Chapter 16. Integration of Ordinary
Differential Equations

16.0 Introduction

Problems involving ordinary differential equations (ODEs) can always be
reduced to the study of sets of first-order differential equations. For example the
second-order equation

d*y
dr?

d

- g(x) -2 = r(x) (16.0.1)
dx

can be rewritten as two first-order equations

dy
dx

dz
Z = r(z) - q(@)z ()

= z(x)
(16.0.2)

where 2 1s a new variable. This exemplifies the procedure for an arbitrary ODE. The
usual choice for the new variables is to let them be just derivatives of each other (and
of the original variable). Occasionally, it is useful to incorporate into their definition
some other factors in the equation, or some powers of the independent variable,
for the purpose of mitigating singular behavior that could result in overflows or
mcreased roundoff error. Let common sense be your guide: If you find that the
origial variables are smooth 1n a solution, while your auxiliary variables are doing
crazy things, then figure out why and choose different auxiliary variables.

The generic problem in ordinary differential equations is thus reduced to the
study of a set of V coupled first-order differential equations for the functions
i, * = 1,2,..., N, having the general form

dy;iﬁ) = filz, 11, .-, yn), t=1,....N (16.0.3)

where the functions f; on the right-hand side are known.

A problem mvolving ODESs 1s not completely specified by its equations. Even
more crucial in determuning how to attack the problem numerically is the nature of
the problem’s boundary conditions. Boundary conditions are algebraic conditions
on the values of the functions y; in (16.0.3). In general they can be satisfied at

701

102 Chapter 16. Integration of Ordinary Differential Equations

discrete specified points, but do not hold between those points, 1.€., are not preserved
automatically by the differential equations. Boundary conditions can be as simple as
requiring that certain variables have certain numerical values, or as complicated as
a set of nonlinear algebraic equations among the variables.

Usually, it is the nature of the boundary conditions that determines which
numerical methods will be feasible. Boundary conditions divide into two broad
categories.

= In initial value problems all the y; are given at some starting value z ., and
it 1s desired to find the ;s at some final point z ¢, or at some discrete list
of points (for example, at tabulated intervals).

e In two-point boundary value problems, on the other hand, boundary
conditions are specified at more than one z. Typically, some of the
conditions will be specified at z, and the remainder at x ;.

This chapter will consider exclusively the initial value problem, deferring two-

point boundary value problems, which are generally more difficult, to Chapter 17.

The underlying idea of any routine for solving the initial value problemis always
this: Rewrite the dy’s and dx’s in (16.0.3) as finite steps Ay and Az, and multiply the
equations by Az. This gives algebraic formulas for the change in the functions when
the independent variable z is “stepped” by one “stepsize” Az. In the limit of making
the stepsize very small, a good approximation to the underlying differential equation
18 achieved. Literal implementation of this procedure results in Euler’s method
(16.1.1, below), which is, however, not recommended for any practical use. Euler’s
method 1s conceptually important, however; one way or another, practical methods all
come down to this same idea: Add small increments to your functions corresponding
to derivatives (right-hand sides of the equations) multiplied by stepsizes.

In this chapter we consider three major types of practical numerical methods
for solving initial value problems for ODEs:

» Runge-Kutta methods

» Richardson extrapolation and its particular implementation as the Bulirsch-
Stoer method

» predictor-corrector methods.

A brief description of each of these types follows.

1. Runge-Kutta methods propagate a solution over an interval by combining
the information from several Euler-style steps (each involving one evaluation of the
nght-hand f’s), and then using the information obtained to match a Taylor series
expansion up to some higher order.

2. Richardson extrapolation uses the powerful idea of extrapolating a computed
result to the value that would have been obtained if the stepsize had been very
much smaller than it actually was. In particular, extrapolation to zero stepsize is
the desired goal. The first practical ODE integrator that implemented this idea was
developed by Bulirsch and Stoer, and so extrapolation methods are often called
Bulirsch-Stoer methods. '

3. Predictor-corrector methods store the solution along the way, and use
those results to extrapolate the solution one step advanced; they then correct the
extrapolation using derivative information at the new point. These are best for
very smooth functions.

