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ON THE VIBRATIONS OF THE ELECTRONIC PLASMA

By L. LANDAU

Institute for Physical Problems, Academy of Sciences of the USSR

(Received June 2, 1945)

The vibrations of the electronic plasma are considered, which arose as a result of an arbit-
rary initial non-equilibrium distribution in it. It is shown that the vibrations of the field in
plasma are always damped, and the dependence of the frequency and of the damping decrement
on the wave vector is determined for small and for large values of the latter.

The penetration of a periodical external electric field into the plasma is considered. The
case of the frequency of the external field being almost at resonance with the proper frequency

of plasma is considered separately.

The high frequency vibrations of the elec-
tronic plasma are described by comparatively
simple equations. If the frequency is high enough,
the collisions of the electrons with the ions and
with each other are unessential, and in the kine-
tic equation the collision integral can be neglect-
ed, The distribution function of ions can be
considered as invariable, and only the distribu-
tion of electrons vibrates. Let F (v, r, ) be the
electronic distribution function, if f,(v) is the
equilibrium function (the Maxwell distribution),
then

F=f,()+f(v,r,1). (1)

f being a quantity small as compared with f,.
The kinetic equation (without the colli-
sion integral) is
af e o dfy
5N~V = (2)

(¢— the electric field potential). The Pois-
son equation 1is

Aq;: — 4me S fdx (df“_:dl"xdrl'irz) (3)

(the equilibrium electronic charge e | f,d=
18 of course compensated by the positive
charge of the ions). Equations (2), (3) form
a complete set of equations,

These equations were used by A. A, Vla-
§ 0 v("?) for investigation of the vibrations

of plasma. However, most of his results turn
out to be incorrect. Vlasov looked for the
solutions of the form conste-i!+ikr and de-
termined the dependence of the frequency o
on the wave vector k. The equation, which
he obtained for this dependence contains a
divergent integral; this already indicates on
mathematical incorrectness of his method.
Vl1asov(?)[and also Adirovich(®)] triesto
escape from this difficulty by taking the prin-
cipal value of the integral involved, however,
without any foundation. Actually there exists
no definite dependence of w on k at all, and
for a given value of k arbitrary values of v are
possible. The fact that the solutions of the
form of e—#!+ikv are insufficient can be seen
already by observing that they give only a
c® multitude of solutions (according to three
independent parameters k., k,, k,), whereas
there must actually exist a oo® multitude of
solutions (the equations contain six indepen-
dent variables 2, y, z, vy, vy, U,).

§ 1. The vibrations with a given initial
distribution

In order to obtain a correct solution of
equations (2), (3), it is necessary to consider
the problem in concretely stated; we shall
discuss here two of such problems.

Let us assume, that a definite (non-equi-
librium) electronic distribution in plasma
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is given in the initial moment. The problem
is to determine the resulting vibrations, As
equations (2), (3) are linear and do not con-
tain the coordinates explicitly, the function
f(r.v,t) can ke expandet into a Fourier in-
tegral with respect to coordinates, and the
equation can he written for every Fourier com-
ponent separately. This means, that it is
sufficient to consider the solutions of the form

fk (V, l) eikr'

Further we shall, for the sake of conve-
nience, omit the index k in fy so that f(v, ?)
will denote the Fourier component of the
distribution function in question. By g(v)
we denote the Fourier component of the ini-
tial distribution f(r, v, 0), we shall write
shortly g(v) for gk (v). Finally, we choose
the =z axis along the direction of the consi-
dered value of the vector k.

Taking the Fourier components of equa-
tions (2) and (3), we obtain

A . o
f.d—t--{—terf—zkitp—-* (4)

du, 7
(%)

¢ () is the Fourier component of the poten-
tial @ (r, 7). These equations can be solved by
using the operational method. Following this
method, we introduce the function f, (V) de-
fined by means of

ko (1) = 4re S fd':,

fo 0= f(v, yerar; (6)
0

then
+ix-+to
1 -
f(\’, r)=§?ﬁ fp(v) emdpi (.‘,)

_im+.3

the integration heing performed here in the
plane of the complex variable p along a
straight line parallel to the imaginary axis
and passing to the right of it (¢ > 0).

