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1. Landau, L., On the Vibrations of the Electronic Plasma, Journal of Physics 10, 25 (1946). [5]

(a) Science Question: What is the evolution of an initial non-equilibrium distribution in a colli-
sionless plasma? What is the penetration of an imposed external electric field on a collisionless
plasma?

(b) Method: An analytical solution of the evolution of linear, high frequency (comparable to the
plasma frequency) oscillations in response to a non-equilibrium distribution is computed, taking
care to handle correctly the analytic continuation of the solution over the entire solution space.
A Laplace transform is used to solve for the time dependence. Simplified analytical solutions are
computed in the limits weak damping and strong damping.

Also, using a similar analytical approach, the penetration of an imposed external electric field
into a plasma is calculated, solving both for cases when the frequency of the applied electric field
is far from resonance with the plasma frequency, as well as resonant cases in which the applied
frequency is above or below the plasma frequency.

The approximations used in this analytical calculation are:

i. Collisions are negligible. ω ≫ ν

ii. Ions are immobile

iii. Equilibrium distribution function f0 is Maxwellian

iv. Linearized: Small perturbations of distribution function, f ≪ f0
v. No magnetic field, B = 0

vi. Electrostatic: E = −∇φ
vii. Fourier transform in space, fk(v, t)eik·r, and focus on the evolution of just a single Fourier

component

viii. One-dimensional: Variation only in x direction, k = kx̂.

ix. A Laplace transform in time is used to solve the initial value problem.

x. Small growth rate approximation, |γ| ≪ ω is used to compute the Landau damping in the
long-wavelength limit, kλe ≪ 1

(c) Citeable Results:

i. The main result of this paper is that, in a collisionless plasma, the electric field fluctuations,
arising from the initial non-equilibrium distribution, are damped in time. This has come to
be known as Landau damping.

ii. Frequency:

ω = ωp

(

1 +
3

2
k2λ2

e

)

Damping Rate:

γ = ωp

√

π

8

1

(kλe)3
e−1/2(kλe)2

(d) Other Comments:

i. Pulls no punches in criticizing Vlasov’s incorrect solution of the problem.

ii. The prediction of Landau damping was very controversial. With a very elegant and rigorous
mathematical treatment of the complex contour integration, Landau predicted a profound
qualitative effect—the collisionless damping of fluctuations in a kinetic plasma—that had not
been intuitively anticipated.

iii. Landau damping was not experimentally verified until 1964–1966 in experiments by Malmberg
and Wharton.

iv. Similar to what is done in section 2, damping in space (rather than time) can be computed
by assuming as real value of ω and allowing for a complex value of k. Thus, the fluctuation
damps in space rather than time (a boundary value problem, as opposed to an initial value
problem).
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2. Van Allen, J. A. and Frank, L. A., Radiation around the Earth to a Radial Distance of 107,400 km,
Nature 183, 430 (1959). [13]

(a) Science Question: What is the nature and spatial distribution of high energy particles trapped
in the Earth’s dipolar magnetic field? These regions constitute the “radiation belts” of the Earth.

(b) Method: The Pioneer III spacecraft was launched to sample the space environment to a radial
distance of 107,400 km. Van Allen’s group at the University of Iowa used two Geiger-Muller tubes
as detetors of high energy radiation as part of the scientific payload of the mission.

The approximations used in this analytical calculation are:

i. Uses the theory of the motion of charged particles in the (approximately known) geomagnetic
field to plot the contours of the radiation belts using measurements along a single radial slice.

ii. The experimental apparatus measures only particles with sufficient energy to penetrate the
shielding of the detector. No information about protons with E < 30 MeV, electrons with
E < 2.2 MeV or x-rays with E < 250 keV is known from this experiment.

(c) Citeable Results:

i. Discovery of the Radiation Belts: Two distinct peaks of q high-energy radiation were mea-
sured. Figure 5 shows a diagram of the inner and outer radiation belts, trapped in banana-
shaped regions of the Earth’s dipole magnetic field. Although this diagram was highly con-
jectural, it captures the essential qualitative details of the electron radiation belts that persist
today.

ii. Dependence on Solar Activity: The paper conjectured that the intensity of the trapped
radiation would be strongly dependent on solar activity.

iii. Interplanetary Cosmic Ray Intensity: Direct measurement of the interplanetary cosmic ray
intensity:

J0 = 3.6 ± 0.8( cm2/s)−1

iv. Possible Connection to Aurorae: The outer radiation zone was thought to be associated with
the high-latitude aurorae. Magnetic field lines at the geomagnetic equator at r = 4.8RE map
to the Earth’s surface 63◦ latitude; similarly, at r = 10RE map to the Earth’s surface 71.5◦

latitude. These latitudes signify the approximate lower and upper latitude extenet of auroral
activity.

