
GPU Programming Using CUDA

Michael J. Schnieders
Depts. of Biomedical Engineering & Biochemistry

The University of Iowa
&

Gregory G. Howes
Department of Physics and Astronomy

The University of Iowa

Iowa High Performance Computing Summer School
The University of Iowa

Iowa City, Iowa
1-3 June 2015

Outline

• Concepts for GPU Computing

• Programming Model for GPU Computing using CUDA C

• CUDA C Programming

• Advanced CUDA Capabilities

GPU Computing

Graphics Processing Units (GPUs) have been developed in
response to strong market demand for realtime, high-definition
3D graphics (video games!)

GPUs are highly parallel,
 multithreaded,
 manycore processors

• Tremendous computational horsepower
• Very high memory bandwidth

We hope to access this power for scientific computing

GPU Programming Languages

• CUDA (Compute Unified Device Architecture) is the
proprietary programming language for NVIDIA GPUs

• OpenCL (Open Computing Language) is portable language
standard for general computing that can exploit capabilities of
GPUs from any manufacturer.

Each language provide extensions to C (as well as other
languages) that enable the programmers to access the powerful
computing capability for general-purpose computing on GPUs
(GPGPU)

Today we will focus on the basics of CUDA C programming

• OpenACC (Open Accelerators) is portable like OpenCL, but
features a directive syntax that is compatible with OpenMP

Parallel Computing Architectures

Different computer architectures suggest three approaches to
parallel computing:

1) Message Passing (MPI)

2) Multithreading (OpenMP)

3) GPU (CUDA)

CPU (Serial)

GPU (Parallel)

CPU (Serial)

More Transistors to Data Processing

CPUs devote a significant
fraction of transistors to data
caching and flow control

GPUs devote more transistors
to data processing (arithmetic
and logic units, ALU)

GPU vs. CPU Peak Performance

FLoating point Operations Per Second
(FLOPS)

Memory Access Bandwidth
(GB/s)

Many Languages for GPU Computing

NVIDIA�s diverse offerings for GPU Computing

Outline

• Concepts for GPU Computing

• Programming Model for GPU Computing using CUDA C

• CUDA C Programming

• Advanced CUDA Capabilities

CUDA C Programming
CUDA C Programming Language
• Minimal set of extensions to the C programming language
• Core concepts:

- Hierarchy of thread groups
- Shared memory
- Barrier synchronization

2) Thread Hierarchy:
• Grid: Contains many blocks that can be solved independently in parallel
• Block: Contains many threads that can be solve cooperatively in parallel

3) Memory Functions:
• Allocate and Free memory space on Device (GPU),
• Copy data from Host (CPU) to Device (GPU), and vice versa

1) Kernel:
• C function executed N times in parallel by N CUDA threads
• Called by the Host (CPU) but executed on the Device (GPU)

Thread Hierarchy: Grid of Blocks

Grid: Full problem to be solved
by GPU is broken into blocks

Each block is independent.
The blocks can be executed,
in any order, concurrently or
sequentially

The Streaming Multiprocessors (SMs) control the
execution of each block

This model enables excellent scalability for a varying number of cores per GPU

Each block contains
many threads

Threads within a block are
executed in parallel, either
cooperatively or independently

Thread Hierarchy: Block of Threads

Memory Hierarchy

All threads can also access read-only Constant and Texture memory,
optimized for different memory usages

Very high memory bandwidth can be achieved using a hierarchy of memory

Each thread has private local memory

Each thread block has fast
access to shared memory

All threads have slower
access to global memory

General Flow of CUDA C Program

Outline

• Concepts for GPU Computing

• Programming Model for GPU Computing using CUDA C

• CUDA C Programming

• Advanced CUDA Capabilities

Programming in CUDA C

• Comparison of Multithreading and GPU Computing

• The Kernel
- Thread Hierarchy

• Memory Functions

• Examples

Comparison to OpenMP Multithreading
General Implementation:

• Multithreading using OpenMP

• Parallel Computation on GPU device

All of this executes on the
multicore host CPU with
access to shared memory

Kernel

Device

Host Host

Copy data
from

host memory
to

device memory

DeviceHost

Copy data
from

device memory
to

host memory

HostDevice

The Kernel in CUDA C

• CUDA C enables the programmer to define C functions, called
kernels, that are executed N times in parallel on the GPU device

Kernels:

• Kernels are called from the host (CPU) using a new execution
configuration syntax,
 <<<blocksPerGrid,threadsperBlock>>>

• Declaration specifier: Kernels are defined using __global__

__global__ void VecAdd(int *a, int *b, int *c)

VecAdd<<<blocksPerGrid,threadsperBlock>>>(d_a,d_b,d_c);

NOTE: Kernel functions are called from the host,
but executed on the device!

