > Grid 1
Global memory
Each thread block has fast sl | Ry
access to shared memory
Block (0, 1) Block (1, 1)
“—
Block (0, 2) Block (1, 2)

All threads can also access read-only Constant and Texture memory,
optimized for different memory usages

General Flow of CUDA C Program

C Program
Sequential
Execution

Serial code

Parallel kernel

Kernell<<<>>>()

Serial code

Host

Device
Grid 0

Block (0, 0)

Block (0, 1)

Host

Block (1, 0)

Block (1, 1)

Block (2, 0)

R

Block (2, 1)

Parallel kernel

Kernell<<<>>>()

Device

Grid 1

Block (0, 0)

Block (0, 1)

Block (0, 2)

L

THE m

UNIVERSITY
OF lowA

Block (1, 0)
Block (1, 1)

Block (1, 2)

L
Outline Tm-;ﬂl]_ﬂ

UNIVERSITY
OF lowA

* Concepts for GPU Computing
* Programming Model for GPU Computing using CUDA C
* CUDA C Programming

* Advanced CUDA Capabilities

L

Programming in CUDA C e [

UNIVERSITY
OF lowA

* Comparison of Multithreading and GPU Computing

* The Kernel
- Thread Hierarchy

* Memory Functions

* Examples

Comparison to OpenMP Multithreading mﬁ

UNIVERSITY
General Implementation: OF lowa

* Multithreading using OpenMP

master
thread

{ parallel region } { parallel region }

* Parallel Computation on GPU device

Kernel
Copy data §§ §§ Copy data
from s - from
—> | host memory |—> %’% %’% —>|device memory —
Host to = = to Host
device memory g3 host memory

Host Device Device Host

Rl
R

Grid 0

Device

L

The Kernel in CUDA C mgﬁ

UNIVERSITY
OF lowA

Kernels:

* CUDA C enables the programmer to define C functions, called
kernels, that are executed N times in parallel on the GPU device

* Declaration specifier: Kernels are defined using global

~_global wvoid VecAdd(int *a, int *b, 1int *c)

* Kernels are called from the host (CPU) using a new execution
configuration syntax,
<<<blocksPerGrid, threadsperBlock>>>

VecAdd<<<blocksPerGrid, threadsperBlock>>>(d a,d b,d c);

NOTE: Kernel functions are called from the host,
but executed on the device!

L

Blocks and Threads i

UNIVERSITY
OF lowA

Thread Hierarchy:

* The execution configuration specifies:
blocksPerGrid
threadsperBlock

* These variables are 3-component integer vectors of type dim3

* For example,
dim3 threadsperBlock (N, N) ;
defines 2D thread blocks of size N by N

* In the kernel function, the thread ID is accessed through the
variable
threadIdx,where the two dimensions are given by
threadIdx.x and
threadIdx.y

L

Blocks and Threads i

UNIVERSITY
OF lowA

Blocks:
* The block ID and block dimensions are similarly accessed through

blockIdx givingblockIdx.x andblockIdx.y
blockDim givinglblockDim.x andblockDim.y

* A general formula for computing the appropriate index based on

multiple blocks is
int 1 = blockIdx.x*blockDim.x + threadIldx.x;

Limitations:
* The maximum number of threads per block is the number of GPU

cores, 512 for the GeForce GTX580.
* The number of blocks per grid is unlimited, and is determined by
the number of blocks required to do the entire calculation.

* For a 2D computation of size N by N
dim3 numBlocks (N/threadsPerBlock.x,N/threadsPerBlock.Vy) ;

L

CUDA Kernel o [

UNIVERSITY
OF lowA

Standard serial C function
/* Function to compute y=a*x+y */
volid saxpy serial (int n, float a, float *x, float *y) {
for (int i=0; 1 < n; 1i++)
ylil= a*x[1] + yl[1];

}

/* Call Function from main () */
saxpy serial (4096*256, 2.0, x, V)i

Parallel CUDA C kernel

~_global wvoild saxpy parallel(int n, float a, float *x, float *y)

{
int i=blockIdx.x*blockDim.x + threadIldx.x;

if (1 < n) vy[il= a*x[1i] + yI[i]:

}

/* Call Function from main () */
saxpy parallel<<<4096,256>>>(4096*256, 2.0, x, y);

L

CUDA Kernel o [

UNIVERSITY
OF lowA

General Comments:
* The kernel contains only the commands within the loop

* The kernel call is asynchronous
- After the kernel is called, the host can continue processing before

the GPU has completed the kernel computation

Executed | Only callable
on the: from the:
__device float DeviceFunc() device device
__global void KernelFunc() device host
2 host = float HostEunc() host host

* The computations in the kernel can only access data in device

memory
Therefore, a critical part of CUDA programming is handling the

transfer of data from host memory to device memory and back!