(d) Other Comments:

i. Based on this work alone, it was not known if the high-energy radiation was due to protons
or electrons (as it turns out, it was dominated by electrons).

ii. Future work: This work motivated the desire to measure the energy spectra of protons and
electrons in the trapped region.
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3. Parker, E. N. Dynamics of the Interplanetary Gas and Magnetic Fields, Astrophysical Journal 128,
664 (1958). [6]

(a) Science Question: What mechanism is responsible for gas streaming outward from the sun in
all directions at 500–1500 km/s? What configuration of the general solar dipole magnetic field do
we expect if the gas is streaming radially outward?

(b) Method: An analytical calculation of the steady-state solution of a spherically symmetric flow
driven by a high coronal temperature, where the solution must conserve mass, momentum, and
energy.

The approximations used in this analytical calculation are:

i. Spherical symmetry, reducing problem to one dimension in heliocentric radius, r

ii. Magnetic Field is neglected

iii. Outward surface from with solar wind flows is assumed to be at r = a, where a = 106 km to
represent the outer corona. Note that R⊙ = 7 × 105 km, so this corresponds to a = 1.4R⊙.

iv. Assumes conditions of density, temperature, and velocity at r = a. Uses N0 = 3× 107 cm−3,
and v0 is small in the corona.

v. It is supposed that the heating of the coronal gas to T ∼ 106 K is the basic process, and the
outflow of gas is a secondary effect.

vi. Corona is fully ionized

vii. Assume that the temperature as a function of radius in the solar corona T (r) is given, and
do not concern ourselves with the heating mechanisms necessary to sustain this temperature.

viii. Steady state solution in time.

ix. Conservation of mass (equation of continuity), momentum (equation of motion), and energy
(pressure equation)

x. IMPORTANT: Isothermal approximation: Temperature is maintained at a uniform value (by
some unspecified heating mechanism) from r = a to r = b.

xi. Frozen-In Flux: The gas flowing out from the sun is not field free, but carries with it the
sun’s magnetic field.

(c) Citeable Results:

i. The solar corona cannot be in hydrostatic equilibrium out to large distances because this
implies pressures that are many orders of magnitude larger than the pressure of the interstellar
medium.

ii. The Solar Wind (Fig 1): Solutions to the equations require that, for coronal temperatures
of T ∼ 106 K, flow velocities asymptote to values in the range 500–1500 km/s. This is a
natural consequence of the solution for the spherical expansion. A coronal temperature of
T ∼ 2–3 × 106 K over an extended region around the sun is the simplest explanation for the
origin of outflowing gas.

iii. The Parker Spiral: (Fig 6) The steady-state magnetic field due to the spherically symmetric
outflow of gas from a rotating star yields an Archimedean spiral structure of the magnetic
field.

iv. The torque exerted on the sun by the interplanetary magnetic field is negligible.

(d) Other Comments:

i. Note that this calculation was inspired by Biermann’s pointing out that observations of comet
tails would seem to require gas streaming outward from the sun at 500–1500 km/s, assuming
an interplanetary density of n = 500 cm−3 at 1 AU.

ii. Parker transforms to a somewhat abstract form of the governing equations for this system. He
then uses the mathematical properties to solve this system, and eventually transforms back
to see what are the physical consequences. But the transformation to abstract dimensionless
variables somewhat obscures the physical meaning of his equations.
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iii. It is hard to see from his derivation, but the main point is that, at the critical point of the
solution (the radius where the flow velocity is equal to the local sound speed), both sides of
the solution must be equal to zero. This essentially selects a single physical solution out of a
family of possible solutions.
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4. Armstrong, J. W., Cordes, J. M., and Rickett, B. J. Density power spectrum in the local interstellar
medium, Nature 291, 561 (1981). [1]

(a) Science Question: What is the nature of the turbulent energy spectrum in the interstellar
medium as observed via electron density fluctuations?

(b) Method: This study uses eight independent methods to probe the power in electron density
fluctuations within various ranges of length scales. The methods used are:

i. Angular broadening: Angular broadening of unresolved radio sources, such as pulsars, and
interplanetary scintillation of these sources. (L ∼ 106 to 107 m)

ii. Visibility phase scintillation: Phase scintillation of Very Long Baseline Interferometry
(VLBI) measurements. (L ∼ 106 to 107 m)

iii. Interstellar scintillation (ISS) decorrelation bandwidth: (L ∼ 108 to 109 m)

iv. Pulsar timing noise: (L ∼ 1012 to 1013 m)

v. Frequency-time drift: Formulated for two discrete scales (L ∼ 1010 to 1012 m)

vi. Velocity structure functions: Direct measurements of velocity of stars and neutral gas
(L ∼ 1016 to 1018 m)

vii. Density outer scale: Argument for density fluctuation at outer scale. (L ∼ 1018 m)

viii. ISM clouds: Density inhomogeneities predicted by a multi-phase ISM model consisting of
warm, partially ionized cloud shells. (L ∼ 1017 m)

