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1. Landau, L., On the Vibrations of the Electronic Plasma, Journal of Physics 10, 25 (1946).

(a) Science Question: What is the evolution of an initial non-equilibrium distribution in a colli-
sionless plasma? What is the penetration of an imposed external electric field on a collisionless
plasma?

(b) Method: An analytical solution of the evolution of linear, high frequency (comparable to the
plasma frequency) oscillations in response to a non-equilibrium distribution is computed, taking
care to handle correctly the analytic continuation of the solution over the entire solution space.
A Laplace transform is used to solve for the time dependence. Simplified analytical solutions are
computed in the limits weak damping and strong damping.

Also, using a similar analytical approach, the penetration of an imposed external electric field
into a plasma is calculated, solving both for cases when the frequency of the applied electric field
is far from resonance with the plasma frequency, as well as resonant cases in which the applied
frequency is above or below the plasma frequency.

The approximations used in this analytical calculation are:

i. Collisions are negligible. ω ≫ ν

ii. Ions are immobile

iii. Equilibrium distribution function f0 is Maxwellian

iv. Linearized: Small perturbations of distribution function, f ≪ f0

v. No magnetic field, B = 0

vi. Electrostatic: E = −∇φ

vii. Fourier transform in space, fk(v, t)eik·r, and focus on the evolution of just a single Fourier
component

viii. One-dimensional: Variation only in x direction, k = kx̂.

ix. A Laplace transform in time is used to solve the initial value problem.

x. Small growth rate approximation, |γ| ≪ ω is used to compute the Landau damping in the
long-wavelength limit, kλe ≪ 1

(c) Citeable Results:

i. The main result of this paper is that, in a collisionless plasma, the electric field fluctuations,
arising from the initial non-equilibrium distribution, are damped in time. This has come to
be known as Landau damping.
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(d) Other Comments:

i. Pulls no punches in criticizing Vlasov’s incorrect solution of the problem.

ii. The prediction of Landau damping was very controversial. With a very elegant and rigorous
mathematical treatment of the complex contour integration, Landau predicted a profound
qualitative effect—the collisionless damping of fluctuations in a kinetic plasma—that had not
been intuitively anticipated.

iii. Landau damping was not experimentally verified until 1964–1966 in experiments by Malmberg
and Wharton.

iv. Similar to what is done in section 2, damping in space (rather than time) can be computed
by assuming as real value of ω and allowing for a complex value of k. Thus, the fluctuation
damps in space rather than time (a boundary value problem, as opposed to an initial value
problem).
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2. Parker, E. N. Dynamics of the Interplanetary Gas and Magnetic Fields, Astrophysical Journal 128,
664 (1958).

(a) Science Question: What mechanism is responsible for gas streaming outward from the sun in
all directions at 500–1500 km/s? What configuration of the general solar dipole magnetic field do
we expect if the gas is streaming radially outward?

(b) Method: An analytical calculation of the steady-state solution of a spherically symmetric flow
driven by a high coronal temperature, where the solution must conserve mass, momentum, and
energy.

The approximations used in this analytical calculation are:

i. Spherical symmetry, reducing problem to one dimension in heliocentric radius, r

ii. Magnetic Field is neglected

iii. Outward surface from with solar wind flows is assumed to be at r = a, where a = 106 km to
represent the outer corona. Note that R⊙ = 7 × 105 km, so this corresponds to a = 1.4R⊙.

iv. Assumes conditions of density, temperature, and velocity at r = a. Uses N0 = 3× 107 cm−3,
and v0 is small in the corona.

v. It is supposed that the heating of the coronal gas to T ∼ 106 K is the basic process, and the
outflow of gas is a secondary effect.

vi. Corona is fully ionized

vii. Assume that the temperature as a function of radius in the solar corona T (r) is given, and
do not concern ourselves with the heating mechanisms necessary to sustain this temperature.

viii. Steady state solution in time.

ix. Conservation of mass (equation of continuity), momentum (equation of motion), and energy
(pressure equation)

x. IMPORTANT: Isothermal approximation: Temperature is maintained at a uniform value (by
some unspecified heating mechanism) from r = a to r = b.

xi. Frozen-In Flux: The gas flowing out from the sun is not field free, but carries with it the
sun’s magnetic field.

(c) Citeable Results:

i. The solar corona cannot be in hydrostatic equilibrium out to large distances because this
implies pressures that are many orders of magnitude larger than the pressure of the interstellar
medium.

ii. The Solar Wind (Fig 1): Solutions to the equations require that, for coronal temperatures
of T ∼ 106 K, flow velocities asymptote to values in the range 500–1500 km/s. This is a
natural consequence of the solution for the spherical expansion. A coronal temperature of
T ∼ 2–3 × 106 K over an extended region around the sun is the simplest explanation for the
origin of outflowing gas.

iii. The Parker Spiral: (Fig 6) The steady-state magnetic field due to the spherically symmetric
outflow of gas from a rotating star yields an Archimedean spiral structure of the magnetic
field.

iv. The torque exerted on the sun by the interplanetary magnetic field is negligible.

(d) Other Comments:

i. Note that this calculation was inspired by Biermann’s pointing out that observations of comet
tails would seem to require gas streaming outward from the sun at 500–1500 km/s, assuming
an interplanetary density of n = 500 cm−3 at 1 AU.

ii. Parker transforms to a somewhat abstract form of the governing equations for this system. He
then uses the mathematical properties to solve this system, and eventually transforms back
to see what are the physical consequences. But the transformation to abstract dimensionless
variables somewhat obscures the physical meaning of his equations.
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iii. It is hard to see from his derivation, but the main point is that, at the critical point of the
solution (the radius where the flow velocity is equal to the local sound speed), both sides of
the solution must be equal to zero. This essentially selects a single physical solution out of a
family of possible solutions.
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