I. Magnetic Buoyancy

A. Importance

1. In compressible fluids, magnetic buoyancy serves to expel magnetic flux from the Sun, stars, accretion disks, and galaxies.

2. Magnetic buoyancy is the driver of magnetic activity in astronomical objects. For example, the solar dynamo is believed to generate active regions and lead to energy transport into the corona, which ultimately accelerates the solar wind.

B. Why are magnetic fields buoyant?

1. Consider an isolated magnetic flux tube in a plane isothermal atmosphere.

 \[B_0 = 0 \]

 \[g = g_f \]

 \[2\pi R \]

 \[B_0 = 0 \]

 a. Outside the magnetic flux tube \(B_0 = 0 \), so we have an isothermal plane atmosphere (see Eq 18, II B.8.c).

 \[p_0(z) = p_0(0) e^{-\frac{z}{H}} \]

 where \(H = \frac{2T}{mg} \) is scale height.

 b. For a flux tube radius \(R < H \), conditions around the flux tube are almost uniform, \(p \approx \dot{p} \).

 2. Cross-Section

 \[\frac{2}{r} \]

 \[p_0 \] As \(\dot{p} \), \(B_0 = 0 \)

 a. In \(\dot{r} \)-direction, pressure balance is

 \[\frac{2}{r^2} (p_i + \frac{\dot{r}^2}{2}) = \frac{2}{\dot{r}} (p_0) \]

 \[p_i \]
Lecture #22 (Continued)

1. B. 2. (Continued)

b. Zwiebach: pressure balance yields \(p_i + \frac{B_i^2}{8\pi} = p_0 \)

3. Since \(T_i = T_0 = T \) and \(p = \frac{2T}{mp} \),

a. \(p_i \frac{2T}{mp} = p_0 \frac{2T}{mp} - \frac{B_i^2}{8\pi} \Rightarrow p_i = p_0 - \frac{B_i^2}{8\pi} \frac{mp}{T} < p_0 \)

b. Thus, since \(p_i < p_0 \), the Alfvén tube is buoyant.

c. Vertical Force: Gravity: \(-p_i g \hat{z} < -p_0 g \hat{z} \Rightarrow \) so Alfvén tube has acceleration upward relative to surrounding plasma.

d. \(\Delta p g = -p_i g + p_0 g = \frac{B_i^2}{8\pi} \frac{mg}{T} + p_0 g = \frac{B_i^2}{8\pi} \) difference in gravitational accel.

C. Effects of Magnetic buoyancy in Astrophysical Objects

1. Stars: Drives magnetic flux to the surface of stars, driving magnetic activity.

2. Galactic disks and accretion disks: Transfers magnetic flux to the halo or core of disks.

II. Magnetic Buoyancy Instabilities:

A. Equilibrium

1. As shown above, a horizontal, isothermal isolated flux tube cannot be in equilibrium.

2. But, a horizontal, isothermal magnetic flux sheet can be in equilibrium (density in horizontal direction is constant).
3. However, a flux sheet is susceptible to magnetic buoyancy instabilities.

B. Types of Magnetic Buoyancy Instabilities

1. Consider the case of a 2-D flux sheet.

\[
\begin{align*}
\mathbf{B}_0 &= \mathbf{B}_0(z) \\
a. & \mathbf{B}_0 \text{ in } \hat{z}-\text{direction} \\
b. & \text{gravity in } \hat{z}-\text{direction}
\end{align*}
\]

2. Two Types of Instabilities:

\[k = k' k\]

(a) Interchange Mode

\[k = k' k\]

b) \[k = k' k\]

(c) Instability Condition: \[\frac{d}{dz} \langle \mathbf{B}_0^2 \rangle < 0\]

(d) Unstable Wavenumbers: Any \(k \) with faster growth or large \(k \)

(e) Also called: i) Magnetic Rayleigh-Taylor Instability
 ii) flute instability (Lab plasmas)
 iii) Kruskal-Schwarzschild Instability

(2) Unstable Mode

b) \[k = k' k\]

(c) Instability Condition: \[\frac{d}{dz} \mathbf{B}_0 < 0\]
Lecture 22 (Continued)

II. Bz (Continued)

(2) (Continued)

d) Unsable Wavenumbers: \(kH \leq 2 \) for isothermal atmosphere

- Small scale (high \(k \)) modes are stabilized by magnetic tension.