The approximations used in this analytical calculation are:

i. The electron density fluctuations are assumed to be distributed isotropically (the power de-
pends only on the magnitude of the wavenumber), E(3)k ∝ k−α.

ii. The turbulence is homogeneously distributed throughout the ISM.

iii. Multi-phase ISM model is assumed to relate measured velocity structure functions at large
scales to electron density fluctuations: cool (T ∼ 102 K) dense neutral clouds, warm (T ∼
104 K) partially ionized gas, and hot coronal (T ∼ 106 K) plasma. Low wavenumber mea-
surements are thought to be associated with the warm phase. Takes δρ/rho0 ∼ Cδv/vA,
where C = 100±1.

(c) Citeable Results:

i. The electron density spectrum in the interstellar medium is most simply interpreted as a
single power-law spectrum scaling as E(3)k ∝ k−3.6±0.2 over 12 orders of magnitude from an
outer turbulent length scale of 100 pc∼ 1018 m down to small-scales of 107 m.

ii. A Kolmogorov slope of α = −3.67 is consistent with the entire data set; a slope of α = −3.5
is also consistent, however a slope of α = −4 is not consistent with the data.

(d) Other Comments:

i. Radio data alone is consistent with E(3)k ∝ k−3.7±0.6 over 10−11 . k . 10−6 m−1, consistent
with either α = −3.67 or α = −3.5 . But radio data alone cannot exclude α = −4.

ii. A random assembly of density discontinuities would generate a α = −4 spectrum.

iii. Sometimes called the “Great Power Law in the Sky”

iv. Velocity data at the largest scales may also be associated with motions of individual clouds
in the ISM. The lack of measurements over 1012 m. L . 1016 m does not rule out this
possibility, but the spectrum of the velocity structure function appears to be a continuous
spectrum over 1016 m. L . 1018 m.

v. Potential theoretical problems with a single turbulent energy spectrum: coronal phase could
only support waves over 109 m. L . 1017 m, with smaller scale modes damped; warm phase
can only support waves with L & 1013 m; and cool phase only L . 109 m.

vi. Future work required to reconcile turbulent spectrum with models of multi-phase ISM and
to explore the transfer of energy from large scales to small scales.
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5. Goldreich, P. and Sridhar, S., Toward a Theory of Interstellar Turbulence II. Strong Alfvénic Turbu-
lence, Astrophysical Journal 438, 763 (1995). [4]

(a) Science Question: What is the nature of strong turbulence due to nonlinear interactions among
shear Alfvén waves in an incompressible magnetized fluid?

(b) Method:

The approximations used in this analytical calculation are:

i. This work assumes the properties of weak Alfvénic turbulence from Paper I [9]:

A. Resonant 3-wave interactions are empty in weak MHD turbulence (this result turned out
to be incorrect in the context of astrophysical turbulence due to the fact that field lines
tend to wander).

B. In weak MHD turbulence, energy is not transferred to smaller parallel scales, only to
smaller perpendicular scales

C. As the energy cascades to higher perpendicular wavenumbers, the nonlinear interactions
strengthen, ultimately leading to a violation of the assumptions of weak turbulence theory.
The turbulence becomes strong.

ii. Incompressible MHD

iii. Dissipative terms due to magnetic diffusivity and viscosity are dropped.

iv. Uniform magnetic field in equilibrium

v. Consider only shear Alfvén waves

vi. For a finite but small nonlinearity parameter, ζk = k⊥v⊥k/kzvA, a finite cascade time can
be handled by a nonlinear renormalization of frequencies. (This can be thought of as a
“frequency-time uncertainty relationship”). As ζk → 1 from below, it’s growth ceases because
the growth rate of /kzvA approaches that of k⊥v⊥k.

vii. From Kraichnan, nonlinear interactions occur only between wave packets moving in opposite
directions along the magnetic field.

viii. Defines a kinetic equation for the evolution of energy per mode in wavevector space, assuming
the EDQNM (Eddy Damped Quasi-Normal Markovian) approximation. This includes a linear
damping term in the evolution equations of the third-order correlations.

ix. Stationary solutions are sought (no time dependence)

x. Symmetric solutions (corresponding to zero cross helicity, or equal energy fluxes up an down
the field)

xi. Damping

(c) Citeable Results:

i. Conjecture: Shear Alfvénic turbulence reaches a state of critical balance, ζk ∼ 1, a balance
between the linear wave period and the nonlinear timescale at which energy is transferred to
shorter scales.