We multiply both sides of equation (%)
by e and integrate over df. Noting that

=] =] fee]
9 i
(g ematmjon[op Tsemarmpty—
0 0 0
[we insert f(v,0)=g(v)] we obtain

(p+ike) o — ik o 7 e =

In the same way (5) gives
Kgy = bre § £, ds.

The first of these equations yields

. 1 . e afs (v)
fo =57 {e M +ik S e, L0, )
and inserting this into the second one, we
obtain for ¢,:

g(vM)
.. LA
4 L ikv
‘Pp—;e S L 9

1

_hmiet ¢ af, d= )
km S ;J’E. (p+ thoy)

These formulae solve, in principle, the
problem considered. They determine the
electronic distribution and the electric field
for an arbitrarily given initial distribution.

Before proceeding to the investigation of
the formulae obtained, we note that in (9)
the integration over dv,dv, can be perform-
ed directly. Introducing for the following
the notation v,=u and

= gmav,a,

we write
“+oo
g (u)
S Stk o
e —x
('?PH-“:? +eo * (10)
1 hrie? R dfy (u) du
km du (p+ iku)
the equilibrium function being
i —1“3‘2
foy=n |/ g e 5T (11)

(x—the Boltzmann constant, n—the equi-
librium number of electrons per unit volume
of the plasma).

An expression of the type of

oo

By S ¢ (t)e-ridt,
0

considered as a function of the complex
variable p has a sense only in the right
half-plane, {. e. for Re(p)>0. The same
~efers correspondingly to the expression (10).
However, we can deline o, on the left half-
plane as the analytical continuation of
expression (10). It 1s easy to see, that if
g (u) (considered as a function of the complex
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variable z) is an entire function of u (i. e.
it has no singularities at finite u), then the
integral

+w
S lnide

p+iku
—0

continued analytically to the lelt half-plane
of p also defines an entire function of p.
Actually, to perform the analytical continu-
ation of the function, defined by this integ-
ral, from the right half-plane to the left one,
we displace the integration path in the com-
plex plane of u far enough into the lower
half-plane so, that the point u= — p/ik
would lie above it. In this way we shall
obtain an analytical function, defined by
the integral which for Re(p) >0, is taken
along the real axis, and for Re(p) <0 along
the path, which is drawn in Fig. 1 by a
full line. This function has no singularities
at [inite values of p, i. e. it is an entire

function.
'3 A
U - ‘l { Im !‘!"C
! /
‘.‘\ g”‘_g /.t
\ /
. b4
\"'--.___.-'"
Fig. 1

The same refers also to the integral in the
denominator of expression (10), for df, (u)/du
is an entire function. Thus, an analytical,
in the whole plane, function o, is (if g(u)
is entire) a ratio of two entire functions.
Hence the only singularities (poles) of the
function ¢, are the zeros. of the denominator
in (10); all of these poles lie in the leflt
half-plane.

These considerations allow to determine
the asymptotical form of the potential ¢ (¢)
for large values of the time f. In the inver-
sion formula

+icota

: ppe?'dp

p()=5 (12)
—icot-g

~ the integration is performed along a vertical
- line in the right half-plane. However, il ¢,

is defined in the manner indicated above
as a function which is analytical in the
whole plane of p, we can displace the
integration path into the lelt half-plane
going around all the poles of o, it meets.
Let p, be that of the pales of ¢,, i. e. that
of the roots of the equation

4mie? S df, du

km ) du (p+ thu)
¢

1 (13)

(integration along the path shown in Fig. 1),

which has the 1least absolute value of
its real part (¢, e, which is the nearest
to the 1maginary axis). Let us perform

the integration in (12) slong the path,
which is displaced far enough to the left
and goes around the point p=p, in the
manner shown in Fig. 2. Then in the integ-
ral (12) (with large wvalues of ) only the
residue relative to the pole p; will be of
importance. All other parts of the integral
(among them the integral along the vertical
line) will be exponentially small in compa-
rison with the residue due to the presence
of the factor e?t in the integrated expression,
which decreases rapidly with increasing
|Re(p)|.