Blocks and Threads

Thread Hierarchy:
• The execution configuration specifies:
 blocksPerGrid
 threadsperBlock

• In the kernel function, the thread ID is accessed through the
 variable
 threadIdx, where the two dimensions are given by
 threadIdx.x and
 threadIdx.y

• For example,
 dim3 threadsperBlock(N,N);
 defines 2D thread blocks of size N by N

• These variables are 3-component integer vectors of type dim3

Blocks and Threads

Blocks:
• The block ID and block dimensions are similarly accessed through
blockIdx giving blockIdx.x and blockIdx.y
blockDim giving blockDim.x and blockDim.y

• A general formula for computing the appropriate index based on
multiple blocks is
int i = blockIdx.x*blockDim.x + threadIdx.x;

Limitations:
• The maximum number of threads per block is the number of GPU
cores, 512 for the GeForce GTX580.
• The number of blocks per grid is unlimited, and is determined by
the number of blocks required to do the entire calculation.

dim3 numBlocks(N/threadsPerBlock.x,N/threadsPerBlock.y);
• For a 2D computation of size N by N

CUDA Kernel

/* Function to compute y=a*x+y */
void saxpy_serial(int n, float a, float *x, float *y){
 for (int i=0; i < n; i++)
 y[i]= a*x[i] + y[i];
}

/* Call Function from main() */
saxpy_serial(4096*256, 2.0, x, y);

Standard serial C function

__global__ void saxpy_parallel(int n, float a, float *x, float *y)
{
 int i=blockIdx.x*blockDim.x + threadIdx.x;
 if (i < n) y[i]= a*x[i] + y[i];
}

/* Call Function from main() */
saxpy_parallel<<<4096,256>>>(4096*256, 2.0, x, y);

Parallel CUDA C kernel

CUDA Kernel

General Comments:
• The kernel contains only the commands within the loop

• The computations in the kernel can only access data in device
memory
Therefore, a critical part of CUDA programming is handling the
transfer of data from host memory to device memory and back!

• The kernel call is asynchronous
- After the kernel is called, the host can continue processing before
the GPU has completed the kernel computation

CUDA Memory Functions

• Device memory is allocated and freed using
 cudaMalloc()
 cudaFree()

size_t size = N * sizeof(float);

float* d_A;
cudaMalloc(&d_A, size);

 Example:

• Data is transferred using
 cudaMemcpy()
 Example:
 /* Allocate array in host memory */
 float* h_A = (float*)malloc(size);
 /* Copy array from host memory to device memory */
 cudaMemcpy(d_A, h_A, size, cudaMemcpyHostToDevice);

Example CUDA code for Vector Addition

#include<stdio.h>
#include<cuda.h>

#define N 100 /* Size of vectors */

/* Define CUDA kernel */
__global__ void add(int *a, int *b, int *c) {
 int tid = blockIdx.x*blockDim.x+threadIdx.x;
 if (tid < N)
 c[tid] = a[tid] + b[tid];
}

Example CUDA code for Vector Addition

int main() {
 int a[N], b[N], c[N];
 int *dev_a, *dev_b, *dev_c;
 /* allocate the memory on the GPU */
 cudaMalloc((void**)&dev_a, N * sizeof(int));
 cudaMalloc((void**)&dev_b, N * sizeof(int));
 cudaMalloc((void**)&dev_c, N * sizeof(int));
 /* Copy the arrays 'a' and 'b' from CPU host to GPU device*/
 cudaMemcpy(dev_a, a, N * sizeof(int), cudaMemcpyHostToDevice);
 cudaMemcpy(dev_b, b, N * sizeof(int), cudaMemcpyHostToDevice);
 int threadsPerBlock=512;
 int blocksPerGrid=(N+threadsPerBlock-1)/threadsPerBlock;
 add<<<blocksPerGrid,threadsPerBlock>>>(dev_a, dev_b, dev_c);
 /* Copy the array 'c' back from GPU device to CPU host*/
 cudaMemcpy(c, dev_c, N * sizeof(int), cudaMemcpyDeviceToHost);
 /* Free the memory allocated on the GPU device*/
 cudaFree(dev_a);
 cudaFree(dev_b);
 cudaFree(dev_c);
}