ii. Scale-dependent anisotropy (parallel and perpendicular scales of turbulence are correlated),

kz ∼ k
2/3
⊥
L−1/3.

iii. One-dimensional energy spectrum Ek ∼ k
−5/3
⊥

.

iv. Critically balanced cascade is most vulnerable to damping by ion-neutral collisions in a par-
tially ionized medium when k⊥l0 ∼ 1, or perpendicular scales of the turbulence k−1

⊥
are of

order the ion-neutral collision mean free path l0. Since diffractive scintillation of pulsars oc-
curs on much smaller scales than lO, the electron density fluctuations must arise in highly
ionized components of the ISM.

v. Viscous damping between protons is negligible above the proton gyroradius. Unless ion-
neutral collisions are significant, the inner scale of the shear Alfvénic turbulence should not
be much larger than the ion gyroradius, k⊥ρi ∼ 1.

vi. Negligible energy is lost to the generation of pseudo-Alfvén waves due to the different polar-
izations of the modes in a critically balanced cascade with k⊥ ≫ kz. Similarly, it is expected
that negligible energy will also be lost to fast waves.
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vii. Electron density fluctuations in the ISM reflect fluctuations of specific entropy at constant
plasma pressure, and the specific entropy is mixed as a passive contaminant by the shear
Alfvénic turbulence. Thus, the power spectrum if the electron density fluctuations assumes
the form of the energy spectrum of the turbulence.

(d) Other Comments:

i. When wave amplitudes are small (and thus energy transfer is weak), kinetic equation (29)
describes resonant 3-wave interactions. In this case, the 3-wave interactions are null. When
interactions are strong, the equation describes nonresonant 3-mode couplings, by choosing
the eddy damping rate of order the eddy turn over rate. In strong turbulence, interactions of
all orders contribute, so 3-wave interactions are an adequate proxy for those of all orders.

ii. Note that this result, an electron density spectrum scaling as k
−5/3
⊥

is consistent with the
observations of the spectrum of electron density fluctuations in the interstellar medium [1],
as well as observed anisotropy in some scatter-broadened radio images.

iii. They cannot explain why shear Alfvén waves are the dominant mode in the turbulence, but
it may be due to damp of compressive modes.

iv. Comparison to related work implies that the related work does not provide any detailed
calculations, or even predictions of the energy spectrum. This appears to be a section that
was added in response to a referee report. Anecdotal story about Matthaeus.
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6. Taylor, G. The formation of a blast wave by a very intense explosion I. Theoretical discussion, Royal
Society of London Proceedings Series A 201, 159 (1950). [11]

(a) Science Question: What is the effect of the sudden generation of energy in a highly concentrated
form (unaccompanied by the generation of gas, as in conventional explosives)?

(b) Method: The problem is solved by finding a self-similar solution for the evolution of the blast-
wave.

The approximations used in this analytical calculation are:

i. A finite amount of energy is released in an infinitely concentrated form.

ii. Assume a self-similar solution, in which the disturbance is similar at all times, merely increas-
ing its linear dimensions with increasing time from initiation.

iii. Spherical symmetry is assumed.

iv. Self-similar variables: Properly scaled, all important variables (pressure, density, and radial
velocity) depend on a single dimensionless coordinate, η = r/R, such that

p

p0
= y = R−3f1(η)

ρ

ρ0
= ψ(η)

u = R−3/2φ1(η)

It is assumed that the solutions have this form, and then we can find equations for the
functions f1(η), ψ(η), and φ1(η) using the equations of motion and continuity and the equation
of state for a perfect gas,

∂u

∂t
+ u

∂u

∂r
= −p0

ρ

∂y

∂r

∂ρ

∂t
+ u

∂ρ

∂r
+ ρ

(

∂u

∂r
+

2u

r

)

= 0

(

∂

∂t
+ u

∂

∂r

)

(pρ−γ) = 0

v. Note that the self-similar solution is a function of only γ, the ratio of specific heats.

vi. The strong shock limit of the Rankin-Hugoniot relations is assumed, limiting the applicability
of the solution to y1 = p1/p0 ≥ 10. Therefore, the analysis ceases to be accurate when the
maximum pressure (in the thin shell just behind the shock) decreases to about 10 atm.