- Also called:
 i) Parker Instability (Geophysics)
 ii) Ballooning Instability (Fusion) (Driven by pressure gradients)

III. The Parker Instability

A. MHD Equations:

1. Continuity:
 \[
 \frac{\partial \rho}{\partial t} + \nabla \cdot \rho \mathbf{V} = -\rho \nabla \cdot \mathbf{V}
 \]

2. Momentum:
 \[
 \rho \frac{\partial \mathbf{V}}{\partial t} + \rho \mathbf{V} \cdot \nabla \mathbf{V} = -\nabla (\rho + \frac{B^2}{8\pi}) + \frac{\mathbf{B} \cdot \nabla \mathbf{B}}{4\pi} - \rho g(z) \mathbf{\hat{z}}
 \]

3. Induction:
 \[
 \frac{\partial \mathbf{B}}{\partial t} + \mathbf{V} \cdot \nabla \mathbf{B} = -\mathbf{B} \cdot \nabla \mathbf{V} + \mathbf{B} \cdot \nabla \mathbf{V}
 \]

4. Eq. of State:
 \[
 \frac{\partial \rho}{\partial t} + \nabla \cdot \rho \mathbf{V} = -\rho g(z) \mathbf{\hat{z}}
 \]

B. Equilibrium:

- Vertical force balance:
 1. Consider a system
 \[
 g = -\frac{g(z)}{2} \downarrow \quad \mathbf{B}_0 = B_0 \mathbf{\hat{z}}
 \]

 - Vertical gravity

 - Horizontal \(B \) field

2. Vertical Force Balance

 a) Equilibrium: \(\mathbf{V}_0 = 0 \), Steady-state \(\frac{\partial \mathbf{V}}{\partial t} = 0 \)

 b) \(z \)-component of momentum eq.

 \[
 \frac{\partial^2}{\partial z^2} \left(\rho + \frac{B_0^2}{8\pi} \right) - \rho g(z) = 0
 \]

 c) General Equilibrium

 \[
 \frac{\partial^2}{\partial z^2} \left(\rho \mathbf{V} + \frac{B_0^2}{8\pi} \right) = -\rho \mathbf{V} g(z)
 \]
3. Simplifying Assumptions for Equilibrium:
 a. Plasma Beta, $\beta = \frac{8\pi p_0}{B^2}$ is independent of z
 b. Isothermal equilibrium ($\beta = 1$), $p_0 = c_s^2 \rho_0$ where $c_s^2 = \text{const}$
 c. Constant Gravitational Acceleration, $g = -g \hat{z}$

$$4. \quad \frac{\partial}{\partial z} \left[\rho_0 \left(1 + \frac{1}{\beta} \right) \right] = \left(1 + \frac{1}{\beta} \right) \frac{\partial \rho_0}{\partial z} = -\rho_0 g$$

$$5. \quad \frac{\partial \rho_0}{\partial z} = c_s^2 \frac{\partial \rho_0}{\partial z} \Rightarrow \left(1 + \frac{1}{\beta} \right) c_s^2 \frac{\partial \rho_0}{\partial z} = -\rho_0 g$$

$$c. \quad \left(1 + \frac{1}{\beta} \right) c_s^2 \int_0^{\rho_0} \frac{\partial \rho_0}{\partial z} = -\frac{g \rho_0}{c_s^2 (1+\beta)}$$

5. Define Scale Height: $H = \frac{c_s^2 (1+\beta)}{g \beta}$

Isothermal Atmosphere: $\rho_0(z) = \rho_0(0) e^{-\frac{z}{H}}$

6. Note:
 a. $\frac{1}{\rho_0} \frac{\partial \rho_0}{\partial z} = -\frac{1}{H}$
 b. $\frac{1}{\rho_0} \frac{\partial \rho_0}{\partial z} = -\frac{1}{H}$
 c. $\frac{1}{\rho_0} \frac{\partial \rho_0}{\partial z} = -\frac{1}{2H}$

d. Therefore, this isothermal atmosphere is characterized by the scale height H (function of g, β, T)
III. (Continued)

Co. Linear Dispersion Relation for Parker Instability

1. Setup and Assumptions:
 a. Horizontal Magnetic Field: \(B_0 = B_0(z) \hat{y} \)
 b. Constant Vertical Gravity: \(g = -g \hat{z} \)
 c. Resting, Steady State Equilibrium: \(U_0 = 0 \)
 d. Isothermal Equilibrium with scale height \(H = \frac{c_s^2(1+\beta)}{g} \)
 e. Perturbations have arbitrary \(\mathbf{Y} = \mathbf{Y}(\mathbf{r}, \mathbf{p}) \rightarrow B. \text{d State} \)
 f. Gas and Plasma Both, \(\beta \), independent of \(z \)
 g. Allow only \(\frac{\partial U}{\partial z} \neq 0 \) (undular mode, parallel perturbations)
 \(\frac{\partial U}{\partial z} = 0 \) (no interchange mode), \(\frac{\partial U}{\partial z} = 0 \) for simplicity

