29:278 Homework #11

Suggested Reading: Read Tajima and Shibata Section 4.1, p.283–316

Due at the beginning of class, Thursday, May 1, 2014.

1. Hydrodynamic Keplerian Accretion Disk

Calculate the dispersion relation for a hydrodynamic disk in Keplerian rotation about a central body of mass M. Assume incompressible motion $\nabla \cdot \mathbf{U} = 0$ and a wave vector $\mathbf{k} = k\hat{\mathbf{z}}$ that varies only in the z direction (aligned with the axis of the Keplerian rotation). Take the accretion disk to be an isothermal, thin disk.

- (a) Write down the relevant first-order hydrodynamic equations (having removed the equilibrium) based on the assumptions above.
- (b) Why do the pressure gradient and gravitational force terms in the momentum equation not contribute to the first order equations?
- (c) Show that the dispersion relation for this system is

$$\omega^2 = 4\Omega^2 + \frac{d\Omega^2}{d\ln R}.$$

- (d) Use the definition of the epicyclic frequency κ to show that this dispersion relation may be alternatively written as $\omega^2 = \kappa^2$.
- (e) Show that this implies a stability criterion dL/dR > 0 for stability and that the Keplerian disk is stable. Here $L = R^2 \Omega$ is the specific angular momentum.

2. Growth Rates of the Magnetorotational Instability In a magnetized Keplerian accretion disk, the dispersion relation for fluctuations with $\mathbf{k} = k\hat{\mathbf{z}}$ in the incompressible limit is

$$\omega^{4} - \omega^{2} (\kappa^{2} + 2k^{2} v_{A}^{2}) + k^{2} v_{A}^{2} \left(k^{2} v_{A}^{2} + \frac{d\Omega^{2}}{d \ln R} \right) = 0.$$

(a) Show that the frequency can be written in the form

$$\omega^2 = \frac{\kappa^2 + 2(kv_A)^2}{2} \pm \frac{1}{2}\sqrt{\kappa^4 + 16(kv_A)^2\Omega^2}$$

(b) For an arbitrary unstable rotation profile $\Omega(R)$ with $d\Omega/dR < 0$, calculate the wavenumber (squared) $(kv_A)^2_{max}$ at which the maximum growth rate of the Magnetorotational Instability occurs.

HINT: Since instability occurs when $\omega^2 < 0$, the wavenumber corresponding to the maximum growth rate can be found by minimizing ω^2 with respect to kv_A .

- (c) Determine the maximum unstable growth rate $\gamma_{max} = \text{Im}(\omega)$ at the wavenumber $(kv_A)_{max}$.
- (d) For a Keplerian rotation profile $\Omega^2 = GM/R^3$, calculate the values of γ_{max} and $(kv_A)_{max}$ in terms of the angular rotation frequency Ω .