(c) Citeable Results:

i. A spherical shock wave propagates outward whose radius R is given by

R = S(γ)t2/5E1/5ρ
−1/5
0

where ρ0 is the atmospheric density, E is the energy released, and S(γ) is a function of γ, the
ratio of specific heats of air.

ii. An atomic bomb is only half as efficient, as a blast-producer, as a high explosive releasing the
same amount of energy.

iii. The maximum pressure in the ideal problem pmax ∝ R−3, and this compares well to mea-
surements of pressures near high explosives.

iv. Although temperatures are very high near the center of the explosion, the density is very low,
so the energy per unit volume of the gas [the enthalpy p/(γ−1)] is uniform since the pressure
is uniform.

v. For γ = 1.4,

t = 0.926R5/2ρ
1/2
0 E−1/2

.
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(d) Other Comments:

i. Taylor was one of the first people to use numerical integration of a set of Ordinary Differential
Equations (ODEs) to solve a problem. Using values of f , φ, and ψ, at a particular value of
η, he was able to compute f ′ from eq. (14), φ′, from eq. (7a), and ψ′ from eq. (9a).

ii. His method for integrating the set of ODEs was a predictor-corrector type of algorithm.

iii. Note the derivation of approximate formulae is very useful for the days before computers
were widely available. One may apply the results to a particular problem using these simple
formulae to get an approximate solution very quickly. This is still a very useful thing to do,
but is rarely done, with the exception of occasional work in astrophysics.

iv. What will happen after the blast wave goes by? The high temperatures in the center of the
blast may cool radiatively, rapidly reducing the pressure at the center. Atmospheric pressure
will then force gas to flow back toward the center rapidly, leading to severe blow back.
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7. Taylor, G. The formation of a blast wave by a very intense explosion II. The atomic explosion of 1945,
Royal Society of London Proceedings Series A 201, 175 (1950). [12]

(a) Science Question: What was the yield of the 1945 Trinity atomic explosion? Does the scaling
behavior of the resulting blast wave agree with the self-similar blast-wave solution derived in
Paper I,

t = 0.926R5/2ρ
1/2
0 E−1/2

valid for γ = 1.4?

(b) Method: Photographs of the 1945 Trinity atomic explosion are measured to determine the radius
of the shock wave R as a function of time. The measurements are then compared to the self-similar
blast-wave solution derived in Paper I.

The approximations used in this calculation are:

i. It is assumed that air behaves as though γ, the ratio of specific heats, is constant at all
temperatures, an assumption which is certainly not true.

ii. The energy of the explosion can be expressed as

E = Kρ0R
5t−2

where K is a function of γ only, with values in Figure 3 ranging from K ≃ 1.7 at γ = 1.2
to K ≃ 0.6 at γ = 1.6. Assuming an effective value of γ = 1.4, the yield of the 1945 Trinity
atomic explosion was 16,800 tons of TNT.

iii. For the temperature of the gas behind the shock wave at R = 100 m, a value of γ = 1.29
is appropriate. Neglecting the effects of radiation, a second estimate of the atomic yield is
23,700 tons of TNT.

iv. The vertical velocity U of a large bubble in water is related to a, the radius of curvature at
the top of the bubble, by

U =
2

3

√
ga

.

(c) Citeable Results:

i. The measurements taken from photographs of the 1945 Trinity atomic explosion verified the
predicted scaling relationship for a blast wave that R5/2 ∝ t over the range 20 m≤ R ≤ 185 m.

ii. Two estimates of the energy of the atomic blast derived from fitting the proportionality
constant, assuming a specific value of γ, are 16,800 tons of TNT and 23,700 tons of TNT.

iii. The measurements rise of the superheated bubble of air give a value of 35 m/s, in remarkable
agreement with the predicted vertical velocity of 35.7 m/s.

(d) Other Comments:

i. Figure 1 shows the remarkable agreement of the evolution of the atomic shock wave radius
vs. time with the theoretical solution to the problem derived by Taylor.

ii. The effects on the adiabatic index γ due to vibrational degrees of freedom for air at high
temperature, to the dissociation of air molecules, and to intense radiation from the center
and absorption in the outer regions may somewhat neutralize each other, leading the whole
system to behave as though γ has an effective value of 1.4.
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8. Takeuchi, S. Field-aligned accelerations by plasma shocks propagating through interstellar magnetic
fields, Physics of Plasmas, 19, 070703 (2012). [10]

(a) Science Question: What is the mechanism for the acceleration of high-energy cosmic rays
associated with interstellar plasma shocks?

(b) Method: The paper proposes a new mechanism, field-aligned acceleration, by positing a magnetic
field configuration associated with interstellar plasma shocks and estimates the energy gain by
particles trapped in a neutral sheet.

