29:195 Homework #1

Cold Plasma Wave Presentations:

Presentations will be made on Tuesday, February 1, 2011 and Thursday, February 3, 2011.

Choose one of the following cold magnetized plasma waves with the specified limits:

1. Cold Plasma Alfvén Waves, \(\omega \ll \omega_{ci} \ll |\omega_{ce}| < \omega_{pe} \); \(k \to 0 \)
2. Ion Cyclotron Waves, \(\omega \approx \omega_{ci} \); \(k \to \infty \)
3. Whistler Waves, \(\omega_{ci} \ll \omega \ll |\omega_{ce}| < \omega_{pe} \)
4. Electron Cyclotron Waves, \(\omega \approx \omega_{ce} \); \(k \to \infty \)
5. LH & RH Circularly Polarized Modified Light Waves, \(\omega > \omega_L \)
6. Magnetoacoustic (Fast) Wave, \(\omega \ll \omega_{LH} \); \(k \to 0 \)
7. Upper Hybrid Waves, \(\omega^2 \approx \omega_{pe}^2 + \omega_{ce}^2 \); \(k \to \infty \)
8. Extraordinary Mode Light Waves, \(\omega > \omega_R \)

For the wave you have chosen, you will give a 10–12 minute presentation before class about the wave mode. In addition, please prepare a 1–2 page summary for distribution as notes to the class. You do not need to go through all of the mathematical steps in this summary, but please do outline the path you followed. Each presentation and summary should cover the following:

1. Limits of the wave (setup of \(k, B \), and limits of frequency and wavenumber)
2. Ion and electron current
3. Limiting behavior
4. Solution of the mode frequency
5. Physical description of the mode
6. Cartoon of the wave mode motion (this is important).