Runge-Kutta is what you use when (i) you don’t know any better, or (ii) you
have an intransigent problem where Bulirsch-Stoer is failin g,or (11) you have a trivial

16.Q Ing‘roduction | 703

problem where computational efficiency 1s of no concern. Runge-Kuita succeeds
virtnally always; but it is not usually fastest, except when evaluating f; is cheap and
moderate accuracy (5 107°) is required. Predictor-corrector methods, since they
use past information; are somewhat more difficult to start up, but, for many smooth
problems, they are computationally more efficient than Runge-Kutta. In recent years
Bulirsch-Stoer has been replacing predictor-corrector in many applications, but it
1S too soon to say that predictor-corrector is domunated in all cases. However, it
appears that only rather sophisticated predictor-corrector routines are competitive.
Accordingly, we have chosen not to give an implementation of predictor-corrector
in this book. We discuss predictor-corrector further in §16.7, so that you can use
a canned routine should you encounter a suitable problem. In our experience, the
relatively simple Runge-Kutta and Bulirsch-Stoer routines:we give are adequate
for most problems.

Fach of the three types of methods can be organized to monitor internal
consistency. This allows numerical errors which are inevitably introduced into
the solution to be controlled by automatic, (adaptive) changing of the fundamental
stepsize. We always recommend that adaptive stepsize control be implemented,
and we will do so below.

In general, all three types of methods can be applied to any initial value

problem. Each comes with its own set of debits and credits that must be understood
before 1t 1s used.

We have organized the routines in this chapter into three nested levels. The
lowest or “nitty-gritty” level is the piece we call the algorithm routine. This
implements the basic formulas of the method, starts with dependent variables v ; at x,
and returns new values of the dependent variables at the value = + h. The algorithm
routine also yields up some information about the quality of the solution after the
step. The routine 1s dumb, however, and it 1s unable to make any adaptive decision
about whether the solution 1s of acceptable quality or not.

That quality-control decision we encode in a stepper routine. The stepper
routine calls the algorithm routine. It may reject the result, set a smaller stepsize, and
call the algorithm routine again, until compatibility with a predetermined accuracy
criterion has been achieved. The stepper’s fundamental task is to take the largest
stepsize consistent with specified performance. Only when this 1s accomplished does
the true power of an algorithm come to light.

Above the stepper is the driver routine, which starts and stops the integration,
stores intermediate results, and generally acts as an interface with the user. There is
nothing at all canonical about our driver routines. You should consider them to be
examples, and you can customize them for your particular application.

Of the routmnes that follow, rk4, rkck, mmid, stoerm, and simpr are algorithm
routines; rkqgs, bsstep, stiff, and stifbs are steppers; rkdumb and odeint
are drivers.

Section 16.6 of this chapter treats the subject of stiff equations, relevant both to
ordinary differential equations and also to partial differential equations (Chapter 19).

el st a - SR AL

704 Chapter 16. Integration of Ordinary Differential Equations

CITED REFERENCES AND FURTHER READING:

Gear, C.W. 1871, Numerical Initial Value Problems in Ordinary Differential Fquations (Englewood
Cliffs, NJ: Prentice-Hall).

Acton, £.S. 1970, Numerical Methods That Work; 1990, corrected edition (Washington: Mathe-
matical Association of America), Chapter 5.

Stoer, J., and Bulirsch, R. 1980, Introduction to Numerical Analysis (New York: Springer-Verlag),
Chapter 7.

Lambert, J. 1973, Computational Methods in Ordinary Differential Equations (New York: Wiley).

Lapidus, L., and Seinfeld, J. 1971, Numerical Solution of Ordinary Differential Equations (New
York: Academic Press).