The approximations used in this analytical calculation are:

i. Assumes two plasma clouds, one of which is a shock propagating with velocity vs and con-
taining magnetic field Bz. The second is the interstellar plasma with zero velocity and
B0 = B0 sin θx̂ +B0 cos θẑ, where B0 ≪ Bz. The cross angle is θ.

ii. The electric field in a particular frame of reference obeys the ideal Ohm’s law, E+v/c×B = 0.

iii. The shock is assumed to carry its frozen-in magnetic field.

iv. Charged particles are assumed to be accelerated by the motional electric field due to the
moving plasma in the direction of the magnetic field in the stationary plasma.

v. The principle of superposition of the electromagnetic fields is assumed in the transition region
near the shock front.

vi. The transformed velocity Vy is assumed to be zero initially and to remain zero at all times in
equations (7) and (8).

(c) Citeable Results:

i. None, the paper contains serious mathematical flaws that invalidate the results.

(d) Other Comments:

i. This calculation is seriously flawed for the following reasons:

A. The proposed magnetic field configuration violates the Rankine-Hugoniot jump condi-
tions for MHD shocks. In particular, for strong shocks, Bt2 ≃ 4Bt2. His setup assumes
tangential fields B0 ≪ Bz , with his numerical solution taking B0/Bz = 10−2.

B. The constraint of coplanarity only allows the tangential component of the magnetic field
through a shock to change magnitude across the shock, but not direction. Therefore,
an MHD shock will always have θ = 0, a condition violated by the proposed magnetic
configuration.

C. A strong (fast-mode) shock has flow through the shock plane, meaning that the magnetic
field cannot be frozen into the shock. In the shock frame in Fig 1, plasma A still has
motion in the y-direction.

D. The condition imposed by the magnetic field configuration proposed could be established
as a tangential discontinuity, but this requires total pressure balance p+B2

t /2µ0 =const
across the discontinuity, also not satisfied by the setup.

ii. The principle of superposition cannot be arbitrarily used to combine the electromagnetic fields
near the shock—the electromagnetic fields must be generated self-consistently and satisfy
the constraints imposed by Maxwell’s equations (which are incorporated into the Rankine-
Hugoniot jump conditions for MHD shocks.

iii. The acceleration of the particles employs the electric field on one side of the shock and the
magnetic field on the other side of the shock, apparently a serious inconsistency.

iv. In solving for equations (7) and (8), the transformed velocity Vy is assumed to be zero initially
and to remain zero at all times, but the Lorentz force will lead to non-zero Vy immediately
according to eq (5).

v. The energy gain given by (9) does not depend on angle, but the energy gain from the numerical
integration indicates an angular dependence, signaling an internal inconsistency.

vi. The prediction of indefinite energy gain for π/2 < θ < π must be incorrect due to conservation
of energy—the fields must necessarily lose energy to the accelerated particles.
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vii. IN SUMMARY: One is not free to choose any field and plasma configuration that you wish.
The electromagnetic fields must satisfy the Rankine-Hugoniot jump conditions for MHD
shocks and discontinuities. Once a consistent field configuration is determined, one needs
to compute the particle acceleration in that field (assuming a single particle motion descrip-
tion), accounting for the correct relativistic Larmor motion. Then, a self-consistent descrip-
tion must be computed to show that the particle motion does not negatively feedback on the
electromagnetic fields.
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9. Daughton, W. D., Roytershteyn, V., Karimabadi, H., Yin, L., Albright, B. J., Bergen, B., and Bowers,
K. J. Role of electron physics in the development of turbulent magnetic reconnection in collisionless
plasmas, Nature Physics, 7, 539 (2011). [3]

(a) Science Question: What is the evolution of collisionless magnetic reconnection in three dimen-
sions? What are the observational signatures of such a process?

(b) Method: Particle in Cell (PIC) simulations on petascale supercomputers follow the three dimen-
sional evolution of a Harris current sheet from tens of ion inertial lengths down to Debye length
scales.

The approximations used in this analytical calculation are:

i. Reduced mass ratio mi/me = 100.

ii. Ti = Te

iii. ωpe/Ωe = 2

iv. Plasma βi is unclear.

v. Guide field geometry with By0 = Bx0.

vi. Harris current sheet initial conditions,

B = Bx0 tanh(z/λ)x̂ +By0ŷ

where the half-thickness of the current sheet is equal to the ion inertial length, lambda = di.

vii. Open boundary conditions in the x and z dimensions and periodic boundary conditions in
the y (guide-field) direction.

viii. Open boundary are driven with a 4% large-scale flow pattern.

ix. Density profile is given by
n(z) = n0sech

2(z/λ) + nb

where n0 is central Harris sheet density and nb is uniform background density.