Thus, for large values of ¢ the potential
of the field o(¢) is proportional to ePx.
With complex p) this factor splits into a
periodical part and a decreasing (Re{(p )< 0)
ones. We arrive, consequently, at an essen-
tial result, that the field is damped with
time, the damping decrement being equal
to— Re (py)-

L,

*

Fig. 2

Equation (13) determines p;, . e. the
frequency and the damping decrement of the
vibrations. It coincides formally with Vla-
sov’s equations, the diflerence being that
here the integration is performed along the
path C, whilst Vlasov integrates simply along
the real axis. This difference leads, as we shall
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see, to qualitatively new results, namely to
the presence of damping.

Consider the limiting case of Jong waves,
k—0. The point u= —p/ik (Fig. 1) is
displaced to very large |u| and as the fun-
ction f,(u) decreases rapidly with increasing
|u|; we can integrate in (13), in the first
approximation, only along the real axis.
We expand the integrand in powers of k.
The first term of the expansion disappears
because

_H»df + oo
S o gu—1f,| =0.

The second term gives

bmer o dy
;2_-’; S uﬁdu:——l.
—30

Taking into account that

‘oo

i
S u;%du:uf‘,

—0

+oo
s S fudu: — (14)

we find
=, m=‘/"’:f’zwo (15)

(we have chosen here the sign, which corres-
ponds to a wave, propagating in the positive
direction of the z axis). This expression
corresponds to the ordinary proper frequency
of plasma; we denote it by w,. In the next
approximation the calculation leads to the
following dependence of the frequency on
the wave vector:

w=w0(1+§a’k’). (16)

xT ; .
a=|/ 4. Dbeing the electronic Debye—

Hiickel radius. We omit here the detailed
calculations because they coincide with
that of Vlasov done in his first paper(}).
This part of his calculations turns out to
be correct due to the fact, that in calculat-
ing the frequency for small values of k, we
can approximately integrate in (13) only
along the real axis.

However, the wvibrations are actually
damped, although the damping coefficient is
small for small k. To caleculate this decrement
we start from an assumption (which is verified

by the result), that for k— 0 the real part
of p, tends to zero, the imaginary part
remaining finite. Hence for small k& the
point u= —p,/ik (Fig. 1) is situated at a
finite distance from the imaginary axis and
very near to the real one (under the latter).
Let

= —io—T1,

{ is the damping coefficient in question
(0 <y« w). We choose a point A on the
real axis (Fig. 1), situated not far of the
point w= — p,/tk, but so, that ifs distance
from this point is still large as compared
with |Im(z)|. Then we draw a semicircle
AB through this point (shown with a dott-
ed line in Fig. 1) and use it instead of the
corresponding part of the integration path C.

The integral along the straight parts of
the integration path is real in the limit-
ing case of Re(p)=0, in the approximation
considered we can put it equal to — 4xne?/mp*.
As to the integral along the semicircle, it
equals the residue relative to the pole, mul-
tiplied by =i (a half of the total circle!). In
this way we obtain equation (13) in the

form
p
hane? | . hnted e/o ( _E) =3
" mp? mk2 du =
Putting here p= —iw—y and solving

the equation by means of successive appro-
ximations, we get finally the following
expression for the damping decrement:

T %——wzl e—1/a(ka)2 17y

Thus, the damping decrement decreases ex-
ponentially with decreasing k.

Formulae (15)—(17) are valid for y € o.
This condition leads to the inequality

ka € 1.

Consider now the opposite limiting case
of large k. We put again p= —io—vy. It
will be verified by the result, that both o
and y increase indefinitely with k—> co but
in such a way, that for large k¥ © € Y and
the ratios w/k, y/k tend to zero and infinity
respectively. Then the pole u= —p/ik 1s
situated relatively near to the imaginary,
but far from the real axis [Re(z) is small,
Im (u) is large]. As- the function f, increas-
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i

es exponentially for large imaginary values
of u, we can integrate in (13) only along
the circle around the pole, neglecting the
integral along the real axis. In this way we

obtain from (13)
4
dfn( = I‘?’c')
du

hme? ;

HTh e e
or, using expression (11), for f,(u)
, o

= p_ _geira)E _
]/'211:%”‘_&]a e" o =1.

By taking the moduli of the expression
on the both sides of the equation, and using
the suggested inequality y > o, we get

Eet'/s = _V'*__n (ak)?