16.1 Bunge-Kutta Method

The formula for the Fuler method is

Yn+1 = Yn + NJ(Zn, Un) (16.1.1)

which advances a solution from x ,, t0 ,,..1 = x,,+h. The formula is unsymmetrical:
It advances the solution through an interval h, but uses derivative information only
at the beginning of that interval (see Figure 16.1.1). That means (and you can verify
by expansion in power series) that the step’s error is only one power of h smaller
than the correction, i.e O(h?) added to (16.1.1).

There are several reasons that Euler’s method is not recommended for practical
use, among them, (1) the method is not very accurate when compared to other,
fancier, methods run at the equivalent stepsize, and (ii) neither is it very stable
(see §16.6 below).

Consider, however, the use of a step like (16.1.1) to take a “trial” step to the
midpoint of the interval. Then vse the value of both z and y at that midpoint

to compute the “real” step across the whole interval. Figure 16.1.2 illustrates the
idea. In equations,

fy = hf(:’cnayn)
ko = hf (:Ln + %h,yn + %kl) (16.1.2)
Ynt1 = Yn + ka2 + O(h°)

As 1ndicated 1 the error term, this symmetrization cancels out the first-order error
term, making the method second order. [A method is conventionally called nth
order if its error term is O(h™1)] In fact, (16.1.2) is called the second-order
Runge-Kutta or midpoint method.

We needn’t stop there. There are many ways to evaluate the right-hand side
f(z,y) that all agree to first order, but that have different coefficients of higher-order
error terms. Adding up the right combination of these, we can eliminate the error
terms order by order. That is the basic idea of the Runge-Kutta method. Abramowitz
and Stegun [1], and Gear [2], give various specific formulas that derive from this basic

16.1 Runge-Kutta Method 705

y(x) @ PP

i
i
X1 X2 X3 X

Figure 16.1.1. Euler’s method. In this stmplest (and least accurate) method for integrating an ODE,
the derivative at the starting point of each interval is extrapolated to find the next function value. The
method has first-order accuracy.

y(x)

—— I I A — I_
L4 l T 1 4 I

X1 X7 X3 X

Figure 16.1.2. Midpoint method. Second-order accuracy is obtained by using the imtial derivative at
each step to find a point halfway across the mterval, then using the midpoint derivative across the full
width of the interval. In the figure, filled dots represent final function values, while open dots represent
function values that are discarded once their derivatives have been calculated and used.

idea. By far the most often used is the classical fourth-order Runge-Kutta formula,
which has a certain sleekness of organization about it:

kl == hf(/r:ny yn)

R ’ kl
kahf(fbn'}"é*)yn l 2)
h ko
k?) **hf(/bn”*’ 2>yn+‘“§"

ka= hf(x, +h,yn + ks)

Ynpd = Un - kg R ks R oy (16.1.3)

The fourth-order Runge-Kutta method requires four evaluations of the right-
hand side per step h (see Figure 16.1.3). This will be superior to the midpoint
method (16.1.2) if at least twice as large a step 1s possible with (16.1.3) for the same
accuracy. Is that so? The answer 1s: often, perhaps even usually, but surely not
always! This takes us back to a central theme, namely that high order does not always
mean high accuracy. The statement “fourth-order Runge-Kutta is generally superior
to second-order” is a true one, but you should recognize it as a statement about the

706 | _Chapter 16. Integration of Ordinary Differential Equations

Figure 16.1.3. Fourth-order Runge-Kutta method. In each step the derivative is evaluated four times:
once at the mitial point, twice at trial midpoints, and once at a trial endpoint. From these derivatives the
hnal function value (shown as a filled dot) is calculated. (See text for details.)

contemporary practice of science rather than as a statement about strict mathematics.
Thatis, it reflects the nature of the problems that contemporary scientists like to solve.