(c) Citeable Results:

i. Three-dimensional collisionless reconnection evolves in a turbulent manner and the tearing
instability naturally forms helical magnetic structures, or flux ropes.

ii. Magnetic islands that form in 2D simulations correspond to extended flux ropes that form with
a particular angle with respect to the guide field. Dominant modes correspond to kxde = 0.08.

iii. Traditional asymptotic methods (which assume λ ≫ ρi) fail to estimate the development
of oblique tearing modes. Exact numerical solutions of the linear tearing instabilities shows
that at oblique angles the asymptotic solution greatly overestimates the growth rates. The
reduced mass ratio mi/me = 100 is very similar to the realistic mass ratio casemi/me = 1836,
providing justification.

iv. The narrow range of oblique tearing modes generated differs from previous expectations,
suggesting generation of turbulence will not develop as previously thought.

v. Electron scale current layers are stable in 2D geometries, but highly unstable to the formation
of flux ropes (by tearing instabilities) over a range of oblique angles. Growth time and
wavelength of the developing structures is consistent with tearing instabilities in electron
current layers.

vi. At long times, the simulation is dominated by the interaction of highly anisotropic structures
across multiple scales, including electron-scale current sheets that continually reform and
break up into filaments, along with flux ropes generated at these scales and quickly growing
well above ion scales.

vii. Observations of reconnection in space plasmas are based on the idealized 2D geometry, but
need to be re-evaluated based on the more complicated reconnection geometry and flux rope
evolution observed in the simulation. In particular, many flux ropes may not have been
properly recognized in previous studies.
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10. Schmidt-Bleker, A., Gassen, W., and Kull, H.-J. Nonlinear plasma waves and wavbebreaking in quantum
plasmas, Europhysics Letters, 95, 55003 (2011). [7]

(a) Science Question: What is the nonlinear evolution of plasma (Langmuir) waves up to and
beyond the wavebreaking limit in a quantum plasma?

(b) Method: Numerical method for the simulation of nonlinear quantum plasma dynamics using the
carrier-envelope wave (CEW) method.

The approximations used in this analytical calculation are:

i. Collisionless (quantum Vlasov equation)

ii. Electrostatic approximation (Vlasov-Poisson system).

iii. Results are compared to the Lindhard dispersion relation for ideal quantum plasmas.

iv. Only electron dynamics are computed—ions are considered a neutralizing background n0.

v. Statistical operator ρ is expressed as an ensemble of representative quantum states |ψ〉,

ρ =
∑

s

ws|ψ〉〈ψ|

vi. In non-equilibrium, the plane waves can be generalized to carrier-envelope waves

Ψs(r, t) = ψs(r, t)e
i(ps·r−ǫst)/h

These describe the equilibrium properties in accordance with the Pauli principle.

vii. The time-dependent Schrodinger equation is transformed to the rest frame of the carrier-
envelope wave.

viii. A finite number (50–100) of carrier-envelope waves are used in the calculation.

ix. Waterbag model employs a uniform velocity distribution −vmax < v < vmax, where vmax =
vF .

x. CEW calculations are performed of 1D Fermi distribution with zero temperature and Fermi
velocity vF . Thus, this is a cold-plasma calculation.

xi. Single-stream model: single CE wave with zero carrier momentum, corresponding to a zero
temperature with Fermi energy of order the plasmon energy.

(c) Citeable Results:

i. The carrier-envelope wave (CEW) method for the nonlinear evolution of quantum kinetic
plasmas is comparable in efficiency to PIC simulation of classical plasmas.

ii. Classic waterbag model with vmax = vF accounts very well for the wavebreaking amplitudes
in quantum plasmas.

iii. Difference from classical wave-breaking: cancellation of positive and negative parts of Wigner
distribution lead to broad peak with side maxima instead of split double peak.

iv. Quantum effects can be explained by a nonlinear coupling of plasmon to free particle modes
in the wavebreaking regime. Wavebreaking amplitudes at negligible fluid pressure are limited
quantum-mechanically by nonlinearly coupled plasmon and free-particle modes. In single-
stream model, large-phase velocity limit leads to a free-particle (high-frequency) mode and a
plasmon (low-frequency) mode. Density develops interference fringes in phase space.

v. Damping of small amplitude plasma waves is computed with the parameters EF = 1.1~ωp

and T = ~ωp. The degeneracy parameter is given by χEF /T .a At increasing temperature the
results converge to the Maxwellian distribution.