L

CUDA Memory Functions i

meq&w
* Device memory is allocated and freed using OF IOWA
cudaMalloc ()
cudaFree ()
Example:
size t size = N * sizeof(float);

float* d A;
cudaMalloc (&d A, size);

* Data is transferred using
cudaMemcpy ()
Example:
/* Allocate array in host memory */
float* h A = (float*)malloc(size);
/* Copy array from host memory to device memory */
cudaMemcpy (d A, h A, size, cudaMemcpyHostToDevice);

Example CUDA code for Vector Addition mgﬁ_ﬂ

UNIVERSITY
OF lowA

#include<stdio.h>
#include<cuda.h>

#define N 100 /* Size of vectors */

/* Define CUDA kernel */
~_global wvoid add(int *a, 1int *b, int *c) {
int tid = blockIdx.x*blockDim.x+threadIdx.x;
if (tid < N)
cltid] = al[tid] + b[tid];

Example CUDA code for Vector Addition mgﬁ

UNIVERSITY
OF lowA

int main () {
int a[N], b[N], c[N];
int *dev_a, *dev b, *dev c;
/* allocate the memory on the GPU */

cudaMalloc((void**) &dev_a, N * sizeof (int));
cudaMalloc ((void**) &dev b, N * sizeof (int));
cudaMalloc((void**)é&dev _c, N * sizeof (int));

/* Copy the arrays 'a' and 'b' from CPU host to GPU device*/
cudaMemcpy (dev _a, a, N * sizeof(int), cudaMemcpyHostToDevice);
cudaMemcpy (dev b, b, N * sizeof(int), cudaMemcpyHostToDevice);
int threadsPerBlock=512;

int blocksPerGrid= (N+threadsPerBlock-1)/threadsPerBlock;
add<<<blocksPerGrid, threadsPerBlock>>>(dev a, dev b, dev c);

/* Copy the array 'c' back from GPU device to CPU host*/
cudaMemcpy (¢, dev ¢, N * sizeof(int), cudaMemcpyDeviceToHost);
/* Free the memory allocated on the GPU device*/

cudakree(dev_a);

cudakree(dev b);

cudafree(dev _c);

L
Outline mgfl]_ﬂ

UNIVERSITY
OF lowA

* Concepts for GPU Computing
* Programming Model for GPU Computing using CUDA C
* CUDA C Programming

* Advanced CUDA Capabilities

L

Advanced CUDA Capabilities o [

UNIVERSITY
OF lowA

* Shared Memory

* Concurrent memory copy and kernel execution

* Asynchronous concurrent execution

* Lower-level CUDA driver API

* Multiple devices on host system with peer-to-peer memory access
* Texture and surface memory

* Graphics functions with OpenGL and Direct3D Application
Programming Interfaces (APls)

Starter Code for CUDA Vector Addition

#include <stdio.h>
#include <stdlib.h>
#include <math.h>

// CUDA kernel. Each thread takes care of one element of c
__global _ void vecAdd(double *a, double *b, double *c, int n)

{
int id = ??? // Get our global thread ID
// Make sure we do not go out of bounds
if (id < n)
c[id] = a[id] + b[id];
}

int main(int argc, char* argv[])

int n = 100000; // Size of vectors

// Declare host vectors

// Declare device input vectors

size_t bytes = n*sizeof(double); // Size, in bytes, of each vector
// Allocate memory for each vector on host

// Allocate memory for each vector on GPU

int i;
// Initialize vectors on host
for(i = 0; 1 < n; i++) {
h a[i] = sin(i)*sin(i);
h b[i] = cos(i)*cos(i);
}

cudaMemcpy(d_a, h_a, bytes, cudaMemcpyHostToDevice); // Copy host vectors to device

int blockSize, gridSize;
blockSize = 1024; // Number of threads in each thread block
gridSize = (int)ceil((float)n/blockSize); // Number of thread blocks in grid
// Execute the kernel
// Copy array back to host
// Sum up vector c and print result divided by n, this should equal 1 within error
double sum = 0;
for(i=0; i<n; i++)
sum += h_c[i];
printf("final result: %f\n", sum/n);

// Release device memory
// Release host memory
return 0;

L
THE ﬁ

UNIVERSITY
OF lowA

Starter Code for CUDA Monte Carlo

#include
#include
#include
#include
#include

__global

}

int main

{

<stdio.h>

<stdlib.h>

<cuda.h>

<curand.h>

<time.h>

void kernel(int* count _d, float* randomnums) {

(int argc,char* argv[])

//NOTE: if threads and/or blocks is changed, niter needs to be changed to reflect
//that change (niter=threads*blocks)

int niter = 100000;

float *randomnums;

double pi;

//Allocate the array for the random numbers

cudaMalloc((void**)&randomnums, (2*niter)*sizeof(float));

//Use CuRand to generate an array of random numbers on the device
int status;

curandGenerator t gen;

status = curandCreateGenerator(&gen, CURAND_RNG_PSEUDO_MRG32K3A);

status |= curandSetPseudoRandomGeneratorSeed(gen, 4294967296ULL"time(NULL));
status |= curandGenerateUniform(gen, randomnums, (2*niter));

status |= curandDestroyGenerator(gen);

if (status != CURAND STATUS_ SUCCESS) {

printf("CuRand Failure\n");
exit (EXIT FAILURE);
}
int threads = 1000;
int blocks = 100;
int* count_d;
int *count = (int*)malloc(blocks*threads*sizeof(int));
unsigned int reducedcount = 0;

//Allocate the array to hold a value (1,0) whether the point in is the circle (1) or not (0)

cudaMalloc((void**)&count_d, (blocks*threads)*sizeof(int));
//Launch the kernel

kernel <<<blocks, threads>>> (count_d, randomnums);
cudaDeviceSynchronize();

//Copy the resulting array back

int i = 0;

// Reduce array into int

// Free the cudaMalloc()'d arrays

// Find the ratio

pi = ((double)reducedcount/niter)*4.0;
printf("Pi: %£f\n", pi);
return 0;

L
THE fl]_ﬂ

UNIVERSITY
OF lowA