For many scientific users, fourth-order Runge-Kutta is not just the first word on
ODE integrators, but the last word as well. In fact, you can get pretty far on this old
workhorse, especially if you combine it with an adaptive stepsize algorithm. Keep
in mund, however, that the old workhorse’s last trip may well be to take you to the
poorhouse: Bulirsch-Stoer or predictor-corrector methods can be very much more
efficient for problems where very high accuracy is a requirement. Those methods
are the high-strung racehorses. Runge-Kutta is for ploughing the fields. However,
even the old workhorse is more nimble with new horseshoes. In §16.2 we will give
a modern implementation of a Runge-Kutta method that is quite competitive as long
as very high accuracy is not required. An excellent discussion of the pittalls in
constructing a good Runge-Kutta code is given in [3].

Here 15 the routine for carrying out one classical Runge-Kutta step on a set
of n differential equations. You input the values of the independent variables, and
you get out new values which are stepped by a stepsize h (which can be positive or
negative). You will notice that the routine requires you to supply not only function
derivs for calculating the right-hand side, but also values of the derivatives at the
starting point. Why not let the routine call derivs for this first value? The answer
will become clear only in the next section, but in brief is this: This call may not be
your only one with these starting conditions. You may have taken a previous step
with too large a stepsize, and this 1S your replacement. In that case, you do not

want to call derivs unnecessarily at the start. Note that the routine that follows
has, therefore, only three calls to derivs.

SUBROUTINE rk4(y,dydx,n,x,h,yout,derivs)

INTEGER n,NMAX

REAL h,x,dydx(n),y(n),yout(n)

EXTE 1NAL derivs

PARAMETER (NMAX=50) Set to the maximum number of functions.
Given values for the variables y(1:n) and their derivatives dydx(1:n) known at X, use
the fourth-order Runge-Kutta method to advance the solution over an interval h and return
the incremented variables as yout(1:n), which need not be a distinct array from y. The
user supplies the subroutine derivs(x,y,dydx), which returns derivatives dydx at x.

INTEGER i

REAL h6,hh,xh,dym(NMAX) ,dyt (NMAX) , vt (NMAX)

=h*(0.5
h6=h/6.
xh=x+hh

16.1 Runge-Kuita Method _ | 707
do 1 i=1i,n First step.
yt (1)=y (i) +hh*dydx (i)
enddo 1
call derivs{xh,yt,dyt) Second step.

do 2 1=1,n
yt (1)=y (i) +hhxdyt (i)
eriddo 12
call derivs(xh,yt,dym) Third step.
do 13 i=1,n
-yt (i) =y (i) +h*dym(i)
dym (i)=dyt (i}+dym{i)

enddo 13

call derivs(x+h,yt,dyt) Fourth step.

do 14 i=1,n Accumulate increments with proper weights.
yout (i)=y (i) +h6*(dydx (1) +dyt (i) +2.*dym(i))

enddo 4

return

END

The Runge-Kutta method treats every step in a sequence of steps in identical
manner. Prior behavior of a solution is not used in its propagation. This is
mathematically proper, since any point along the trajectory of an ordinary differential
equation can serve as an initial point. The fact that all steps are treated identically also
makes it easy to incorporate Runge-Kutta into relatively simple “driver” schemes.

We consider adaptive stepsize control, discussed in the next section, an essential
for serious computing. Occasionally, however, you just want to tabulate a function at
equally spaced intervals, and without particularly high accuracy. In the most common
case, you want to produce a graph of the function. Then all you need may be a

simple driver program that goes from an initial x ; to a final z; in a specified number

of steps. To check accuracy, double the number of steps, repeat the integration, and
compare results. This approach surely does not minimize computer time, and it can
fail for problems whose nature requires a variable stepsize, but it may well minimize
user eftort. On small problems, this may be the paramount consideration.

Here 1s such a driver, self-explanatory, which tabulates the integrated functions
in a common block path.

