29:293 Homework #6

Due at the beginning of class, Thurs, April 2, 2015.

1. Here we will apply a simplified version of Multiple-Timescale Analysis to the problem of particle motion in constant,
uniform E and B fields.

We assume a right-handed, orthonormal basis aligned with the direction of the magnetic field (&1, &>, b) such that
€1 X €y = b. The Lorentz Force Law is

dv

mE:q(E—I—VXB)

for an electric field E = F1é1 + Eo2és + EHB and a magnetic field B = BOB. For this problem, we will take the case
E;=0.

(a)

First, let us convert the dimensional form of the Lorentz Force Law above to a dimensionless equation. Derive
the dimensionless form

dv’ N
— =FE +v' xb 1
for dimensionless quantities t' = w.t, v/ =v/v,, and E' = W]’:‘u where v = \/v? + v3.

Verify that the quantity £/ = |E’| is dimensionless (in the SI system of units).
Show that the condition E’ < 1 means that the E x B drift is slow compared to the perpendicular velocity,
|VE| L.

Assuming E' < 1, the timescales of the Larmor motion and the E x B drift are well separated. For the
expansion parameter, take ¢ = F/ < 1. As an aid in the bookkeeping for the order of magnitude of each term,
we can add an € to the electric field term in our equation to remind us of its order,

av’ -
d—:,:eE/—l—v’xb (2)

We’ll assume a fast timescale ' and a slow timescale 7/ = et/. Decompose the total velocity into rapidly
varying piece v} and a smaller slowly varying piece v} , v/ = v|(t') + evh(7').

Write down the expansion of d/dt’ assuming two timescales.

Derive the equation at O(1) and solve for v{(#') given the (dimensional) initial conditions at ¢ = 0 of v =
v €] + 1)”0];).

Derive the equation at O(e). Solve for v4(7’). HINT: Do not forget to treat ¢’ and 7" as independent variables.

Sum the solution for each order to get the total solution v/(¢', 7). Convert back to dimensional form to yield
the final, complete solution v(¢).



2. Recall the Child-Langmuir Law for a 1-D electrostatic plasma of hydrogen with isothermal electrons with temper-

ature T, and cold ions,
4 9\ 1/2 43/2
= - R w : 3
i=ga( ) o 0
which expresses the space-charge limited ion current across the sheath in the limit —e¢,, /T, > 1 as a function
of sheath width d and the potential difference ¢,, between the wall and the potential at the sheath edge x = d.

Recall that the potential at the sheath edge is chosen to define a potential of zero, ¢(d) = 0. Note that we absorb
Boltzmann’s constant to give temperature in units of energy.

(a) Taking the ion current to be given by j; = engcs, where ¢ = /Te/m; and the ng is ion density at the
sheath edge, compute an expression for the sheath width d as a function of the wall potential ¢,,, the electron
temperature T, and the Debye length computed using the plasma conditions at the sheath edge = = d.

(b) For typical laboratory plasma parameters of T, = 5 eV and ng = 10'® m3, compute the width of the sheath
for a wall voltage of ¢, = —300 V.

3. For a Langmuir probe trace using a cylindrical probe (for which the electron saturation current does not become
constant), (a) compute the electron temperature (in eV) using the data in the table below, (b) estimate the plasma
potential ¢,, and (c) estimate floating potential ¢ ;.

Probe Bias (V) - Probe Current (A)

-65.00 -0.0001290
-60.00 -0.0001290
-55.00 -0.0000860
-50.00 -0.0000860
-45.00 -0.0000430
-40.00 -0.0000430
-35.00 0.0000000
-30.00 0.0000430
-26.00 0.0001730
-24.00 0.0003020
-22.00 0.0004740
-20.00 0.0009060
-18.00 0.0015960
-16.00 0.0032350
-14.00 0.0041410
-12.00 0.0046580
-10.00 0.0051330
-8.00 0.0055210
-6.00 0.0058230
-4.00 0.0062540
-2.00 0.0064270
0.00 0.0068150