(18)

(19)

with
E = Y/muka-

The phase factor of the expression in the
left side of equation (18) is equal, in the
same approximation, to

iTor
e { o) -

As in the right of the equation stands a
real positive quantity, this factor must be
equal to 4 1. Hence we find:

Yo

By W — 4
w} a?k?

lit can be shown, that by equating to 3=,
5m, we would get a root of the equation (13),
which is not the nearest to the imaginary
axis]. Together with the definition of the
quantity & this gives

o=x)/LTE, =)/ Tk ()

These formulae determine the frequency
and the damping decrement of the vibra-
tions, the function & (k) being defined impli-
citly by equation (19). & (k) is a slowly increas-
ing function of k (it goes approximately
as }/Inka). The ratio y/o increases with &
a8 §*, i. e. approximately as ln ka.

-, In the preceding calculations we suppos-
. ed, that the given function g(z) is an entire
; Il_lqct.lon. If this function has singula-

~rities, then ¢, will also possess singularities
__apart from the poles, which are zeros of the
~ denominator in (10). The point p, in Fig, 2,

which determines the behaviour of the poten-
tial @ (2) for large £, must ke chosen as the
nearest to the imaginary axis of all the
roots of equation (13) and of the singulari-
ties,whicharise from the singularpoints of g (z).

In particular, if g(u) is (on the real
axis) a continuous function with a disconti-
nuous derivative, then ¢, will have purely
imaginary singular points p= — tkug; u,
being the discontinuity points of g(u). Thus,
the behaviour of ¢(f) for large ¢ will be
determined by purely imaginary values of p,,
i. e. there will be no damping of the field.
Hence it follows, that it is by no means
possible to use a curve with angles (e. g.
composed of straight pieces) for g(u) instead
of a smooth one in order to get an approxi-
mate solution of a given problem. Such a
substitution will lead to a qualitatively
incorrect picture with an undamped field
vibrations.

Finally, it is necessary to discuss the
electronic distribution function itself. For
the distribution function, integrated over
dvydv, we have, according to (8):

1 ike df, (u)
frW)= p+iku {g(u)—l_'_m" Pr fauu !
1 +iceta
fa, =g ( fo()evar.
—icot-a

The behaviour of the function f(u,?) for
large t i3 determined by purely imaginary
singular point p= —iku of the function
f,(z). Thus, the distribution function turns
out to be proportional (for large £) to a pe-
riodical factor e ***! ¢, e. it performs undamp-
ed vibrations with a frequency ku which
depends on the velocity u.

§ 2. The vibrations of plasma in an external
electric field

Suppose, plasma is placed into an extern-
al periodical electric field. The problem
is to find the law of the penetration of the
field inside the plasma. The external field can
be expanded into a Fourier integral with
respect to time; therefore, we can confine our-
selves to consideration of a monochromatic
field of a frequency w. We suppose that the
plasma is bounded by a plane wall; all the
distribution is a function only of a one
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coordinate, say z, along the axis, perpendi-
cular to the wall.

The electric .field can be split into a
longitudinal part, directed along the z axis,
and a transversal part p which is parallel
to the plane of the wall. It is no need to
consider the transversal field, because the
behaviour of a plasma in a transverse electro-
magnetic wave is described by well known
formulae. Therefore, we confine ourselves
to the case of a longitudinal field.

As in § 1, we use the distribution func-
tion, integrated over the unessential variab-
les 2, v,. We can loock for this function
f(u,z,t) in the form of f(u, z)e—i! (u de-
notes, as above v,).

The kinetic equation (2) becomes now
eE(x) dfy (u)

“lol¥) _ 0

3 daf
i Ilﬁf-|- & Iz .3 m du (21)

[we write the eleciric field in the form
E (z) e—i»!]. As a second equation it is con-
venient to use here [instead of the Poisson
equation (3)] the equation, which expresses
the absence of the sources for the total cur-
rent (the real j current and the displace-
ment current):

div (j—gﬂ)=£ (i—pE)=0.

Hence we find that 4nj —iwE is a constant.
Outside the plasma j=0; therefore, this
constant equals —iwE, where E ¢t i3 the
external field. Thus, we have an equation

—E (z)+4nj (2)= — 0K, (22)
The current density j ( z) can be expressed
through the distribution function by means of

“+ oo

j=e Su,j(u,x)du.