2. It can be shown that for \(\frac{\partial^2 U}{\partial z^2} = 0 \) and \(\frac{\partial U}{\partial z} = 0 \), there is
 no instability drive for \(\nabla U \) and \(\nabla^2 U \). Thus, we take
 \(U_x = 0, B_x = 0 \). (Solve for \(U_y, U_z, B_y, B_z, p, \rho, n \))
 a. Notation:
 \(\mathbf{U} = U_x \hat{x} + U_y \hat{y} + U_z \hat{z} \)
 \(\mathbf{B} = B_x \hat{x} + B_y \hat{y} + B_z \hat{z} \)

3. Usual Steps to Solve for Linear Dispersion Relation
 (1) Linearize Equations
 (2) Fourier Transform
 (3) Solve \(\nabla \cdot \mathbf{U} = 0 \), \(\Rightarrow |D| = 0 \)

D. Linearization:
1. \(B = B_0(z) \hat{y} + \epsilon B_1 \)
2. \(U = \epsilon U_1 \)
3. \(\rho = \rho_0(z) + \epsilon \rho_1 \)
4. \(\rho = \rho_0(z) + \epsilon \rho_1 \)
Equilibrium Gradients:

a. Gradients of B_0, p_0, and p in z will lead to new terms in linearized equations. These terms can drive instability.

b. When Fourier transforming linearized equations, you do NOT Fourier transform equilibrium gradients. Only linear perturbations p_1, U_1, B_1, and p_1 have the form $e^{i(k_y y - \omega t)}$.

c. Notation:
$$B_0' = \frac{\delta B_y}{\delta z}, \quad p_0' = \frac{\delta p}{\delta z}, \quad p' = \frac{\delta p}{\delta z}$$

3. \[
\frac{\partial p_0'}{\partial t} + U_z p_0' = -p_0 \nabla \cdot U_1
\]

\[
\frac{\partial U_1}{\partial t} = -\nabla p_0' - \frac{V^2}{B_0'} \frac{B_0}{B_0'} \frac{B_y}{B_0} \frac{\delta B_y}{\delta z} - \frac{V^2}{B_0} \frac{\delta B_y}{\delta z} \frac{B_y}{B_0} V_y + \frac{V^2}{B_0} \frac{\delta B_y}{\delta z} \frac{B_y}{B_0} - \frac{\delta p}{\delta y} \frac{\delta U_1}{\delta y}
\]

\[
\frac{\partial B_0'}{\partial t} + U_z B_0' = -B_0 \nabla \cdot U_1 + B_0 \frac{\partial U_1}{\partial y}
\]

\[
\frac{\partial p'}{\partial t} + U_z p' = -p_0 \nabla \cdot U_1
\]

4. Simplifying using $\frac{\delta^2}{\delta y^2} = 0$, $\frac{\delta^2}{\delta z^2} = 0$, $U_y = 0$, and $B_y = 0$:

\[
\frac{\partial p_0'}{\partial t} = -U_z p_0' - p_0 \frac{\partial U_1}{\partial y}
\]

\[
\frac{\partial U_1}{\partial t} = -p_0 \frac{\partial U_1}{\partial y} + \frac{V^2}{B_0'} \frac{B_0}{B_0'} \frac{B_y}{B_0} \frac{\delta B_y}{\delta z} + \frac{V^2}{B_0} \frac{\delta B_y}{\delta z} \frac{B_y}{B_0} V_y + \frac{V^2}{B_0} \frac{\delta B_y}{\delta z} \frac{B_y}{B_0} - \frac{\delta p}{\delta y} \frac{\partial U_1}{\partial y}
\]

\[
\frac{\partial B_0'}{\partial t} = -U_z B_0'
\]

\[
\frac{\partial B_y}{\partial t} = B_0 \frac{\partial U_1}{\partial y}
\]

\[
\frac{\partial p'}{\partial t} = -U_z p' - p_0 \frac{\partial U_1}{\partial y}
\]
Lecture 12(Continued)