SUBROUTINE rkdumb(vstart,nvar,xi,x2,nstep,dexivs)

INTEGER nstep,nvar,NMAX,NSTPMX

PARAMETER (NMAX=50,NSTPMX=200) Maximum number of functions and
REAL x1,x2,vstart(nvar) ,xx(NSTPMX) ,y(NMAX,NSTPMX) maximum number of values to
EXTERNAL derivs be stored.

COMMON /path/ xx,y Storage of results.

USES rkd

Starting from initial values vstart (1 :nvar) known at x1 use fourth-order Runge-Kutta to

advance nstep equal increments to x2. The user-supplied subroutine derivs (x,v,dvdx)
evaluates derivatives. Results are stored in the common block path. Be sure to dimension
the common block appropriately.

INTEGER i,k

REAL h,x,dv(NMAX),v(NMAX)

do 11 i=1,nvar {.oad starting values.
v({i)=vstart(i)
y(i,1)=v(i)

enddo 1

xx{(1)=x1

x=x1

h=(x2~x1) /nstep

do 13 k=1,nstep Take nstep steps.
call derivs(x,v,.dv)

708 L Chapter 16. Integration of Ordinary Differential Equations

call rkd(v,dv,nvar,x,h,v,derivs)

if (x+h.eq.x)pause ’stepsize not significant in rkdumb’
X=x+h
xx(k+1)=x Store intermediate steps.
do 12 i=1,nvar
y{i,k+1)=v (i)
enddo 12
enddo 13

return
END

CITED REFERENCES AND FURTHER READING:

Abramowitz, M., and Stegun, .A. 1964, Handbook of Mathematical Functions, Applied Mathe-
matics Series, Volume 55 (Washington: National Bureau of Standards; reprinted 1968 by
Dover Publications, New York), §25.5. [1}

Gear, C.W. 1971, Numerical Initial Value Problems in Ordinary Differentiaf Equations (Englewood
Cliffs, NJ: Prentice-Hall), Chapter 2. [2] |

Shampine, L.F., and Watts, H.A. 1977, in Mathematical Software IlI, J.R. Rice, ed. (New York: Aca-

demic Press), pp. 257-275; 1979, Applied Mathematics and Computation, vol. 5, pp. 93—
121. {3}

Rice, J.R. 1983, Numerical Methods, Software, and Analysis (New York: McGraw-Hill), §9.2.

16.2 Adaptive Stepsize Control for Runge-Kutta

A good ODE integrator should exert some adaptive control over its own progress,
making frequent changes in its stepsize. Usually the purpose of this adaptive stepsize
control 18 to achieve some predetermined accuracy in the solution with minimum
computational effort. Many small steps should tiptoe through treacherous terrain,
while a few great strides should speed through smooth uninteresting countryside.
The resulting gains in efficiency are not mere tens of percents or factors of two;
they can sometimes be factors of ten, a hundred, or more. Sometimes accuracy
may be demanded not directly in the solution itself, but in some related conserved
quantity that can be monitored.

Implementation of adaptive stepsize control requires that the stepping algorithm
return mformation about its performance, most important, an estimate of its truncation
error. In this section we will learn how such information can be obtained. Obviously,
the calculation of this information will add to the computational overhead, but the
wmvestment will generally be repaid handsomely.

With fourth-order Runge-Kutta, the most straightforward technique by far is
step doubling (see, e.g.,[1]). We take each step twice, once as a full step, then,
independently, as two half steps (see Figure 16.2.1). How much overhead is this,
say 1n terms of the number of evaluations of the right-hand sides? Each of the three
separate Runge-Kutta steps in the procedure requires 4 evaluations, but the sin gle
and double sequences share a starting point, so the total is 11. This is to be compared
not to 4, but to 8 (the two half-steps), since — stepsize control aside — we are

achieving the accuracy of the smaller (half) stepsize. The overhead cost is therefore
a factor 1.375. What does it buy us?