—00

(23)

At large distances from the wall the
field E in the plasma is determined directly
by the condition of the constancy of the
longitudinal component of the induction

[==]

mu
0

f (w, ) = eivx/m [ S ¢E (€) % elot/u g § 2%%)% e—ivt/u dE]

D=c:zE, the dielectric constant & of the
plasma being equal to the well-known expres-
sion

e=1—

hrue?
- (26)

Outside the plasma D= E_ hence the
boundary condition at infinity is

1‘_7}=-‘%l for z= + (25)
(the positive direction of the z axis is inwards
the plasma). ;

As to the properties at the wall, we shall
suppose (as it i8 usually done in analogous
cases), that it has an ideal reflection power.
This means that an electron, colliding with
the wall, is reflected under the angle, equal
to that of the incidence, and with the unchang-
ed absolute value of its velocity (so that
vy, U, remain unchanged, and v, =u changes
its sign). Then the distribution function must
satisfy on the wall (z=0) the boundary
condition

f@,0)=f(—u,0). (26)

We integrate formally equation (21) and
find:

A ¢E (2)df, .
]l(u, .’b)= — eiwx/u S o d_.': e—iwx/w dg

In order to determine the integration con-
stant, we proceed in the following way, Con-
sider ® as a complex parameter with a small
positive imaginary part (which we tend in
the following to zero). Then the external
field E, ¢! increases with time, but as it
is finite for every finite value ol ¢, the dis-
tribution function must also be everywhere
(for all = o) [inite.

If u <0 then the factor ei®*/* increases
indefinitely with z, and in order that f (z, o)
remains finite we must write for u < 0:

[e2]

. F (Z) d SR T
I (n, z)=elv S eMiL-]'—-*—-’;iu} e-iwt/ugs

(27)

x

As to the function j (u,z) for u> 0 it must
be written so, as to fullil the condition (26).
This gives foru > O

x

(28)

e i
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(it is to be remembered, that f, (1) is an even function of u, hence dj,/du is an odd fun-

ction).

=-]

f‘—"g‘;{sE(E)K(x-ﬁ)d’c'—!-SE(E)K(E—x)dE——-SE(E)K(x+E)dE},
0 d

x

where the function X (£) is defined by means of

oo
bmie? C df, .
s 210 piwt/u
= Sdu e du,
0

K E>0  (30)

[(29) contains K (§) only for positive values
of the argument].

In the following it is convenient to split
E (z) into.two terms, separating the value of
the field for z — + co:

E(x)="2 1 E, (2. (31)

<o

E,(x)— | K(e— 8 E, (9 di (K- B @ ae+ \ K@+ E, @ de=—"22
1] 0

x

In calculations we used here expression (24)
for e and the expression for the integral

gK(E)dE which can be obtained in the fol-

lowing way. Consider again o as a complex
parameter with Im (o) > 0. Then eivt/v ig zero
for £ = oo, and integrating over dt under the
sign of integral in (30), we get

§°K(E) - _“E’fu‘-’“—d,u.
0

mao? du

The integrand u (df,/du) is an even function
of u hence this integral is a half of the
integral (14). Finally,

-0
&w»@xu—aam&=i

Using the obtained expressions, we calculate the current density (23):

(29)

According to (25), E, (z) satisfies the boun-
dary contidion E, (c0)=0. Inserting(31) in-
to (29), we obtain easily:

=i @)+ B \ K@) & (32)
0

j.(z) defined by (29) with E,(z) standing
instead of E (x).

Inserting (31), (32) into (22) and perform-
ing some elementary transformations, we
obtain the following integral equation for
the function E, (x)

oo a

o (K@de (33)
0

8

nein
\ K@a =223, (36)
0
The integral equation (33) can be solved
in the following way. The function E, (z) has
a physical meaning only inside the plasma,
i. e. for x > 0. We continue this function,
and also the function K (§) into the region
of negative values of the argument by means
of the definitions:

K(=8)=K(), E,(—2)=—E,(z) (35
[the function E, (z), thus defined, has a dis-
continuity at # = 0]. Then equation (33) after a

simple transformation is reduced to a simp-
ler form:

lf—"’-f-sgx(s)dt for z >0,
o (36)
(k@ for z<0.