III. E. Remaining Steps to Linear Dispersion Relation

1. Fourier Transform

2. Substitute p_y and B_z into eq. for U_y

3. Substitute B_y, B_z, and q into eq. for U_y

4. Obtain coupled algebraic equations for U_y and U_z

$$\begin{pmatrix} P_{yy} & P_{yz} \\ P_{zy} & P_{zz} \end{pmatrix} \begin{pmatrix} U_y \\ U_z \end{pmatrix} = 0$$

5. Dispersion Relation $|\mathcal{D}| = P_{yy} P_{zz} - P_{yz} P_{zy} = 0$

4. Apply isothermal equilibrium, $\frac{f_0^1}{F_0^1} = \frac{F_0^1}{B_0^1} = -\frac{1}{H}$ to simplify.

5. Ultimately, one obtains (Parker 1960 Eq. (11-14) with $B_3 = 0$, etc.)

$$\cos^4 + \omega^2 \left[1 - \left(\frac{2\pi}{k_3} \right)^2 \right] + \left[\frac{2\pi}{k_3} - \left(\frac{1}{k_3^2} \right) \left(\frac{1}{k_3^2 H^2} \right) \right] \frac{\omega}{k_3 H^2} = 0$$

where $\bar{\omega} = \frac{\omega}{k_3}$ is dimensionless frequency.

a. Note: $\bar{\omega} = \bar{\omega}(\beta, \gamma, KH)$

F. Properties of Parker Instability!

1. Equation has form $\bar{\omega}^4 - b \bar{\omega}^2 + c = 0$ (quartic)

a. Thus $\bar{\omega}^2 = \frac{1}{2} \pm \frac{1}{2} \sqrt{b^2 - 4c}$

where $b = \left(\frac{3}{k_3} + \gamma \right) \left(\frac{1}{4 k_3 H^2} \right)$ and $c = \frac{2\pi}{k_3} - \left(\frac{1}{k_3^2} \right) \left(\frac{1}{k_3^2 H^2} \right) \frac{\omega}{k_3 H^2}$

2. Stability only if $\bar{\omega}^2 \geq 0$ and $\bar{\omega}^2$ real

This requires

a) $b^2 - 4c > 0 \Rightarrow \bar{\omega}^2 > 0$

b) $b > \sqrt{b^2 - 4c} \Rightarrow 0 \geq 0 \Rightarrow \bar{\omega}^2 \geq 0$
3. Thus, the plasma is unstable if \[C < 0 \]

4. Therefore, instability occurs when

a. \[\frac{2\omega}{\beta} < \frac{(1 + \frac{1}{\beta})(1 - \frac{1}{\beta}) - \frac{2\Omega}{\beta}}{k^2H^2} \]

b. \[(\beta + \frac{1}{\beta})(\beta + 1) - \frac{\beta\Omega}{2} > 2\Omega^2 k^2H^2 \]

c. For any possible \(k \), the least restrictive condition occurs for \(kH \to 0 \) (large wavelengths are most unstable).

\[(\beta + 1 - \frac{\beta\Omega}{2})(\beta + 1) - \frac{\beta\Omega}{2} > 0 \]

d. For the isothermal case \(\gamma = 1 \), this yields \(\frac{\beta + 1}{2} > 0 \) \(\Rightarrow \) Always and

Thus, an isothermal atmosphere is always unstable to the Parker Instability.

5. In general, this instability condition can be written,

\[\gamma - 1 < \frac{2\beta + \frac{1}{\beta^2}}{(1 + \frac{3}{\beta^2})} \]

a. In the unmagnetised limit \(\beta \to \infty \), \(\Rightarrow \gamma < 1 \) is unstable.

So, the isothermal atmosphere is stable for thermal gas alone.

b. The magnetic field makes the system unstable.

Muse have \(\gamma > 1 \) to maintain stability.
III. Consequences of the Parker Instability:

1. Interstellar plasma tends to collect in discrete clouds

2. Cloud separations are 10^{-2} pc

3. Cosmic rays can also contribute to the buoyancy instability, leading to thermal gas draining down field lines.

4. For typical interstellar medium densities $n \leq 10$ cm$^{-3}$, magnetic field in ISM cannot exceed $B \leq 25$\ microG.

5. A stronger would be unceaseable and rise out of the galactic disk.

6. Parker instability gives limit on density given magnetic field strength, or limits on magnetic field strength given the density.

4. Magnetic tension stabilizes the instability, so there is typically a maximum unstable wavenumber (minimum unstable wavelength) for a particular choice of x, B.

[Remember, $c_0 = c_0(x, B, KH)$]