Sixth Annual Iowa High Performance Computing Summer School

Gregory G. Howes

Department of Physics and Astronomy

University of Iowa

2523 UCC Training Room
University of Iowa
1-3 June 2015

Thank you

Ben Rogers
Glenn Johnson
Mary Grabe
Sai Ramadugu
Brenna Miller
Tino Kaltsis
Ben Rothman

Information Technology Services Information Technology Services

and National Science Foundation

Outline

- Welcome and Introductions
- Aims of this Summer School
- Comments
- Getting Online

Faculty

The IHPC 2015 Summer School is taught by three faculty members

Professor Gregory Howes

Department of Physics and Astronomy University of Iowa

Professor Hans Johnson

Department of Electrical and Computer Engineering University of Iowa

Professor Michael Schnieders

Department of Biomedical Engineering University of Iowa

Welcome and Introductions

Students from a wide range of departments:

Biomedical Engineering

Chemistry

Civil and Environmental Engineering

Mechanical and Industrial Engineering

Physics and Astronomy

Statistics and Actuarial Science

Please Introduce yourselves:

- Name
- Department and University
- Academic Status and Year (ex. graduate student, 3rd year)
- High Performance Computing Experience
- Research Topic

Aims of this Summer School

To enable you to apply parallel computing to your own research

General Comments:

- Much of this material may be familiar to you
- We plan to explain things from a very basic level to make sure this group from such diverse backgrounds can follow

Comments

A few comments before we get started are in order:

- 1) Terminology: Terminology in this field is not standardized.
 - -This field is new and evolves rapidly.
- 2) HPC is valuable to a wide range of fields:
 - Many examples I use will come from the field of physics.
 - I will try to present the specific problems in a relatively abstract way so that you can consider them simply mathematical problems to be solved.
- 3) Software (programming) vs. Hardware (computers):
 - I am not going to talk a lot about different hardware options, but will focus on the software side, specfically how to design and implement parallel algorithms.

Comments

- 4) Common approaches vs. Exhaustive coverage:
 - -This will not be an exhaustive review of all possible HPC approaches
 - I will focus on the most important and widely used approaches
 - In particular, we will talk a lot about MPI, OpenMP, and CUDA

5) Specificity vs. Generality:

- I will try to strike a balance between specific examples, which are often most illuminating, vs. general considerations which may apply to a more wide variety of HPC applications

Getting Online

Each participant has accounts set up on Neon cluster: University of Iowa, Research Services:

- Neon
 - 258 compute nodes (4216 cores)
 - 38 Xeon Phi 5110P Accelerator Cards
 - 11 Nvidia Kepler K20 Accelerator Cards

neon.hpc.uiowa.edu

• Detailed information for running on Neon is available at

https://wiki.uiowa.edu/display/hpcdocs/Neon+Cluster+Documentation

 See handout for information on getting online and submitting batch jobs

IHPC 2015 Course Website

The website with all of the IHPC 2015 Materials can be found at

http://newton.physics.uiowa.edu/~ghowes/teach/ihpc15/index.html