-_—
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In this form it can be solved by using Fou-
rier method, Multiplying Loth sides of the
equation bye-#= and integrating over dz within
the limits between — oo and -+ oo, we obtain:
‘.’IZEO K,— K

By (1—Ky)= 50T K,

E,;, Ki being the Fourier components:

+eo 400
Bu= \E,@e™dr, K= K@
=8

—0

(K, i8 the value of K; for k=0). By means
of the inverse transformation

+oo
1 ihr
E, (z)=» SElke’* dk

—_m0

we get the function E,(z) in question in
the form of an integral:

oo

E, (z)=2

—_—n0

KO_K}‘

iRz
F=Ey) e dk.

(37)

The function K, can be presented in the
following form:

oo

¥ e
du du
) ku — w

—C0

hme?
mw

[we used the definitions (30), (35) and the
integration over df is performed under the
sign of the integral over du with o consi-

+§° K, K, (k)
FI1—K, (k)]

—0

E,(z)="

e

In transformation we used, that according
to (24), (38), (14) we have

sl (41)

The difference K,(k)— K,(k) is evidently
expressed by the same formula (38), the in-
tegration being performed simply along a
closed contour enclosing the pole (in the ne-
gative direction). According to the theorem
of the residues, we have, consequently,

iEq

e

etk dk 4

dered again as complex with Im(w) > 0]. If
this integral is taken simply along the real
axis, it diverges at the point u =w/k. How-
ever, it is easy to see which must be
actually the path of integration. In deduc-
ing (38) we assumed that Im(v) > 0 and the
integral was taken along the real axis, i. e.
along a path, passing below (if k> 0), or
above (if k < 0) the singular point u=uw/k.
Therefore, after putting Im (v) equal to zero,
the integral (38) must be taken (if k > 0)
along the path C, (Fig. 3), which proceeds
along the real axis and goes around the sin-
gular point below it, or (if £ <0) along
the path C, which goes around the singular
point above it.

“r
— 4
sl & ik - 0

Fig. 3
We introduce the notations:

K,=K,(k)for k> 0; K=K, (k) for k < 0. (39)

The functions K, (k) and K, (k), defined for-
mally by (38) with the integral taken along
the path C, or C,, are analytical functions
in all the plane of the complex variable k.

Expression (37) is inconvenient for calcu-
lations. Introducing the functions K,, K, we
can represent it, after a simple transforma-
tion, in the form of

T E, (k) — K, (k)
=K, (=K, (7]

—_—0

eikx d, (40)

Lne? ) d
K,()—K, ()=—mo 2i (w3, @2

or o :"k
i .'Z_m e &
K, By I, (i e ,

L

It is easy to see, that the functions K, K,
are connected with each other by means of
the following relations:
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(K, (B)]" =K, (k)

K (—k)=K,(k), K,(—K)=K,(k). (43)

At infinity both funections K, K,, vanish.
An investigation which we omit here, shows,
that the functions K, (k), K, (k) have in the
whole plane of the complex variable k& only
one singular point — namely, an essential sin-
gularity at k=0. The quantity K, is the li-
mit to which K,, K, tend when k tends to
zero along the real axis. It can also be shown,
that K, (k) tends to the same limit K, when
k tends to zero along an arbitrary path, pas-
sing *outside a right-angled sector in the
upper half-plane, bounded by two straight
lines, which intersect at the coordinate origin
and make an angle of 45° with the imagi-
nary axis. The same holds for K, (k) outside
an analogous sector in the lower half-
plane.

In the integrals (40) those points are of
importance, at which K,, K, are equal to
unity. It can be shown, that the equation
K, (k)=1 has an infinite number of rootsin
the upper half-plane, which converge to a
condensation point at k=0. In the lower
half-plane there are no roots at all if e >0
(i. e. if K < 1), or there is one root on the
imaginary axis if e<<0 (i. e if K,>1).
Analogous results for the function K, (k)
follow directly from the relations (43): the
equation K,(k)=1 has an infinite number
of roots in the lower half-plane, and has no
roots at all (if e > 0), or has one root on
the imaginary axis (if ¢<0) in the upper
one.

oF,

I (x)= Ve (:_};)4/3 (_Z_)’/s 3—§

Thus, the field E, (x) decreases according
to an exponential law with z2/3 in the expo-
nent [as to the first term in (40), we have
seen that it decreases according to a stronger
law e-** and is, consequently, insignificant
for large z]. Expression (44) contains also a
periodical factor.