Outline

• Concepts for GPU Computing

• Programming Model for GPU Computing using CUDA C

• CUDA C Programming

• Advanced CUDA Capabilities

Advanced CUDA Capabilities

• Shared Memory

• Concurrent memory copy and kernel execution

• Asynchronous concurrent execution

• Lower-level CUDA driver API

• Multiple devices on host system with peer-to-peer memory access

• Texture and surface memory

• Graphics functions with OpenGL and Direct3D Application
Programming Interfaces (APIs)

Starter Code for CUDA Vector Addition
#include <stdio.h>
#include <stdlib.h>
#include <math.h>

// CUDA kernel. Each thread takes care of one element of c
__global__ void vecAdd(double *a, double *b, double *c, int n)
{
 int id = ??? // Get our global thread ID
 // Make sure we do not go out of bounds
 if (id < n)
 c[id] = a[id] + b[id];
}

int main(int argc, char* argv[])
{
 int n = 100000; // Size of vectors
 // Declare host vectors
 // Declare device input vectors
 size_t bytes = n*sizeof(double); // Size, in bytes, of each vector
 // Allocate memory for each vector on host
 // Allocate memory for each vector on GPU

 int i;
 // Initialize vectors on host
 for(i = 0; i < n; i++) {
 h_a[i] = sin(i)*sin(i);
 h_b[i] = cos(i)*cos(i);
 }
 cudaMemcpy(d_a, h_a, bytes, cudaMemcpyHostToDevice); // Copy host vectors to device

 int blockSize, gridSize;
 blockSize = 1024; // Number of threads in each thread block
 gridSize = (int)ceil((float)n/blockSize); // Number of thread blocks in grid
 // Execute the kernel
 // Copy array back to host
 // Sum up vector c and print result divided by n, this should equal 1 within error
 double sum = 0;
 for(i=0; i<n; i++)
 sum += h_c[i];
 printf("final result: %f\n", sum/n);

 // Release device memory
 // Release host memory
 return 0;
}

Starter Code for CUDA Monte Carlo
#include <stdio.h>
#include <stdlib.h>
#include <cuda.h>
#include <curand.h>
#include <time.h>
__global__ void kernel(int* count_d, float* randomnums) {
}
int main(int argc,char* argv[])
{
 //NOTE: if threads and/or blocks is changed, niter needs to be changed to reflect
 //that change (niter=threads*blocks)
 int niter = 100000;
 float *randomnums;
 double pi;
 //Allocate the array for the random numbers
 cudaMalloc((void**)&randomnums, (2*niter)*sizeof(float));
 //Use CuRand to generate an array of random numbers on the device
 int status;
 curandGenerator_t gen;
 status = curandCreateGenerator(&gen, CURAND_RNG_PSEUDO_MRG32K3A);
 status |= curandSetPseudoRandomGeneratorSeed(gen, 4294967296ULL^time(NULL));
 status |= curandGenerateUniform(gen, randomnums, (2*niter));
 status |= curandDestroyGenerator(gen);
 if (status != CURAND_STATUS_SUCCESS) {
 printf("CuRand Failure\n");
 exit(EXIT_FAILURE);
 }
 int threads = 1000;
 int blocks = 100;
 int* count_d;
 int *count = (int*)malloc(blocks*threads*sizeof(int));
 unsigned int reducedcount = 0;
 //Allocate the array to hold a value (1,0) whether the point in is the circle (1) or not (0)
 cudaMalloc((void**)&count_d, (blocks*threads)*sizeof(int));
 //Launch the kernel
 kernel <<<blocks, threads>>> (count_d, randomnums);
 cudaDeviceSynchronize();
 //Copy the resulting array back
 int i = 0;

 // Reduce array into int
 // Free the cudaMalloc()'d arrays
 // Find the ratio
 pi = ((double)reducedcount/niter)*4.0;
 printf("Pi: %f\n", pi);
 return 0;
}