(d) Other Comments:

i. In the water bag model the distribution function is a constant inside a certain region of phase
space and zero outside [2].

ii. For Fermi energy exceeding both average interaction energy and temperature, a weakly cou-
pled degenerate electron gas is obtained.
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iii. Plasmon is a quantum of a plasma oscillation. The plasmon is a quasiparticle resulting from
the quantization of plasma oscillations just as photons and phonons are quantizations of
electromagnetic and mechanical vibrations.

iv. Wavebreaking is a fundamental threshold for the nonlinear propagation of plasma waves.
Wavebreaking occurs when the phase-space trajectory v = v(x(x)) develops a vertical slope.
This is important for wave energy dissipation and associated electron heating in collisionless
plasmas. Wavebreaking in quantum kinetic theory is of interest for violation of both fluid
and classical approximations.

v. Quantum Vlasov equation is equivalent to the propagation of quantum states by the time-
dependent Schrodinger equation,

i~∂t|ψ〉 = H |ψ〉
vi. Expectation value for any observable A is 〈A〉 = Tr(ρA)
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11. Schwabe, M. et al. Direct measurement of the speed of sound in a complex plasma under microgravity
conditions, Europhysics Letters, 96, 55001 (2011). [8]

(a) Science Question: What is the speed of sound in a three-dimensional complex (dusty) plasma?

(b) Method: Measurement of the Mach cone angle arising from a supersonic probe traveling at
1 < M < 3 is used, along with the Mach cone relation

sin θ = c/v = 1/M

to determine the speed of sound c. In addition, a molecular dynamics simulation is performed to
compare with and aid in interpretation of the experimental results.

The approximations, experimental setup, or other simplifications used in this paper are:

i. Experiment is performed on the PK-3 Plus laboratory on board the International Space
Station.

ii. Capacitively coupled plasma chamber with circular electrodes of 6 cm diameter and 3 cm
apart, with microparticles injected. Particles form a cloud around the center of the chamber
with a central void caused by ions streaming outwards.

iii. Microparticles of 2.55 µm diameter, md = 1.31 × 10−14 kg.

iv. Subtraction of two subsequent frames shows double Mach cone structure.

v. Velocity of probe particle decreases from 80 mm/s to 37 mm/s, determined by manually
computing the position of the probe particle as a function of time.

vi. Mach cone angles are determined by measuring by eye and by correlating the image with a
rotated rectangle (this seems like a weird choice).

vii. Bigger particles of unknown origin are used as natural supersonic probes f the microparticle
cloud.

viii. Three-dimensional molecular dynamics simulation. Forces on the microparticles are

A. Force due to the potential field of the probe particle

B. Shielded Coulomb interaction from other microparticles,

φ(rij) = (eZd/rij) exp(−rij/λ)

where Zd = 2400 is the charge carried by the microparticle and λ = 38µm is the Debye
length.

C. Neutral gas frictional damping, with frequency γ = 49mboxs−1

D. Stochastic force due to random kicks from surrounding molecules, modeled by Gaussian
white noise.

E. Note that friction and random force are related to the complex plasma temperature
T = 0.025 eV through a fluctuation-dissipation theorem.

ix. Various values of average particle distances, ∆ = 165 µm–180 µm.

x. Electron density depletion due to the high microparticle density is neglected, characterized
by Havnes parameter, H = Zdnd/ne. How strong of an effect would this have? This is not
discussed.

xi. For the simulation, a particle spacing ∆ = 165 µm is assumed.

xii. Speed of sound is predicted using the equation

c =

√

ZdkBTi

md

H

1 +H

where ion temperature Ti is assumed to be room temperature, Ti = 300 K.

(c) Citeable Results:

i. The speed of sound in the complex plasma is 28 mm/s ±20%, determined by a fit to the
Mach cone relation using both experimental measurements and simulation results.
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ii. A double Mach cone structure is seen in both experiment and simulation.

iii. Using the measured speed of sound and the equation for c, they infer Zd = 2400. Drift motion
limited theory prediction for charging is closest to this value (modified orbital motion theory
is also close).

(d) Other Comments:

i. What is one of the key unknowns in these complex plasmas? The microparticle charge, Zd,
which influences the complex plasma properties.

ii. For the simulation, a particle spacing ∆ = 165 µm is assumed. But this does not agree with
the estimated microparticle density from the experiment, 300 mm−3 to 400 mm−3, which give
the values ∆ = 149 µm to ∆ = 136 µm. Why this discrepancy is not addressed is unclear.

iii. Why does this need to be done under microgravity conditions? This prevents the complex
plasma from being strongly compressed by gravity to a more two-dimensional configuration.
Under microgravity conditions, the dynamics of a three-dimensional complex plasma can be
studied.

iv. It is interesting that they use bigger particles of unknown origin, which would generally be
considered a nuisance in this experiment, as a supersonic probe of the complex plasma. “If
you are given lemons, make lemonade.”

v. Double Mach cone structure is attributed to the restoring force on the damped oscillating
background microparticles or to the dispersive nature of the sound waves in strongly coupled
complex plasmas.

vi. They mention a number of different theories, but don’t give the specific results from each
of these theories, so it is hard to understand the variations with respect to these different
theories.
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