The case of the frequency w, being nearly
a8t resonance with the proper frequency of
the plasma, needs a separate consideration.
The dielectric constant is here small, |e| € 1
(and is connected with the frequency by

Consequently, if = >0 the integrand of
the first integral in (40) has no poles in the
upper half-plane and by pushing the path of
integration to infinity in thiz half-plane, we
find, that the integral vanishes. If, on the
other hand, =<0, there is a pole in the
upper half-plane and the integra] is reduced to
the residue relative to this pole. Its dependence
on z is, consequently, given by an exponen-
tially decreasing faclor e—=*, a=0.

A complete evaluation of the integrals
in (40) can be performed only numerically.
It 1s, however, possible to obtain an asym-
ptotical expression, which determines E, (x)
for large values of z (x > a). We shall see,
that in this region the second integral in
(40) is larger as compared with the firstone
and we must calculate only it. We shall
do it with the aid of the well-known
“method of steepest descent’. Inserting (42)
into (40) we obtain in the integrand an expo-
nential factor

exp {—--;m(urt:k)z—}-ikx} ;

Following the method of steepest descent we
expand the exponent in powers of 8k=%k —k,

where
g/ ——5
w
ko =g l/mu‘a’x

18 the extremum point of the exponent, and
then integrate along the path of “the steepest
descent’’. In the non-exponential factor we can
put k= k, and take it out of the integrationsign.
In the denominator we can put 1— K, (k,) =
=1—K(k)>=21—K,=e (k, is small for
large z). After a simple calculation we obtain
the following final result

0z 12/ -[3Vé' w \2/s EE]
_) gl 4 (No". +3

ein/6

Woa

(44)

means of a simple relation e=22_=0) The

Yo
calculations proceed differently for =<0
and for e > 0,

Suppose first that = is small and negati-
ve. We have seen, that for e <O the first
term in (40) decreases as e—°%, i, e. faster
than the second one. But with [e| < 1 the
coefficient « turns out to be small, and
therefore, the second term becomes predomi-
nant only for very large z; for smaller va-
lues of z the first term prevails.
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We shall see, that the integrand of the
first term has (for small |e]) a pole, lying
on the imaginary axis near to the coordina-
te origin [we are speaking of the only root
of the equation K,(k)=1 in theupper hali-
plane]. To calculate this root we can, there-
fore, expand K,(k) in powers of k. As to
the path of integration C, in the integ-
ral (38), which defines K, (k), it is reduced
simply to the whole real axis—this path
passes above the singular point u = o/k (which
lies now on the negative half of the imagi-
nary axis). A simple calculation gives in the
second approximation

K,(k)=1—e4 3 (ka)’.
Hence we find for the root of the equation

K,(h)=1: L
_ [e]
k*:;l/‘s?-

Evaluating the first integral (40) as the re-
sidue relative to this pole, we find, finally,
the ‘following expression for the total field

E(x) e
pw=2(1-VE).

Thus, if ¢ is small and negative, the
field increases monotonically, according to a
simple exponential law, tending to the li-
mit E /e. For 2=0 (45) gives E (z)=0in-
stead of the correct wvalue E, this 18 con-
nected with the fact that in the adopted
approximation the quantities of the order
of e are neglected.

Consider, finally, the case of small posi-
tive values of e. For £ >0 the first term

(45)

in (40) vanishes. However, the second integ-
ral contains, except the expression (44),
also a term, which decreases according to 2
law e—**, For very small ¢ this term beco-
mes predominant for all values of z, except
the largest. This term is due to the residue
relative to the integrand, which lies in the
upper halt-plane near the real axis. It
turns out, that among the infinite number
of the roots of the equation K, (k)=1in the
upper half-plane there exists one, which
lies (for small ¢) very near to the real axis.
Expanding the function K,(k) in powers of
k, it is easy to obtain the following ex-
pression for the root in question:

m [V iG]

Calculating the residue relative to this
pole, we obtain, finally, the following ex-
pression for the field:

E(x):%—"[i—exp {i /éx—-

3 ™
Y i 3x/2e
2a BT } ] :

(46)

Thus, in this case we find that the am-
plitude of the field increases, first, from
zero (actually from E ) up to 2E,/e, and then
it performs damped oscillations (With
a very small damping decrement) around
the value E,/= to which it tends on large
distances.

Translated by E. Lifshitz.
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